Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1394-1402, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37846690

RESUMO

OBJECTIVE: To analyze the effects of mangiferin combined with bortezomib on the proliferation, invasion, apoptosis and autophagy of human Burkitt lymphoma Raji cells, as well as the expression of CXC chemokine receptors (CXCRs) family, and explore the molecular mechanism between them to provide scientific basis for basic research and clinical work of Burkitt lymphoma. METHODS: Raji cells were intervened with different concentrations of mangiferin and bortezomib alone or in combination, then cell proliferation was detected by CCK-8 assay, cell invasion ability was detected by Transwell chamber method, cell apoptosis was detected by Annexin V/PI double-staining flow cytometry, apoptosis, autophagy and Akt/mTOR pathway protein expression were detected by Western blot, and the expression changes of CXCR family was detected by real-time quantitative PCR (RT-qPCR). RESULTS: Different concentrations of mangiferin intervened Raji cells for different time could inhibit cell viability in a concentration- and time-dependent manner (r =-0.682, r =-0.836). When Raji cells were intervened by combination of mangiferin and bortezomib, compared with single drug group, the proliferation and invasion abilities were significantly decreased, while the apoptosis level was significantly increased (P <0.01). Mangiferin combined with bortezomib could significantly up-regulate the expression of pro-apoptotic protein Bax and down-regulate the expression of anti-apoptotic protein Bcl-2 after intervention in Raji cells. Caspase-3 was also hydrolyzed and activated, and then induced the apoptosis of Raji cells. Mangiferin combined with bortezomib could up-regulate the expression of LC3Ⅱ protein in Raji cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P <0.01). Mangiferin combined with bortezomib could significantly inhibit the phosphorylation levels of Akt and mTOR, inhibit the proliferation and invasion of Raji cells by inhibiting Akt/mTOR pathway, and induce cell autophagy and apoptosis. Mangiferin and bortezomib could down-regulate the expressions of CXCR4 and CXCR7 mRNA after single-agent intervention in Raji cells, and the down-regulations of CXCR4 and CXCR7 mRNA expression were more significant when the two drugs were combined (P <0.01). Mangiferin alone or combined with bortezomib had no significant effect on CXCR5 mRNA expression in Raji cells (P >0.05), while the combination of the two drugs could down-regulate the expression of CXCR3 (P <0.05). CONCLUSION: Mangiferin combined with bortezomib can synergistically inhibit the proliferation and invasion of Raji cells, and induce autophagy and apoptosis. The mechanism may be related to the inhibition of Akt/mTOR signaling pathway, down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax, and the inhibition of the expression of CXCR family.


Assuntos
Antineoplásicos , Bortezomib , Linfoma de Burkitt , Receptores CXCR , Xantonas , Humanos , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/imunologia , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Proteína X Associada a bcl-2/biossíntese , Proteína X Associada a bcl-2/imunologia , Bortezomib/imunologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioterapia Combinada , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Receptores CXCR/biossíntese , Receptores CXCR/imunologia , RNA Mensageiro , Serina-Treonina Quinases TOR , Xantonas/imunologia , Xantonas/farmacologia , Xantonas/uso terapêutico
2.
Dev Comp Immunol ; 116: 103905, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33164777

RESUMO

Chemokines are a large family of soluble peptides guiding cell migration in development and immune defense. They interact with chemokine receptors and are essential for the coordination of cell migration in diverse physiological processes. The CXC subfamily is one of the largest groups in the chemokine family and consists of multiple members. In this study, we identified homologues of three chemokine ligands (CXCL8, CXCL_F5 and CXCL12) and two CXC receptor like molecules (CXCR_L1 and CXCR_L2) in lamprey. Sequence analysis revealed that they share the same genomic organization with their counterparts in jawed vertebrates but synteny was not conserved. Lamprey CXCL8 and CXCL12 have four conserved cysteine residues whilst the CXCL_F5 has two additional cysteine residues. In addition, CXCL_F5 is evolutionarily related to the fish specific CXC chemokine groups previously identified and contains multiple cationic aa residues in the extended C- terminal region. The two CXCRs possess seven transmembrane domains and conserved structural elements for receptor activation and signaling, including the DRYXXI(V)Y motif in TM2, the disulphide bond connecting ECL2 and TM3, the WXP motif in TM6 and NPXXY motif in TM7. The identified CXC chemokines and receptors were constitutively expressed in tissues including the liver, kidney, intestine, heart, gills, supraneural body and primary leukocytes, but exhibited distinct expression patterns. Relatively high expression was detected in the gills for CXCL8, CXCL_F5 and CXCR_L1 and in the supraneural body for CXCL12 and CXCR_L2. All the genes except CXCL12 were upregulated by stimulation with LPS, pokeweed and bacterial infection, and the CXCL8 and CXCL_F5 was induced by poly (I:C). Functional analysis showed that the CXCL8 and CXCL_F5 specifically interacted with CXCR_L1 and CXCR_L2, respectively. Our results demonstrate that the CXC chemokine system had diversified in jawless fish.


