Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000516

RESUMO

The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.


Assuntos
Antagonistas dos Receptores CCR5 , Neuropatias Diabéticas , Modelos Animais de Doenças , Receptores CCR2 , Receptores CCR5 , Animais , Camundongos , Neuropatias Diabéticas/tratamento farmacológico , Masculino , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Feminino , Receptores CCR5/metabolismo , Receptores CCR5/genética , Antagonistas dos Receptores CCR5/farmacologia , Antagonistas dos Receptores CCR5/uso terapêutico , Morfina/farmacologia , Morfina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Imidazóis , Sulfóxidos
2.
Pharmacol Res ; 205: 107242, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823470

RESUMO

Targeting the CCL2/CCR2 chemokine axis has been shown to be effective at relieving pain in rodent models of inflammatory and neuropathic pain, therefore representing a promising avenue for the development of non-opioid analgesics. However, clinical trials targeting this receptor for inflammatory conditions and painful neuropathies have failed to meet expectations and have all been discontinued due to lack of efficacy. To overcome the poor selectivity of CCR2 chemokine receptor antagonists, we generated and characterized the function of intracellular cell-penetrating allosteric modulators targeting CCR2, namely pepducins. In vivo, chronic intrathecal administration of the CCR2-selective pepducin PP101 was effective in alleviating neuropathic and bone cancer pain. In the setting of bone metastases, we found that T cells infiltrate dorsal root ganglia (DRG) and induce long-lasting pain hypersensitivity. By acting on CCR2-expressing DRG neurons, PP101 attenuated the altered phenotype of sensory neurons as well as the neuroinflammatory milieu of DRGs, and reduced bone cancer pain by blocking CD4+ and CD8+ T cell infiltration. Notably, PP101 demonstrated its efficacy in targeting the neuropathic component of bone cancer pain, as evidenced by its anti-nociceptive effects in a model of chronic constriction injury of the sciatic nerve. Importantly, PP101-induced reduction of CCR2 signaling in DRGs did not result in deleterious tumor progression or adverse behavioral effects. Thus, targeting neuroimmune crosstalk through allosteric inhibition of CCR2 could represent an effective and safe avenue for the management of chronic pain.


Assuntos
Dor Crônica , Gânglios Espinais , Neuralgia , Receptores CCR2 , Animais , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Dor Crônica/tratamento farmacológico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Humanos , Dor do Câncer/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Masculino , Camundongos , Feminino , Camundongos Endogâmicos C57BL
3.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747296

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac condition characterized by cardiac remodeling and life-threatening ventricular arrhythmias. In this issue of the JCI, Chelko, Penna, and colleagues mechanistically addressed the intricate contribution of immune-mediated injury in ACM pathogenesis. Inhibition of nuclear factor κ-B (NF-κB) and infiltration of monocyte-derived macrophages expressing C-C motif chemokine receptor-2 (CCR2) alleviated the phenotypic ACM features (i.e., fibrofatty replacement, contractile dysfunction, and ventricular arrhythmias) in desmoglein 2-mutant (Dsg2mut/mut) mice. These findings pave the way for efficacious and targetable immune therapy for patients with ACM.


Assuntos
Desmogleína 2 , Macrófagos , Receptores CCR2 , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Humanos , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmogleína 2/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , NF-kappa B/metabolismo , NF-kappa B/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/imunologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Displasia Arritmogênica Ventricular Direita/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/imunologia , Cardiomiopatias/metabolismo
4.
Clin Transl Sci ; 17(6): e13811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38814167

RESUMO

Immune checkpoint inhibitors remained the standard-of-care treatment for advanced non-small cell lung cancer (NSCLC) for the past decade. In unselected patients, anti-PD-(L)1 monotherapy achieved an overall response rate of about 20%. In this analysis, we developed a pharmacokinetic and pharmacodynamic module for our previously calibrated quantitative systems pharmacology model (QSP) to simulate the effectiveness of macrophage-targeted therapies in combination with PD-L1 inhibition in advanced NSCLC. By conducting in silico clinical trials, the model confirmed that anti-CD47 treatment is not an optimal option of second- and later-line treatment for advanced NSCLC resistant to PD-(L)1 blockade. Furthermore, the model predicted that inhibition of macrophage recruitment, such as using CCR2 inhibitors, can potentially improve tumor size reduction when combined with anti-PD-(L)1 therapy, especially in patients who are likely to respond to anti-PD-(L)1 monotherapy and those with a high level of tumor-associated macrophages. Here, we demonstrate the application of the QSP platform on predicting the effectiveness of novel drug combinations involving immune checkpoint inhibitors based on preclinical or early-stage clinical trial data.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/farmacocinética , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Farmacologia em Rede/métodos , Simulação por Computador , Modelos Biológicos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
5.
J Ethnopharmacol ; 329: 118169, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621463

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Ba-Qi-Rougan formula (BQRGF) is a traditional and effective compound prescription from Traditional Chinese Medicine (TCM) utilized in treating hepatic fibrosis (HF). AIM OF THE STUDY: We aimed to evaluate the therapeutic efficacy of BQRGF on HF and explore the underlying mechanisms of action. MATERIALS AND METHODS: UPLC-Q-TOF-MS technology was employed to identify the material basis of BQRGF. Mice with carbon tetrachloride (CCl4)-induced HF received BQRGF at three doses (3.87, 7.74, and 15.48 g/kg per day). We examined serum and liver biochemical indicators and liver histology to assess the therapeutic impact. Primary mouse cells were isolated and utilized for experimental analysis. MSMP expression levels were examined in vitro and in vivo experimental models, including human and mouse tissue. Furthermore, lentivirus and small interfering RNA (siRNA) transfections were employed to manipulate microseminoprotein (MSMP) expression in LO2 cells (human normal liver cells). These manipulated LO2 cells were then co-cultured with LX2 human hepatic stellate cells (HSCs). Through the modulation of MSMP expression in co-cultured cells, administering recombinant MSMP (rMSMP) with or without BQRGF-medicated serum, and using specific pathway inhibitors or agonists in LX2 cells, we elucidated the underlying mechanisms. RESULTS: A total of 48 compounds were identified from BQRGF, with 12 compounds being absorbed into the bloodstream and 9 compounds being absorbed into the liver. Four weeks of BQRGF treatment in the HF mouse model led to significant improvements in biochemical and molecular assays and histopathology, particularly in the medium and high-dose groups. These improvements included a reduction in the level of liver injury and fibrosis-related factors. MSMP levels were elevated in human and mouse fibrotic liver tissues, and this increase was mitigated in HF mice treated with BQRGF. Moreover, primary cells and co-culture studies revealed that BQRGF reduced MSMP expression, decreased the expression of the hepatic stellate cell (HSC) activation markers, and suppressed critical phosphorylated protein levels in the CCR2/PI3K/AKT pathway. These findings were further validated using CCR2/PI3K/AKT signaling inhibitors and agonists in MSMP-activated LX2 cells. CONCLUSIONS: Collectively, our results suggest that BQRGF combats HF by diminishing MSMP levels and inhibiting MSMP-induced HSC activation through the CCR2/PI3K/AKT pathway.


Assuntos
Medicamentos de Ervas Chinesas , Células Estreladas do Fígado , Cirrose Hepática , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Animais , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Masculino , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores CCR2/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Tetracloreto de Carbono , Linhagem Celular
6.
Adv Drug Deliv Rev ; 209: 115318, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38643840

RESUMO

The communication between cells and their microenvironment represents an intrinsic and essential attribute that takes place in several biological processes, including tissue homeostasis and tissue repair. Among these interactions, inflammation is certainly a central biological response that occurs through cytokines and the crosstalk with their respective receptors. In particular, the interaction between CCL2 and its main receptor, CCR2, plays a pivotal role in both harmful and protective inflammatory states, including cancer-mediated inflammation. The activation of the CCL2/CCR2 axis was shown to dictate the migration of macrophages with immune-suppressive phenotype and to aggravate the progression of different cancer types. In addition, this interaction mediates metastasis formation, further limiting the potential therapeutic outcome of anti-cancer drugs. Attempts to inhibit pharmacologically the CCL2/CCR2 axis have yet to show its anti-cancer efficacy as a single agent, but it sheds light on its role as a powerful tool to selectively alleviate pro-tumorigenic and anti-repair inflammation. In this review, we will elucidate the role of CCL2/CCR2 axis in promoting cancer inflammation by activating the host pro-tumorigenic phenotype. Moreover, we will provide some insight into the potential therapeutic benefit of targeting the CCL2/CCR2 axis for cancer and inflammation using novel delivery systems, aiming to sensitize non-responders to currently approved immunotherapies and offer new combinatory approaches.


Assuntos
Quimiocina CCL2 , Inflamação , Nanomedicina , Neoplasias , Receptores CCR2 , Humanos , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL2/antagonistas & inibidores , Animais , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos
7.
Eur J Immunol ; 54(7): e2350847, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643381