Assuntos
Quimiocinas CXC/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Lampreias/imunologia , Receptores CXCR/imunologia , Sequência de Aminoácidos , Animais , Quimiocinas CXC/química , Quimiocinas CXC/genética , Evolução Molecular , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/classificação , Proteínas de Peixes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Lampreias/genética , Lampreias/microbiologia , Modelos Moleculares , Filogenia , Poli I-C/farmacologia , Conformação Proteica , Receptores CXCR/química , Receptores CXCR/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Vibrio/imunologia , Vibrio/fisiologia
3.
Am J Reprod Immunol ; 84(3): e13280, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32485053

RESUMO

The survival of allogeneic fetuses during pregnancy is a rather paradoxical phenomenon with a complex mechanism. Chemokine ligand12 (CXCL12) and its receptors CXC chemokine receptor (CXCR)4 and 7 are extensively found in placenta tissues and cells, including trophoblast cells, vascular endothelial cells, and decidual stromal and decidual immune cells (eg, NK cells and regulatory T cells). Evidence has illustrated that the CXClL12/CXCR4/CXCR7 axis could enhance the cross talk at the maternal-fetal interface through multiple processes, such as invasion and placental angiogenesis, which appears to be critical signaling components in placentation and fetal outcome. In addition, an increasing number of studies have demonstrated that the CXCL12/CXCR4/CXCR7 axis also stands out for its pleiotropic roles in several pregnancy-associated diseases (eg, recurrent spontaneous abortion (RSA), pre-eclampsia (PE), and preterm labor). In the present review, the different biological properties and signaling in physiological and pathological pregnancy conditions of CXCL12/CXCR4/CXCR7 axis were discussed, with the aim of obtaining a further understanding of the regulatory mechanisms and highlighting their potential as a target for therapeutic approaches.


Assuntos
Quimiocina CXCL12/imunologia , Complicações na Gravidez/imunologia , Gravidez/imunologia , Animais , Feminino , Feto/imunologia , Humanos , Receptores CXCR/imunologia , Receptores CXCR4/imunologia
4.
Inflamm Res ; 69(5): 523-532, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32170348

RESUMO

OBJECTIVE: Myocardial infarction (MI) is one of the primary causes leading to heart failure in coronary artery disease. However, the mechanisms of macrophage that dominate pathogenesis of MI remain unclear. METHODS: Mice were induced with MI and pretreated with adenovirus containing indicated shRNA. Post-MI injuries were evaluated by echocardiography. BMDMs and post-MI LV macrophages were used to assess the significance of CXCR7. Macrophages' migration was examined by chemotaxis assay, Cytokine production, phosphorylation of ERK1/2, p38 MAPK and JNK were measured by ELISA. RESULTS: CXCR7 in macrophages was up-regulated during M1 polarization and following MI in the murine model, with positive correlation with M1 markers but not M2 markers. Besides, CXCR7 down-regulation abolished macrophage M1 polarization. In addition, CXCR7 but not CXCR3 or CXCR4 controlled SDF-1 and I-TAC-mediated chemotaxis and inflammation in M1-like macrophages post-MI, signaling through activating ERK1/2, whereas p38 MAPK and JNK were not involved. Moreover, silencing CXCR7 ameliorated cardiac dysfunction by attenuating infarct area, LVEF and LVFS post-MI along with reduction of CXCR7 expression and ERK1/2 phosphorylation. CONCLUSIONS: Our data demonstrate that CXCR7 suppression inhibits macrophages M1 polarization, chemotaxis and inflammation to ameliorate post-MI injury, providing novel insights and promising therapy approaches in post-MI treatment.


Assuntos
Macrófagos/imunologia , Infarto do Miocárdio/imunologia , Receptores CXCR/imunologia , Animais , Quimiotaxia , Citocinas/imunologia , Sistema de Sinalização das MAP Quinases , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Fenótipo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores CXCR/genética
5.
Semin Cancer Biol ; 65: 176-188, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31874281

RESUMO

Single agent checkpoint inhibitor therapy has not been effective for most gastrointestinal solid tumors, but combination therapy with drugs targeting additional immunosuppressive pathways is being attempted. One such pathway, the CXCL12-CXCR4/CXCR7 chemokine axis, has attracted attention due to its effects on tumor cell survival and metastasis as well as immune cell migration. CXCL12 is a small protein that functions in normal hematopoietic stem cell homing in addition to repair of damaged tissue. Binding of CXCL12 to CXCR4 leads to activation of G protein signaling kinases such as P13K/mTOR and MEK/ERK while binding to CXCR7 leads to ß-arrestin mediated signaling. While some gastric and colorectal carcinoma cells have been shown to make CXCL12, the primary source in pancreatic cancer and peritoneal metastases is cancer-associated fibroblasts. Binding of CXCL12 to CXCR4 and CXCR7 on tumor cells leads to anti-apoptotic signaling through Bcl-2 and survivin upregulation, as well as promotion of the epithelial-to-mesechymal transition through the Rho-ROCK pathway and alterations in cell adhesion molecules. High levels of CXCL12 seen in the bone marrow, liver, and spleen could partially explain why these are popular sites of metastases for many tumors. CXCL12 is a chemoattractant for lymphocytes at lower levels, but becomes chemorepellant at higher levels; it is unclear exactly what gradient exists in the tumor microenvironment and how this influences tumor-infiltrating lymphocytes. AMD3100 (Plerixafor or Mozobil) is a small molecule CXCR4 antagonist and is the most frequently used drug targeting the CXCL12-CXCR4/CXCR7 axis in clinical trials for gastrointestinal solid tumors currently. Other small molecules and monoclonal antibodies against CXCR4 are being trialed. Further understanding of the CXCL12- CXCR4/CXCR7 chemokine axis in the tumor microenvironment will allow more effective targeting of this pathway in combination immunotherapy.