RESUMO

Cenicriviroc, a dual CCR2/CCR5 antagonist, initially developed as an anti-HIV drug, has shown promising results in nonalcoholic steatohepatitis phase 2 clinical trials. It inhibits the infiltration and activation of CCR2+/CCR5+ monocytes and macrophages to the site of liver injury, preventing liver fibrosis. However, the role of Cenicriviroc in the modulation of helper T cell differentiation and functions remains to be explored. In inflamed colons of Crohn's disease patients, CCR2+ and CCR5+ CD4+ T cells are enriched. Considering the role of CCR2+ and CCR5+ T cells in IBD pathogenesis, we investigated the potential role of Cenicriviroc in colitis. Our in vitro studies revealed that Cenicriviroc inhibits Th1-, Th2-, and Th17-cell differentiation while promoting the generation of type 1 regulatory T cells (Tr1), known for preventing inflammation through induction of IL-10. This study is the first to report that Cenicriviroc promotes Tr1 cell generation by up-regulating the signature of Tr1 cell transcription factors such as c-Maf, Prdm1, Irf-1, Batf, and EGR-2. Cenicriviroc displayed a protective effect in experimental colitis models by preventing body weight loss and intestinal inflammation and preserving epithelial barrier integrity. We show that Cenicriviroc induced IL-10 and inhibited the generation of pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and IL-1ß during colitis. Based on our data, we propose Cenicriviroc as a potential therapeutic in controlling tissue inflammation by inhibiting the generation and functions of effector T cells and promoting the induction of anti-inflammatory Tr1 cells.


Assuntos
Antagonistas dos Receptores CCR5 , Diferenciação Celular , Colite , Receptores CCR2 , Receptores CCR5 , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Camundongos , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , Colite/imunologia , Colite/tratamento farmacológico , Colite/induzido quimicamente , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Antagonistas dos Receptores CCR5/farmacologia , Antagonistas dos Receptores CCR5/uso terapêutico , Receptores CCR5/metabolismo , Humanos , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Sulfóxidos/farmacologia , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Interleucina-10/metabolismo , Células Th2/imunologia , Imidazóis
8.
Clin Cancer Res ; 30(10): 2245-2259, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38451486

RESUMO

PURPOSE: Emerging evidence underscores the critical role of extrinsic factors within the microenvironment in protecting leukemia cells from therapeutic interventions, driving disease progression, and promoting drug resistance in acute myeloid leukemia (AML). This finding emphasizes the need for the identification of targeted therapies that inhibit intrinsic and extrinsic signaling to overcome drug resistance in AML. EXPERIMENTAL DESIGN: We performed a comprehensive analysis utilizing a cohort of ∼300 AML patient samples. This analysis encompassed the evaluation of secreted cytokines/growth factors, gene expression, and ex vivo drug sensitivity to small molecules. Our investigation pinpointed a notable association between elevated levels of CCL2 and diminished sensitivity to the MEK inhibitors (MEKi). We validated this association through loss-of-function and pharmacologic inhibition studies. Further, we deployed global phosphoproteomics and CRISPR/Cas9 screening to identify the mechanism of CCR2-mediated MEKi resistance in AML. RESULTS: Our multifaceted analysis unveiled that CCL2 activates multiple prosurvival pathways, including MAPK and cell-cycle regulation in MEKi-resistant cells. Employing combination strategies to simultaneously target these pathways heightened growth inhibition in AML cells. Both genetic and pharmacologic inhibition of CCR2 sensitized AML cells to trametinib, suppressing proliferation while enhancing apoptosis. These findings underscore a new role for CCL2 in MEKi resistance, offering combination therapies as an avenue to circumvent this resistance. CONCLUSIONS: Our study demonstrates a compelling rationale for translating CCL2/CCR2 axis inhibitors in combination with MEK pathway-targeting therapies, as a potent strategy for combating drug resistance in AML. This approach has the potential to enhance the efficacy of treatments to improve AML patient outcomes.


Assuntos
Quimiocina CCL2 , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Receptores CCR2 , Transdução de Sinais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/genética , Resistencia a Medicamentos Antineoplásicos/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Animais , Piridonas/farmacologia , Piridonas/uso terapêutico , Camundongos
9.
Acta Pharmacol Sin ; 45(5): 959-974, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225394

RESUMO

Following acute myocardial ischemia reperfusion (MIR), macrophages infiltrate damaged cardiac tissue and alter their polarization phenotype to respond to acute inflammation and chronic fibrotic remodeling. In this study we investigated the role of macrophages in post-ischemic myocardial fibrosis and explored therapeutic targets for myocardial fibrosis. Male mice were subjected to ligation of the left coronary artery for 30 min. We first detected the levels of chemokines in heart tissue that recruited immune cells infiltrating into the heart, and found that granulocyte-macrophage colony-stimulating factor (GMCSF) released by mouse cardiac microvascular endothelial cells (MCMECs) peaked at 6 h after reperfusion, and c-c motif chemokine ligand 2 (CCL2) released by GMCSF-induced macrophages peaked at 24 h after reperfusion. In co-culture of BMDMs with MCMECs, we demonstrated that GMCSF derived from MCMECs stimulated the release of CCL2 by BMDMs and effectively promoted the migration of BMDMs. We also confirmed that GMCSF promoted M1 polarization of macrophages in vitro, while GMCSF neutralizing antibodies (NTABs) blocked CCL2/CCR2 signaling. In MIR mouse heart, we showed that GMCSF activated CCL2/CCR2 signaling to promote NLRP3/caspase-1/IL-1ß-mediated and amplified inflammatory damage. Knockdown of CC chemokine receptor 2 gene (CCR2-/-), or administration of specific CCR2 inhibitor RS102895 (5 mg/kg per 12 h, i.p., one day before MIR and continuously until the end of the experiment) effectively reduced the area of myocardial infarction, and down-regulated inflammatory mediators and NLRP3/Caspase-1/IL-1ß signaling. Mass cytometry confirmed that M2 macrophages played an important role during fibrosis, while macrophage-depleted mice exhibited significantly reduced transforming growth factor-ß (Tgf-ß) levels in heart tissue after MIR. In co-culture of macrophages with fibroblasts, treatment with recombinant mouse CCL2 stimulated macrophages to release a large amount of Tgf-ß, and promoted the release of Col1α1 by fibroblasts. This effect was diminished in BMDMs from CCR2-/- mice. After knocking out or inhibiting CCR2-gene, the levels of Tgf-ß were significantly reduced, as was the level of myocardial fibrosis, and cardiac function was protected. This study confirms that the acute injury to chronic fibrosis transition after MIR in mice is mediated by GMCSF/CCL2/CCR2 signaling in macrophages through NLRP3 inflammatory cascade and the phenotype switching.


Assuntos
Quimiocina CCL2 , Fibrose , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Macrófagos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Fenótipo , Receptores CCR2 , Animais , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Quimiocina CCL2/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Transdução de Sinais , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Cultivadas , Camundongos Knockout
10.
Exp Anim ; 73(2): 211-222, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199255

RESUMO

C-C chemokine receptor type 2 (CCR2) is a monocyte chemokine associated with oxidative stress and inflammation. Kidney stones (KS) are composed of calcium oxalate (CaOx), which trigger renal oxidative stress and inflammatory. This study aims to evaluate the effects of CCR2 on KS in vivo and in vitro. Eight-week-old male C57BL/6J mice were intraperitoneally injected with glyoxylate (GOX) daily to establish a KS model, and along with CCR2 antagonist (INCB3344) treatment on days 2, 4, and 6. The results showed that CCR2 antagonist reduced renal injury markers (blood urea nitrogen and serum creatinine), alleviated renal tubular injury and CaOx crystal deposition. CCR2 antagonist also decreased CCR2 expression induced by GOX treatment and increased Nrf2 expression. GOX treatment promoted malondialdehyde (MDA) production, decreased glutathione (GSH) content, and inhibited catalase (CAT) and superoxide dismutase (SOD) activity, however, CCR2 antagonist attenuated the above effects of GOX. CCR2 antagonist had inhibitory effects on GOX-induced inflammatory cytokine expression (IL1B, IL6 and MCP1), and inhibited apoptosis by increasing Bcl-2 expression and decreasing Bax and cleaved-caspase 3 expression. In vitro experiments were performed by co-culture model of CaOx-induced damaged HK-2 cells and macrophage-like THP-1 cells. CCR2 antagonist inhibited CaOx-induced THP-1 cell M1 polarization by decreasing the TNF-α, IL6 and iNOS levels, and further alleviated CaOx-induced oxidative stress damage, inflammatory response and apoptosis of HK-2 cells. The study suggests that CCR2 antagonist may be resistant to CaOx crystals-induced oxidative stress and inflammation by inhibiting macrophage M1 polarization.


Assuntos
Oxalato de Cálcio , Inflamação , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pirrolidinas , Receptores CCR2 , Animais , Estresse Oxidativo/efeitos dos fármacos , Masculino , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , Oxalato de Cálcio/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Cálculos Renais/induzido quimicamente , Cálculos Renais/prevenção & controle , Rim/metabolismo , Rim/efeitos dos fármacos , Humanos , Modelos Animais de Doenças
11.
Mol Neurobiol ; 61(8): 4976-4991, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38157119