Assuntos
Quimiocina CXCL12/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias Gastrointestinais/imunologia , Receptores CXCR4/genética , Receptores CXCR/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/imunologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/terapia , Humanos , Receptores CXCR/imunologia , Receptores CXCR4/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Microambiente Tumoral/efeitos dos fármacos
6.
Life Sci ; 231: 116688, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31348950

RESUMO

The extended infection with Helicobacter pylori (H. pylori), one of the most frequent infectious agents in humans, may cause gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. During H. pylori infection, different kinds of inflammatory cells such as dendritic cells, macrophages, neutrophils, mast cells, eosinophils, T cells and B cells are accumulated into the stomach. The interactions between chemokines and their respective receptors recruit particular types of the leukocytes that ultimately determine the nature of immune response and therefore, have a main influence on the consequence of infection. The suitable production of chemokines especially in the early stages of H. pylori infection shapes appropriate immune responses that contribute to the H. pylori elimination. The unbalanced expression of the chemokines can contribute in the induction of inappropriate responses that result in the tissue damage or malignancy. Thus, chemokines and their receptors may be promising potential targets for designing the therapeutic strategies against various types H. pylori-related gastrointestinal disorders. In this review, a comprehensive explanation regarding the roles played by chemokines in H. pylori-mediated peptic ulcer, gastritis and gastric malignancies was provided while presenting the potential utilization of these chemoattractants as therapeutic elements.


Assuntos
Quimiocinas/metabolismo , Quimiocinas/farmacologia , Infecções por Helicobacter/terapia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Quimiocinas CXC/imunologia , Quimiocinas CXC/metabolismo , Mucosa Gástrica/metabolismo , Gastrite , Infecções por Helicobacter/complicações , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Humanos , Receptores CXCR/imunologia , Receptores CXCR/metabolismo , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Estômago/patologia , Neoplasias Gástricas/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
7.
Mol Pharmacol ; 96(6): 809-818, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31040166

RESUMO

Atypical chemokine receptor 3 (ACKR3), previously known as C-X-C chemokine receptor type 7 (CXCR7), has emerged as a key player in several biologic processes, particularly during development. Its CXCL11 and CXCL12 scavenging activity and atypical signaling properties, together with a new array of other nonchemokine ligands, have established ACKR3 as a main regulator of physiologic processes at steady state and during inflammation. Here, we present a comprehensive review of ACKR3 expression in mammalian tissues in search of a possible connection with the receptor function. Besides the reported roles of ACKR3 during development, we discuss the potential contribution of ACKR3 to the function of the immune system, focusing on the myeloid lineage.


Assuntos
Imunidade Celular/fisiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores CXCR/imunologia , Receptores CXCR/metabolismo , Animais , Expressão Gênica , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Receptores CXCR/genética
8.
Fish Shellfish Immunol ; 84: 572-586, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30359750

RESUMO

The CXC chemokine receptors (CXCRs) play critical roles in innate and adaptive immune systems. In this study, six Asian swamp eel (Monopterus albus) CXCRs (MaCXCR1-4) were identified and their molecular characterization and expression patterns were analyzed. The open reading frames (ORFs) of MaCXCR1a, MaCXCR1b, MaCXCR2, MaCXCR3a, MaCXCR3b, and MaCXCR4 were 1074 bp (base pairs), 1080 bp, 1125 bp, 1146 bp, 1083 bp, and 1140 bp, and encoded proteins of 357 aa (amino acids), 359 aa, 374 aa, 381 aa, 360 aa, and 379 aa, respectively. All these CXCRs have seven conserved transmembrane domains and four cysteines (with the exception of MaCXCR3b). Multiple sequence alignment revealed that the MaCXCRs possess a typical G-protein receptor family 1 signature and a DRY motif. There are also one to four potential N-glycosylation sites in the extracellular regions of the MaCXCRs, mainly distributed in the N-terminus and extracellular hydrophilic loop (ECL) 2 region. Phylogenetic analysis demonstrated that the MaCXCRs were clustered together with homologous proteins from other fish. Taken together with the amino acid identity and similarity analysis, these results suggested that the MaCXCRs are conserved with other homologous genes, in which CXCR4 is more conserved than CXCR1-3. The MaCXCRs loci showed conserved synteny among teleost fish, and we found that human CXCR1 shares a common ancestor with fish CXCR1a. MaCXCRs were constitutively expressed in a wide range of tissues (especially in immune-related tissues) with different expression levels, suggesting that the MaCXCRs have different roles in un-stimulated tissues, and may play vital roles under normal conditions. MaCXCRs showed different fold changes in the spleen after Aeromonas veronii and polyinosinic-polycytidylic acid (poly I:C) challenge, which suggested that MaCXCR1a and MaCXCR3a have longer antiviral activities compared with their antibacterial functions, and that MaCXCR1b possesses stronger antiviral than antibacterial activity. MaCXCR4 may play vital roles during bacterial and viral infection; however, MaCXCR2 has relatively small effect in antibacterial and antiviral responses. The differential responses of these genes to bacteria and poly I:C implied the differences in the mechanisms of defense against viruses and bacteria.