RESUMO

Previous studies have shown that the C-C motif chemokine ligand 2 (CCL2) is widely expressed in the nervous system and involved in regulating the development of chronic pain and related anxiety-like behaviors, but its precise mechanism is still unclear. This paper provides an in-depth examination of the involvement of CCL2-CCR2 signaling in the anterior cingulate cortex (ACC) in intraplantar injection of complete Freund's adjuvant (CFA) leading to inflammatory pain and its concomitant anxiety-like behaviors by modulation of glutamatergic N-methyl-D-aspartate receptor (NMDAR). Our findings suggest that local bilateral injection of CCR2 antagonist in the ACC inhibits CFA-induced inflammatory pain and anxiety-like behavior. Meanwhile, the expression of CCR2 and CCL2 was significantly increased in ACC after 14 days of intraplantar injection of CFA, and CCR2 was mainly expressed in excitatory neurons. Whole-cell patch-clamp recordings showed that the CCR2 inhibitor RS504393 reduced the frequency of miniature excitatory postsynaptic currents (mEPSC) in ACC, and CCL2 was involved in the regulation of NMDAR-induced current in ACC neurons in the pathological state. In addition, local injection of the NR2B inhibitor of NMDAR subunits, Ro 25-6981, attenuated the effects of CCL2-induced hyperalgesia and anxiety-like behavior in the ACC. In summary, CCL2 acts on CCR2 in ACC excitatory neurons and participates in the regulation of CFA-induced pain and related anxiety-like behaviors through upregulation of NR2B. CCR2 in the ACC neuron may be a potential target for the treatment of chronic inflammatory pain and pain-related anxiety.


Assuntos
Ansiedade , Quimiocina CCL2 , Giro do Cíngulo , Inflamação , N-Metilaspartato , Dor , Receptores CCR2 , Receptores de N-Metil-D-Aspartato , Transdução de Sinais , Animais , Giro do Cíngulo/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Masculino , Ansiedade/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Quimiocina CCL2/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , Dor/metabolismo , Dor/patologia , Transdução de Sinais/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Adjuvante de Freund/toxicidade , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Comportamento Animal , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Compostos de Espiro , Benzoxazinas
12.
FASEB J ; 37(8): e23039, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392374

RESUMO

Little evidence demonstrated the effects of nitric oxide (NO) hydrogel with adipocytes in vivo. We aimed to investigate the effects of adiponectin (ADPN) and CCR2 antagonist on cardiac functions and macrophage phenotypes after myocardial infarction (MI) using chitosan caged nitric oxide donor (CSNO) patch with adipocytes. 3T3-L1 cell line was induced to adipocytes and ADPN expression was knocked down. CSNO was synthesized and patch was constructed. MI model was constructed and patch was placed on the infarcted area. ADPN knockdown adipocytes or control was incubated with CSNO patch, and CCR2 antagonist was also used to investigate the ADPN effects on myocardial injury after infarction. On day 7 after operation, cardiac functions of the mice using CSNO with adipocytes or ADPN knockdown adipocytes improved more than in mice only using CSNO for treatment. Lymphangiogenesis increased much more in the MI mice using CSNO with adipocytes. After treating with CCR2 antagonist, Connexin43+ CD206+ cells and ZO-1+ CD206+ cells increased, suggesting that CCR2 antagonist promoted M2 polarization after MI. Besides, CCR2 antagonist promoted ADPN expression in adipocytes and cardiomyocytes. ELISA was also used and CKMB expression was much lower than other groups at 3 days after operation. On day 7 after operation, the VEGF and TGFß expressions were high in the adipocytes CSNO group, illustrating that higher ADPN led to better treatment. In all, CCR2 antagonist enhanced the ADPN effects on macrophage M2 polarization and cardiac functions. The combination used in border zone and infarcted areas may help improve patients' prognosis in surgery, such as CABG.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Receptores CCR2 , Animais , Camundongos , Células 3T3-L1 , Adipócitos , Adiponectina , Receptores CCR2/antagonistas & inibidores
13.
J Neuroinflammation ; 19(1): 312, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36566220

RESUMO

BACKGROUND: Neuroinflammation and neuronal apoptosis are closely associated with a poor prognosis in patients with subarachnoid hemorrhage (SAH). We investigated the role of C-C motif chemokine receptor 2 (CCR2) in SAH. METHODS: Pre-processed RNA-seq transcriptome datasets GSE167110 and GSE79416 from the Gene Expression Omnibus (GEO) database were screened for genes differentially expressed between mice with SAH and control mice, using bioinformatics analysis. The endovascular perforation model was performed to establish SAH. RS504393 (a CCR2 antagonist) and LY294002 (PI3K inhibitor) were administered to explore the mechanism of neuroinflammation after SAH. SAH grading, neurological scoring, brain water content and blood-brain barrier (BBB) permeability determination, enzyme-linked immunosorbent assay (ELISA), western blotting, and immunofluorescence were performed. An in vitro model of SAH was induced in H22 cells by hemin treatment. The protective mechanism of CCR2 inhibition was studied by adding RS504393 and LY294002. Clinical cerebrospinal fluid (CST) samples were detected by ELISA. RESULTS: Expression of CCR2 was upregulated in both datasets and was identified as a hub gene. CCR2 expression was significantly upregulated in the cytoplasm of neurons after SAH, both in vitro and in vivo. RS significantly reduced the brain water content and blood-brain barrier permeability, alleviated neuroinflammation, and reduced neuronal apoptosis after SAH. Additionally, the protective effects of CCR2 inhibition were abolished by LY treatment. Finally, the levels of CCR2, inflammatory factors, and apoptotic factors were elevated in the CSF of patients with SAH. CCR2 levels were associated with patient outcomes at the 6-month follow-up. CONCLUSION: CCR2 expression was upregulated in both in vitro and in vivo SAH models. Additionally, inhibition of CCR2, at least partly through the PI3K/AKT pathway, alleviated neuroinflammation and neuronal apoptosis in vivo and in vitro. CCR2 levels in the CSF have a moderate diagnostic value for 6-month outcome prediction in patients with SAH.