Assuntos
Imunidade Adaptativa/genética , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Receptores CXCR/genética , Receptores CXCR/imunologia , Smegmamorpha/fisiologia , Aeromonas veronii/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Filogenia , Poli I-C/farmacologia , Receptores CXCR/química , Alinhamento de Sequência/veterinária , Smegmamorpha/genética , Smegmamorpha/imunologia
9.
World J Gastroenterol ; 24(42): 4738-4749, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30479461

RESUMO

Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women, worldwide. In the early stages of the disease, biomarkers predicting early relapse would improve survival rates. In metastatic patients, the use of predictive biomarkers could potentially result in more personalized treatments and better outcomes. The CXC family of chemokines (CXCL1 to 17) are small (8 to 10 kDa) secreted proteins that attract neutrophils and lymphocytes. These chemokines signal through chemokine receptors (CXCR) 1 to 8. Several studies have reported that these chemokines and receptors have a role in either the promotion or inhibition of cancer, depending on their capacity to suppress or stimulate the action of the immune system, respectively. In general terms, activation of the CXCR1/CXCR2 pathway or the CXCR4/CXCR7 pathway is associated with tumor aggressiveness and poor prognosis; therefore, the specific inhibition of these receptors is a possible therapeutic strategy. On the other hand, the lesser known CXCR3 and CXCR5 axes are generally considered to be tumor suppressor signaling pathways, and their stimulation has been suggested as a way to fight cancer. These pathways have been studied in tumor tissues (using immunohistochemistry or measuring mRNA levels) or serum [using enzyme-linked immuno sorbent assay (ELISA) or multiplexing techniques], among other sample types. Common variants in genes encoding for the CXC chemokines have also been investigated as possible biomarkers of the disease. This review summarizes the most recent findings on the role of CXC chemokines and their receptors in CRC and discusses their possible value as prognostic or predictive biomarkers as well as the possibility of targeting them as a therapeutic strategy.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Quimiocinas CXC/metabolismo , Neoplasias Colorretais/patologia , Recidiva Local de Neoplasia/diagnóstico , Antineoplásicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/imunologia , Quimiocinas CXC/antagonistas & inibidores , Quimiocinas CXC/imunologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Humanos , Prognóstico , Receptores CXCR/antagonistas & inibidores , Receptores CXCR/imunologia , Receptores CXCR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida
10.
Front Immunol ; 9: 2159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319622

RESUMO

Chemokines govern leukocyte migration by attracting cells that express their cognate ligands. Many cancer types show altered chemokine secretion profiles, favoring the recruitment of pro-tumorigenic immune cells and preventing the accumulation of anti-tumorigenic effector cells. This can ultimately result in cancer immune evasion. The manipulation of chemokine and chemokine-receptor signaling can reshape the immunological phenotypes within the tumor microenvironment in order to increase the therapeutic efficacy of cancer immunotherapy. Here we discuss the three chemokine-chemokine receptor axes, CXCR1/2-CXCL1-3/5-8, CXCR3-CXCL9/10/11, and CXCR4-CXCL12 and their role on pro-tumorigenic immune cells and anti-tumorigenic effector cells in solid tumors. In particular, we summarize current strategies to target these axes and discuss their potential use in treatment approaches.


Assuntos
Quimiocinas CXC/metabolismo , Imunidade Celular , Neoplasias/imunologia , Receptores CXCR/metabolismo , Microambiente Tumoral/imunologia , Carcinogênese/imunologia , Quimiocinas CXC/imunologia , Humanos , Imunoterapia/métodos , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Células Supressoras Mieloides/imunologia , Invasividade Neoplásica/imunologia , Neoplasias/patologia , Neoplasias/terapia , Receptores CXCR/imunologia , Evasão Tumoral/imunologia
11.
PLoS One ; 13(7): e0200211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975766

RESUMO

Hltf is regulated by intron retention, and global Hltf-deletion causes perinatal lethality from hypoglycemia. In heart, full-length Hltf is a transcriptional regulator of Hif-1α that controls transport systems. Thus, we tested the hypothesis that Hltf deletion from placenta caused or exacerbated neonatal hypoglycemia via Hif-1α regulation of nutrient transporters. RNA-seq data analyses identified significant changes in transcript expression and alternative splicing (AS) in E18.5 placentome. iPathwayGuide was used for gene ontology (GO) analysis of biological processes, molecular functions and cellular components. Elim pruning algorithm identified hierarchical relationships. The methylome was interrogated by Methyl-MiniSeq Epiquest analysis. GO analysis identified gene enrichment within biological processes. Protein expression was visualized with immunohistochemistry. Although two Hltf mRNA isoforms are quantifiable in most murine tissues, only the truncated Hltf isoform is expressed in placenta. The responsible intron retention event occurs in the absence of DNA methylation. iPathwayGuide analysis identified 157 target genes of 11,538 total genes with measured expression. These were obtained using a threshold of 0.05 for statistical significance (p-value) and a long fold change of expression with absolute value of at least 0.6. Hltf deletion altered transcription of trophoblast lineage-specific genes, and increased transcription of the Cxcr7 (p = 0.004) gene whose protein product is a co-receptor for human and simian immunodeficiency viruses. Concomitant increased Cxcr7 protein was identified with immunolabeling. Hltf deletion had no effect on transcription or site-specific methylation patterns of Hif-1α, the major glucose transporters, or System A amino acid transporters. There was no measureable evidence of uteroplacental dysfunction or fetal compromise. iPathGuide analysis revealed Hltf suppresses cytolysis (10/21 genes; p-value 1.900e-12; p-value correction: Elim pruning; GO:019835) including the perforin-granzyme pathway in uterine natural killer cells. Our findings 1) prove the truncated Hltf protein isoform is a transcription factor, 2) establish a functional link between AS of Hltf and immunosuppression at the feto-maternal interface, 3) correlate intron retention with the absence of DNA methylation, and 4) underscore the importance of differential splicing analysis to identify Hltf's functional diversity.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Tolerância Imunológica/genética , Troca Materno-Fetal/imunologia , Placenta/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Processamento Alternativo , Animais , Proteínas de Transporte , Metilação de DNA , Éxons , Feminino , Transfusão Feto-Materna/genética , Transfusão Feto-Materna/patologia , Perfilação da Expressão Gênica , Íntrons , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Isoformas de Proteínas , Receptores CXCR/genética , Receptores CXCR/imunologia
12.
Biochemistry ; 57(28): 4197-4205, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29897736

RESUMO

The autoimmune disease multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), is characterized by an ascending paralysis that is characterized by extensive infiltration of the central nervous system by inflammatory cells. Although several studies to some extent uncover the cellular mechanisms of microglia that govern EAE pathogenesis, the molecular mechanisms that orchestrate the movement of microglia remain unknown, and potential novel therapeutic strategies are still required. In this study, we report that dexmedetomidine, an alpha 2a adrenergic receptor agonist, attenuates the clinical severity of EAE with less infiltration of microglia. During EAE, dexmedetomidine inhibits SDF-1- and I-TAC-induced chemotaxis of microglia mediated by CXCR7 but not CXCR4 or CXCR3. Most importantly, the alpha 2a adrenergic receptor is essential in dexmedetomidine-induced CXCR7 desensitization in microglia. Further experiments confirmed that CXCR7 desensitization required atypical protein kinase C ζ activation, while conventional and novel protein kinase C isoforms were not involved. Altogether, our data elucidate the mechanism of dexmedetomidine-induced CXCR7 desensitization in microglia and amelioration in EAE, which might lead to a better understanding of the therapeutic effects of dexmedetomidine as well as its implications for CXCR7 desensitization in autoimmune disease.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Inibição de Migração Celular/efeitos dos fármacos , Dexmedetomidina/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Microglia/efeitos dos fármacos , Receptores CXCR/imunologia , Animais , Células Cultivadas , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/patologia , Receptores CXCR/análise
13.
Immun Inflamm Dis ; 6(1): 106-116, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29105376

RESUMO

INTRODUCTION: The chemokine CXCL12 and its receptors CXCR4 and 7 play crucial roles in the immune system. In the present study, regulation of this pathway was further examined using the in-vitro model of undifferentiated human THP-1 monocytes (u-THP-1) and phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages (d-THP-1), to assess the effects of differentiation and the TLR4 ligand lipopolysaccharide (LPS) on the pathway. METHODS/RESULTS: Differentiation did not affect the CXCR4, 7 mRNA levels. Interestingly, the CXCL12 and CXCR7 proteins but not CXCR4 were found to be up-regulated during differentiation. LPS, through CD14-dependent pathway, induced CXCL12 and CXCR4, 7 mRNA levels to a greater magnitude in d- than u-THP-1. The induction effect on CXCL12 stimulated by LPS was confirmed using ELISA. Increased migration of u-THP-1 was observed using conditioned medium from LPS-treated d-THP-1. Additionally, d-THP-1, although expressed higher CXCR7 protein levels, failed to migrate toward CXCL12. In contrast, LPS did not affect CXCR4, 7 protein levels. CONCLUSION: Hence, this study indicated that CXCL12, CXCR4, and CXCR7 were differentially expressed and regulated in u-THP-1 and d-THP-1 cells in response to external stimuli. Importantly, we reported here a novel observation that uncoupling exists between transcriptional and translational regulation of CXCR4, 7 expressions by differentiation and TLR stimuli.