Assuntos
Apoptose , Doenças Neuroinflamatórias , Proteínas Proto-Oncogênicas c-akt , Receptores CCR2 , Hemorragia Subaracnóidea , Animais , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CCR2/antagonistas & inibidores , Transdução de Sinais , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/patologia
14.
J Exp Med ; 219(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35404390

RESUMO

The resistance of pancreatic ductal adenocarcinoma (PDAC) to immune checkpoint inhibitors (ICIs) is attributed to the immune-quiescent and -suppressive tumor microenvironment (TME). We recently found that CCR2 and CCR5 were induced in PDAC following treatment with anti-PD-1 antibody (αPD-1); thus, we examined PDAC vaccine or radiation therapy (RT) as T cell priming mechanisms together with BMS-687681, a dual antagonist of CCR2 and CCR5 (CCR2/5i), in combination with αPD-1 as new treatment strategies. Using PDAC mouse models, we demonstrated that RT followed by αPD-1 and prolonged treatment with CCR2/5i conferred better antitumor efficacy than other combination treatments tested. The combination of RT + αPD-1 + CCR2/5i enhanced intratumoral effector and memory T cell infiltration but suppressed regulatory T cell, M2-like tumor-associated macrophage, and myeloid-derived suppressive cell infiltration. RNA sequencing showed that CCR2/5i partially inhibited RT-induced TLR2/4 and RAGE signaling, leading to decreased expression of immunosuppressive cytokines including CCL2/CCL5, but increased expression of effector T cell chemokines such as CCL17/CCL22. This study thus supports the clinical development of CCR2/5i in combination with RT and ICIs for PDAC treatment.


Assuntos
Adenocarcinoma , Antagonistas dos Receptores CCR5 , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores CCR2 , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Animais , Antagonistas dos Receptores CCR5/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Receptores CCR2/antagonistas & inibidores , Receptores CCR5 , Microambiente Tumoral , Neoplasias Pancreáticas
15.
Front Immunol ; 12: 767231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925336

RESUMO

Detailed characterization of medullary and extramedullary reservoirs of osteoclast progenitors (OCPs) is required to understand the pathophysiology of increased periarticular and systemic bone resorption in arthritis. In this study, we focused on identifying the OCP population specifically induced by arthritis and the role of circulatory OCPs in inflammatory bone loss. In addition, we determined the relevant chemokine axis responsible for their migration, and targeted the attraction signal to reduce bone resorption in murine collagen-induced arthritis (CIA). OCPs were expanded in periarticular as well as circulatory compartment of arthritic mice, particularly the CCR2hi subset. This subset demonstrated enhanced osteoclastogenic activity in arthritis, whereas its migratory potential was susceptible to CCR2 blockade in vitro. Intravascular compartment of the periarticular area contained increased frequency of OCPs with the ability to home to the arthritic bone, as demonstrated in vivo by intravascular staining and adoptive transfer of splenic LysMcre/Ai9 tdTomato-expressing cells. Simultaneously, CCL2 levels were increased locally and systemically in arthritic mice. Mouse cohorts were treated with the small-molecule inhibitor (SMI) of CCR2 alone or in combination with methotrexate (MTX). Preventive CCR2/CCL2 axis blockade in vivo reduced bone resorption and OCP frequency, whereas combining with MTX treatment also decreased disease clinical score, number of active osteoclasts, and OCP differentiation potential. In conclusion, our study characterized the functional properties of two distinct OCP subsets in CIA, based on their CCR2 expression levels, implying that the CCR2hi circulatory-like subset is specifically induced by arthritis. Signaling through the CCL2/CCR2 axis contributes to OCP homing in the inflamed joints and to their increased osteoclastogenic potential. Therefore, addition of CCL2/CCR2 blockade early in the course of arthritis is a promising approach to reduce bone pathology.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Osso e Ossos/metabolismo , Quimiocina CCL2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoclastos/metabolismo , Receptores CCR2/metabolismo , Animais , Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Benzoxazinas/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Metotrexato/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Osteoclastos/citologia , Interferência de RNA , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/genética , Compostos de Espiro/farmacologia
16.
Am J Physiol Renal Physiol ; 321(6): F757-F770, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719947