Assuntos
Quimiocina CXCL12/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Biossíntese de Proteínas/imunologia , Receptores CXCR4/imunologia , Receptores CXCR/imunologia , Transcrição Gênica/imunologia , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos/patologia , Monócitos/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Células THP-1 , Transcrição Gênica/efeitos dos fármacos
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 25(5): 1300-1306, 2017 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-29070099

RESUMO

OBJECTIVE: To study the expression of stromal cell derived factor-1α (SDF-1α) receptor CXCR7 in acute monocytic leukemia (AML-M5), and its effects on proliferation, apoptosis, invasion of acute monocytic leukemia cell line THP-1. METHODS: CXCR7 protein and mRNA expression levels in THP-1 cells and peripheral blood mononuclear cells (PBMNC) from the newly diagnosed AML-M5 patients and normal individuals were detected by flow cytometry, Western blot and RT-PCR respectively. CCK8, Annexin V/PI double staining and Transwell assay were used to observe the effects of CXCR7 on the proliferation, apoptosis, and invasion of THP-1 cells in vitro. RESULTS: The expression of CXCR7 on immature cell surface of the newly diagnosed AML-M5 patients was significantly higher than that in the control group (P<0.05). CXCR7 was also highly expressed on THP-1 cells surface. The CXCR7 protein and mRNA levels in THP-1 cells and PBMNC of AML-M5 patients were significantly higher than those in the control group (P<0.05). The THP-1 cell proliferation activity was higher in SDF-1α-treated group, but this activity could be inhibited by CXCR7 antibody (P<0.01). CXCR7 antibody did not affect THP-1 cell apoptosis (P>0.05). CXCR7 antibody could inhibit SDF-1α -induced THP-1 cell invasiveness (P<0.01). CONCLUSION: CXCR7 highly expresses in AML-M5 patients and THP-1 cells, and involves in cell proliferation and invasion. The blocking CXCR7 expression can reduce the risk of AML-M5 cell infiltration.


Assuntos
Leucemia Monocítica Aguda/imunologia , Receptores CXCR/metabolismo , Células THP-1/imunologia , Apoptose , Proliferação de Células , Quimiocina CXCL12 , Humanos , Leucócitos Mononucleares , Receptores CXCR/imunologia , Receptores CXCR4 , Transdução de Sinais
15.
J Leukoc Biol ; 102(5): 1173-1185, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28754798

RESUMO

CD14+CD16+ monocytes transmigrate into the CNS of HIV-positive people in response to chemokines elevated in the brains of infected individuals, including CXCL12. Entry of these cells leads to viral reservoirs, neuroinflammation, and neuronal damage. These may eventually lead to HIV-associated neurocognitive disorders. Although antiretroviral therapy (ART) has significantly improved the lives of HIV-infected people, the prevalence of cognitive deficits remains unchanged despite ART, still affecting >50% of infected individuals. There are no therapies to reduce these deficits or to prevent CNS entry of CD14+CD16+ monocytes. The goal of this study was to determine whether CXCR7, a receptor for CXCL12, is expressed on CD14+CD16+ monocytes and whether a small molecule CXCR7 antagonist (CCX771) can prevent CD14+CD16+ monocyte transmigration into the CNS. We showed for the first time that CXCR7 is on CD14+CD16+ monocytes and that it may be a therapeutic target to reduce their entry into the brain. We demonstrated that CD14+CD16+ monocytes and not the more abundant CD14+CD16- monocytes or T cells transmigrate to low homeostatic levels of CXCL12. This may be a result of increased CXCR7 on CD14+CD16+ monocytes. We showed that CCX771 reduced transmigration of CD14+CD16+ monocytes but not of CD14+CD16- monocytes from uninfected and HIV-infected individuals and that it reduced CXCL12-mediated chemotaxis of CD14+CD16+ monocytes. We propose that CXCR7 is a therapeutic target on CD14+CD16+ monocytes to limit their CNS entry, thereby reducing neuroinflammation, neuronal damage, and HIV-associated neurocognitive disorders. Our data also suggest that CCX771 may reduce CD14+CD16+ monocyte-mediated inflammation in other disorders.


Assuntos
Terapia Antirretroviral de Alta Atividade , Fatores Imunológicos/farmacologia , Receptores de Lipopolissacarídeos/imunologia , Receptores CXCR/antagonistas & inibidores , Receptores de IgG/imunologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Adulto , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Astrócitos/virologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/virologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/virologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , Humanos , Receptores de Lipopolissacarídeos/genética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/virologia , Cultura Primária de Células , Receptores CXCR/genética , Receptores CXCR/imunologia , Receptores de IgG/genética , Migração Transendotelial e Transepitelial/genética , Migração Transendotelial e Transepitelial/imunologia , Carga Viral/efeitos dos fármacos
16.
J Nucl Med ; 57(6): 981-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26912435

RESUMO

UNLABELLED: The atypical chemokine receptor ACKR3 (formerly CXCR7), overexpressed in various cancers compared with normal tissues, plays a pivotal role in adhesion, angiogenesis, tumorigenesis, metastasis, and tumor cell survival. ACKR3 modulates the tumor microenvironment and regulates tumor growth. The therapeutic potential of ACKR3 has also been demonstrated in various murine models of human cancer. Literature findings underscore the importance of ACKR3 in disease progression and suggest it as an important diagnostic marker for noninvasive imaging of ACKR3-overexpressing malignancies. There are currently no reports on direct receptor-specific detection of ACKR3 expression. Here we report the evaluation of a radiolabeled ACKR3-targeted monoclonal antibody (ACKR3-mAb) for the noninvasive in vivo nuclear imaging of ACKR3 expression in human breast, lung, and esophageal squamous cell carcinoma cancer xenografts. METHODS: ACKR3 expression data were extracted from Cancer Cell Line Encyclopedia, The Cancer Genome Atlas, and the Clinical Lung Cancer Genome Project. (89)Zr-ACKR3-mAb was evaluated in vitro and subsequently in vivo by PET and ex vivo biodistribution studies in mice xenografted with breast (MDA-MB-231-ACKR3 [231-ACKR3], MDA-MB-231 [231], MCF7), lung (HCC95), or esophageal (KYSE520) cancer cells. In addition, ACKR3-mAb was radiolabeled with (125)I and evaluated by SPECT imaging and ex vivo biodistribution studies. RESULTS: ACKR3 transcript levels were highest in lung squamous cell carcinoma among the 21 cancer type data extracted from The Cancer Genome Atlas. Also, Clinical Lung Cancer Genome Project data showed that lung squamous cell carcinoma had the highest CXCR7 transcript levels compared with other lung cancer subtypes. The (89)Zr-ACKR3-mAb was produced in 80% ± 5% radiochemical yields with greater than 98% radiochemical purity. In vitro cell uptake of (89)Zr-ACKR3-mAb correlated with gradient levels of cell surface ACKR3 expression observed by flow cytometry. In vivo PET imaging and ex vivo biodistribution studies in mice with breast, lung, and esophageal cancer xenografts consistently showed enhanced (89)Zr-ACKR3-mAb uptake in high-ACKR3-expressing tumors. SPECT imaging of (125)I-ACKR3-mAb showed the versatility of ACKR3-mAb for in vivo monitoring of ACKR3 expression. CONCLUSION: Data from this study suggest ACKR3 to be a viable diagnostic marker and demonstrate the utility of radiolabeled ACKR3-mAb for in vivo visualization of ACKR3-overexpressing malignancies.


Assuntos
Anticorpos Monoclonais , Transformação Celular Neoplásica , Imagem Molecular/métodos , Receptores CXCR/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacocinética , Transporte Biológico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Tomografia por Emissão de Pósitrons , Radioisótopos , Receptores CXCR/imunologia , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Zircônio/química
17.
Biochem Biophys Res Commun ; 469(1): 1-7, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26607112

RESUMO

Multiple sclerosis (MS) is the prototypical inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE), widely used as an animal model of MS, classically manifests as an ascending paralysis that is characterized by extensive infiltration of the CNS by inflammatory cells. Although several studies uncover the significant role of microglia in the development of EAE, the cellular mechanisms of microglia that govern EAE pathogenesis remain unknown. In the current study, we report that CXCR7 expression is dynamic regulated in activated microglia during CNS autoimmunity and positively correlates with the clinical severity of EAE. In addition, microglial chemotaxis is mediated by CXCR7 during CNS autoimmunity, signaling through extracellular signal-regulated kinase (ERK)1/2 activation, whereas p38 mitogen-activated protein kinase (MAPK) and (c-Jun N-terminal kinase) JNK are not involved. Most importantly, CXCR7 neutralizing treatment ameliorates the clinical severity of EAE along with ERK1/2 phosphorylation reduction. Collectively, our data demonstrate that CXCR7 suppression modulates microglial chemotaxis to ameliorate EAE.


Assuntos
Quimiotaxia/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Sistema de Sinalização das MAP Quinases/imunologia , Microglia/imunologia , Receptores CXCR/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Encefalomielite Autoimune Experimental/patologia , Feminino , Imunossupressores/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Esclerose Múltipla/prevenção & controle , Resultado do Tratamento
18.
Hamostaseologie ; 36(2): 97-102, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25586789

RESUMO

The chemokine CXCL12 and its receptor CXCR4 form an important axis contributing to cellular functions in homeostasis and disease. In addition, the atypical CXCL12 receptor CXCR7 may shape the availability and function of CXCL12. Further to their role through progenitor cell mobilization, CXCL12 and CXCR4 may affect native atherogenesis by modifying atherosclerosis-relevant cellular functions. This short review intends to provide a concise summary of current knowledge with regards to cell-specific functions of CXCL12 and its receptors CXCR4 and CXCR7 with potential implications for the initiation and progression of atherosclerosis.