RESUMO

The pathogenesis of diabetic nephropathy (DN) is related to macrophage (Mφ) recruitment to the kidneys, tumor necrosis factor-α (TNF-α) production, and oxidative stress. Toll-like receptor 9 (TLR9) activation is reportedly involved in systemic inflammation, and it exacerbates this condition in metabolic syndrome. Therefore, we hypothesized that TLR9 plays a role in the pathogenesis of DN. Two subsets of kidney Mφs in DN model (db/db) mice were analyzed using flow cytometry to evaluate their distribution and TLR9 expression and function. Mice were administered the CCR2 antagonist INCB3344 for 8 wk; changes in Mφ distribution and function and its therapeutic effects on DN pathology were examined. Bone marrow-derived CD11bhigh (BM-Mφ) and tissue-resident CD11blow Mφs (Res-Mφ) were identified in the mouse kidneys. As DN progressed, the BM-Mφ number, TLR9 expression, and TNF-α production increased significantly. In Res-Mφs, reactive oxygen species (ROS) production and phagocytic activity were enhanced. INCB3344 decreased albuminuria, serum creatinine level, BM-Mφ abundance, TLR9 expression, and TNF-α production by BM-Mφs and ROS production by Res-Mφs. Both increased activation of BM-Mφ via TLR9 and TNF-α production and increased ROS production by Res-Mφs were involved in DN progression. Thus, inactivating Mφs and their TLR9 expression by INCB3344 is a potential therapeutic strategy for DN.NEW & NOTEWORTHY We classified kidney macrophages (Mφs) into bone marrow-derived Mφs (BM-Mφs) expressing high CD11b and tissue-specific resident Mφ (Res-Mφs) expressing low CD11b. In diabetic nephropathy (DN) model mice, Toll-like receptor 9 (TLR9) expression and TNF-α production via TLR9 activation in BM-Mφs and ROS production in Res-Mφs were enhanced. Furthermore, CCR2 antagonist suppressed the kidney infiltration of BM-Mφs and their function and the ROS production by Res-Mφs, with concomitant TLR9 suppression. Our study presents a new therapeutic strategy for DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Pirrolidinas/farmacologia , Receptores CCR2/antagonistas & inibidores , Receptor Toll-Like 9/metabolismo , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Rim/imunologia , Rim/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Receptores CCR2/metabolismo , Receptores para Leptina/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
17.
Nat Commun ; 12(1): 5725, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593796

RESUMO

Although psycho-social stress is a well-known factor that contributes to the development of cancer, it remains largely unclear whether and how environmental eustress influences malignant diseases and regulates cancer-related therapeutic responses. Using an established eustress model, we demonstrate that mice living in an enriched environment (EE) are protected from carcinogen-induced liver neoplasia and transplantable syngeneic liver tumors, owning to a CD8+ T cell-dependent tumor control. We identify a peripheral Neuro-Endocrine-Immune pathway in eustress, including Sympathetic nervous system (SNS)/ß-adrenergic receptors (ß-ARs)/CCL2 that relieves tumor immunosuppression and overcomes PD-L1 resistance to immunotherapy. Notably, EE activates peripheral SNS and ß-ARs signaling in tumor cells and tumor infiltrated myeloid cells, leading to suppression of CCL2 expression and activation of anti-tumor immunity. Either blockade of CCL2/CCR2 or ß-AR signaling in EE mice lose the tumor protection capability. Our study reveales that environmental eustress via EE stimulates anti-tumor immunity, resulting in more efficient tumor control and a better outcome of immunotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neuroimunomodulação , Estresse Psicológico/imunologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Tetracloreto de Carbono/administração & dosagem , Tetracloreto de Carbono/toxicidade , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/metabolismo , Dietilnitrosamina/administração & dosagem , Dietilnitrosamina/toxicidade , Células Estreladas do Fígado , Hepatócitos , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Organoides , Receptores Adrenérgicos beta/metabolismo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sistema Nervoso Simpático/imunologia , Evasão Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
18.
Cell Rep ; 36(12): 109727, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551293

RESUMO

In traumatic brain injury (TBI), a diversity of brain resident and peripherally derived myeloid cells have the potential to worsen damage and/or to assist in healing. We define the heterogeneity of microglia and macrophage phenotypes during TBI in wild-type (WT) mice and Ccr2-/- mice, which lack macrophage influx following TBI and are resistant to brain damage. We use unbiased single-cell RNA sequencing methods to uncover 25 microglia, monocyte/macrophage, and dendritic cell subsets in acute TBI and normal brains. We find alterations in transcriptional profiles of microglia subsets in Ccr2-/- TBI mice compared to WT TBI mice indicating that infiltrating monocytes/macrophages influence microglia activation to promote a type I IFN response. Preclinical pharmacological blockade of hCCR2 after injury reduces expression of IFN-responsive gene, Irf7, and improves outcomes. These data extend our understanding of myeloid cell diversity and crosstalk in brain trauma and identify therapeutic targets in myeloid subsets.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Microglia/metabolismo , Receptores CCR2/genética , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Monócitos/citologia , Monócitos/metabolismo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/deficiência , Receptores CCR2/metabolismo
19.
Am J Reprod Immunol ; 86(5): e13480, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34191381