Assuntos
Artérias/imunologia , Aterosclerose/imunologia , Células Sanguíneas/imunologia , Quimiocina CXCL12/imunologia , Receptores CXCR4/imunologia , Receptores CXCR/imunologia , Animais , Aterosclerose/patologia , Citocinas/imunologia , Medicina Baseada em Evidências , Homeostase/imunologia , Humanos , Imunidade Inata/imunologia , Fatores Imunológicos/imunologia , Modelos Imunológicos , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/imunologia
19.
Naunyn Schmiedebergs Arch Pharmacol ; 389(2): 243-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26660071

RESUMO

Several previous reports suggested that many commercially available antibodies directed against G protein-coupled receptors (GPCR) lack sufficient selectivity. Accordingly, it has been proposed that receptor antibodies should be validated by at least one of several criteria, such as testing tissues or cells after knockout or silencing of the corresponding gene. Here, we tested whether 12 commercially available antibodies directed against α-adrenergic receptor (AR) subtypes (α1A/B/D, α2A/B/C), atypical chemokine receptor 3 (ACKR3), and vasopressin receptor 1A (AVPR1A) suffice these criteria. We detected in flow cytometry experiments with human vascular smooth muscle cells that the fluorescence signals from each of these antibodies were reduced by 46 ± 10 %-91 ± 2 % in cells treated with commercially available small interfering RNA (siRNA) specific for each receptor, as compared with cells that were incubated with non-targeting siRNA. The tested antibodies included anti-ACKR3 (R&D Systems, mab42273), for which specificity has previously been demonstrated. Staining with this antibody resulted in 72 ± 5 % reduction of the fluorescence signal after ACKR3 siRNA treatment. Furthermore, staining with anti-α1A-AR (Santa Cruz, sc1477) and anti-ACKR3 (Abcam, ab38089), which have previously been reported to be non-specific, resulted in 70 ± 19 % and 80 ± 4 % loss of the fluorescence signal after α1A-AR and ACKR3 siRNA treatment, respectively. Our findings demonstrate that the tested antibodies show reasonable selectivity for their receptor target under our experimental conditions. Furthermore, our observations suggest that the selectivity of GPCR antibodies depends on the method for which the antibody is employed, the species from which cells/tissues are obtained, and on the type of specimens (cell, tissue/cell homogenate, or section) tested.


Assuntos
Anticorpos/imunologia , Citometria de Fluxo/métodos , Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/imunologia , Receptores Adrenérgicos alfa/imunologia , Receptores CXCR/imunologia , Receptores de Vasopressinas/imunologia , Anticorpos/metabolismo , Especificidade de Anticorpos , Complexo Antígeno-Anticorpo/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Sítios de Ligação de Anticorpos , Células Cultivadas , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ligação Proteica , Interferência de RNA , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos alfa/metabolismo , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Transfecção
20.
Cell Death Dis ; 6: e1989, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26583329

RESUMO

Platelets store and release CXCL12 (SDF-1), which governs differentiation of hematopoietic progenitors into either endothelial or macrophage-foam cells. CXCL12 ligates CXCR4 and CXCR7 and regulates monocyte/macrophage functions. This study deciphers the relative contribution of CXCR4-CXCR7 in mediating the effects of platelet-derived CXCL12 on monocyte function, survival, and differentiation. CXCL12 and macrophage migration inhibitory factor (MIF) that ligate CXCR4-CXCR7 induced a dynamic bidirectional trafficking of the receptors, causing CXCR4 internalization and CXCR7 externalization during chemotaxis, thereby influencing relative receptor availability, unlike MCP-1. In vivo we found enhanced accumulation of platelets and platelet-macrophage co-aggregates in peritoneal fluid following induction of peritonitis in mice. The relative surface expression of CXCL12, CXCR4, and CXCR7 among infiltrated monocytes was also enhanced as compared with peripheral blood. Platelet-derived CXCL12 from collagen-adherent platelets and recombinant CXCL12 induced monocyte chemotaxis specifically through CXCR4 engagement. Adhesion of monocytes to immobilized CXCL12 and CXCL12-enriched activated platelet surface under static and dynamic arterial flow conditions were mediated primarily through CXCR7 and were counter-regulated by neutralizing platelet-derived CXCL12. Monocytes and culture-derived-M1-M2 macrophages phagocytosed platelets, with the phagocytic potential of culture-derived-M1 macrophages higher than M2 involving CXCR4-CXCR7 participation. CXCR7 was the primary receptor in promoting monocyte survival as exerted by platelet-derived CXCL12 against BH3-mimetic induced apoptosis (phosphatidylserine exposure, caspase-3 activation, loss of mitochondrial transmembrane potential). In co-culture experiments with platelets, monocytes predominantly differentiated into CD163(+) macrophages, which was attenuated upon CXCL12 neutralization and CXCR4/CXCR7 blocking antibodies. Moreover, OxLDL uptake by platelets induced platelet apoptosis, like other platelet agonists TRAP and collagen-related peptide (CRP). CXCL12 facilitated phagocytosis of apoptotic platelets by monocytes and M1-M2 macrophages, also promoted their differentiation into foam cells via CXCR4 and CXCR7. Thus, platelet-derived CXCL12 could regulate monocyte-macrophage functions through differential engagement of CXCR4 and CXCR7, indicating an important role in inflammation at site of platelet accumulation.


Assuntos
Plaquetas/imunologia , Células Espumosas/imunologia , Macrófagos/imunologia , Receptores CXCR/imunologia , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Gatos , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Espumosas/citologia , Células Espumosas/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Receptores CXCR/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...