RESUMO

PROBLEM: Decidual macrophages (dMφ ) play an important role in the formation of maternal-fetal immune tolerance. However, factors that influence the immune status of dMφ and the related potential mechanisms have not been elucidated to date. METHOD OF STUDY: The gene transcription in dMφ , decidual stromal cells (DSCs), extravillous trophoblasts (EVTs), and peripheral monocytes (pMo) from human samples were measured using real-time polymerase chain reaction (PCR). Monocyte-DSC co-culture was established to explore whether DSCs influenced dMφ polarization via C-C motif ligand 2 (CCL2)-C-C chemokine receptor (CCR2) binding using flow cytometry. In vivo, changes in dMφ percentage and M1 and M2 marker expression after treatment with CCR2 or Janus kinase 2 (JAK2) inhibitor were detected with flow cytometry. Embryo resorption percentages in the above groups were also analyzed. RESULTS: We found that dMφ were an M1/M2 mixed status at the maternal-fetal interface during early pregnancy. CCL2 influenced the immune status of dMφ in an autocrine and paracrine manner. As a downstream regulator of CCR2 and triggers the Stat3 pathway, JAK2 was found to be essential for dMφ homeostasis in vivo. JAK2 inhibitor decreased the dMφ proportion and attenuated Ki67, CD36, CD86, CD206, TNF, and IL-10 expression in dMφ at E8.5 d. Moreover, CCR2-JAK2 pathway inhibition decreased the width of the placental labyrinth layer, further influencing the pregnancy outcome. CONCLUSION: The M1/M2 mixed immune status of dMφ was regulated by DSCs via CCR2, and the CCL2/CCR2/JAK2 pathway was essential for the immune status of dMφ and the outcome of early pregnancy.


Assuntos
Quimiocina CCL2/metabolismo , Decídua/enzimologia , Histocompatibilidade Materno-Fetal , Tolerância Imunológica , Janus Quinase 2/metabolismo , Macrófagos/enzimologia , Receptores CCR2/metabolismo , Células Estromais/enzimologia , Adulto , Animais , Células Cultivadas , Técnicas de Cocultura , Decídua/efeitos dos fármacos , Decídua/imunologia , Perda do Embrião/enzimologia , Perda do Embrião/imunologia , Feminino , Humanos , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Fenótipo , Gravidez , Resultado da Gravidez , Receptores CCR2/antagonistas & inibidores , Transdução de Sinais , Células Estromais/efeitos dos fármacos , Células Estromais/imunologia , Adulto Jovem
20.
Eur J Pharmacol ; 904: 174165, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979652

RESUMO

Interleukin 6 (IL-6) is a pleiotropic cytokine that is elevated in inflammatory bowel disease. However, the role of IL-6 deficiency in colitis is not well-defined. Some IL-6 and IL-6 receptor antagonists are associated with severe gastrointestinal immune adverse effects, but the mechanisms of the effects are not clear. This study aimed to investigate the effect of IL-6 in ulcerative colitis in Il6-/- mice. Results indicated that physiological deficiency of IL-6 promoted the development of colitis. Moreover, IL-6 deficiency significantly increased the mRNA levels of monocytes chemokine Ccl2 and its receptor Ccr2 in colon tissues. Similarly, the percentage of Ly6Chigh monocytes and neutrophils were increased in the colon of Il6-/- mice. Intestinal crypts more strongly increased the migration of Il6-/- macrophages than wild-type ones. Moreover, Il6-/- macrophages promoted the migration of neutrophils. Most importantly, RS102895, an antagonist of CCR2, diminished chemotaxis of macrophages and inhibited colitis in Il6-/- mice. Collectively, these results indicate that Il6-/- macrophages migrate to inflamed colon tissues and recruit neutrophils, thereby promoting the effect of Il6-/- on colitis. This study expands our understanding on the effect of IL-6 deficiency in colitis and the development of gastrointestinal immune adverse effects.


Assuntos
Antígenos Ly/imunologia , Quimiocina CCL2/imunologia , Colite Ulcerativa/genética , Colo/imunologia , Interleucina-6/deficiência , Monócitos/imunologia , Receptores CCR2/imunologia , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Técnicas de Inativação de Genes , Inflamação/genética , Inflamação/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Receptores CCR2/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...