Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
BMB Rep ; 54(9): 476-481, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34488925

RESUMO

Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in ß-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphatidylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed -1620/-1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immunoprecipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting. [BMB Reports 2021; 54(9): 476-481].


Assuntos
Fígado/metabolismo , Perilipina-5/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Triglicerídeos/metabolismo , Animais , Sítios de Ligação , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Perilipina-5/química , Perilipina-5/genética , Regiões Promotoras Genéticas , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética
2.
Biochem Pharmacol ; 188: 114561, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33857491

RESUMO

Major depressive disorder (MDD) is a common, chronic, recurrent disease. The existing drugs are ineffective for approximately half of patients, so the development of antidepressant drugs with novel mechanisms is urgent. Cumulative evidence has shown neuro-inflammation plays a key role in the etiology of major depressive disorder. Clinical studies implicated that bile acids, an important component of gut-brain axis, inhibit neuro-inflammation and mediate the pathophysiology of the MDD. Here, we found that ganoderic acid A (GAA) modulated bile acid receptor FXR (farnesoid X receptor), inhibited brain inflammatory activity, and showed antidepressant effects in the chronic social defeat stress depression model, tail suspension, forced swimming, and sucrose preference tests. GAA directly inhibited the activity of the NLRP3 inflammasome, and activated the phosphorylation and expression of the AMPA receptor by modulating FXR in the prefrontal cortex of mice. If we knocked out FXR or injected the FXR-specific inhibitor z-gugglesterone (GS), the antidepressant effects induced by GAA were completely abolished. These results suggest that GAA modulates the bile acid receptor FXR and subsequently regulates neuroimmune and antidepressant behaviors. GAA and its receptor FXR have potential as targets for the treatment of MDD.


Assuntos
Antidepressivos/uso terapêutico , Depressão/metabolismo , Ácidos Heptanoicos/uso terapêutico , Lanosterol/análogos & derivados , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Sinapses/metabolismo , Animais , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Depressão/psicologia , Ácidos Heptanoicos/farmacologia , Lanosterol/farmacologia , Lanosterol/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores Citoplasmáticos e Nucleares/genética , Derrota Social , Sinapses/efeitos dos fármacos , Sinapses/genética
3.
FASEB J ; 35(5): e21515, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811688

RESUMO

The conserved endoplasmic reticulum (ER) membrane protein TRAPα (translocon-associated protein, also known as signal sequence receptor 1, SSR1) has been reported to play a critical but unclear role in insulin biosynthesis. TRAPα/SSR1 is one component of a four-protein complex including TRAPß/SSR2, TRAPγ/SSR3, and TRAPδ/SSR4. The TRAP complex topologically has a small exposure on the cytosolic side of the ER via its TRAPγ/SSR3 subunit, whereas TRAPß/SSR2 and TRAPδ/SSR4 function along with TRAPα/SSR1 largely on the luminal side of the ER membrane. Here, we have examined pancreatic ß-cells with deficient expression of either TRAPß/SSR2 or TRAPδ/SSR4, which does not perturb mRNA expression levels of other TRAP subunits, or insulin mRNA. However, deficient protein expression of TRAPß/SSR2 and, to a lesser degree, TRAPδ/SSR4, diminishes the protein levels of other TRAP subunits, concomitant with deficient steady-state levels of proinsulin and insulin. Deficient TRAPß/SSR2 or TRAPδ/SSR4 is not associated with any apparent defect of exocytotic mechanism but rather by a decreased abundance of the proinsulin and insulin that accompanies glucose-stimulated secretion. Amino acid pulse labeling directly establishes that much of the steady-state deficiency of intracellular proinsulin can be accounted for by diminished proinsulin biosynthesis, observed in a pulse-labeling as short as 5 minutes. The proinsulin and insulin levels in TRAPß/SSR2 or TRAPδ/SSR4 null mutant ß-cells are notably recovered upon re-expression of the missing TRAP subunit, accompanying a rebound of proinsulin biosynthesis. Remarkably, overexpression of TRAPα/SSR1 can also suppress defects in ß-cells with diminished expression of TRAPß/SSR2, strongly suggesting that TRAPß/SSR2 is needed to support TRAPα/SSR1 function.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Insulina/biossíntese , Insulinoma/patologia , Glicoproteínas de Membrana/deficiência , Proinsulina/biossíntese , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores de Peptídeos/deficiência , Animais , Células Cultivadas , Células Secretoras de Insulina/citologia , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ratos
4.
Nutrients ; 12(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604760

RESUMO

Selenoneine is a novel organic selenium compound markedly found in the blood, muscles, and other tissues of fish. This study aimed to determine whether selenoneine attenuates hepatocellular injury and hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). Mice lacking farnesoid X receptor (FXR) were used as a model for fatty liver disease, because they exhibited hepatomegaly, hepatic steatosis, and hepatic inflammation. Fxr-null mice were fed a 0.3 mg Se/kg selenoneine-containing diet for four months. Significant decreases in the levels of hepatomegaly, hepatic damage-associated diagnostic markers, hepatic triglycerides, and total bile acids were found in Fxr-null mice fed with a selenoneine-rich diet. Hepatic and blood clot total selenium concentrations were 1.7 and 1.9 times higher in the selenoneine group than in the control group. A marked accumulation of selenoneine was found in the liver and blood clot of the selenoneine group. The expression levels of oxidative stress-related genes (heme oxygenase 1 (Hmox1), glutathione S-transferase alpha 1 (Gsta1), and Gsta2), fatty acid synthetic genes (stearoyl CoA desaturase 1(Scd1) and acetyl-CoA carboxylase 1 (Acc1)), and selenoprotein (glutathione peroxidase 1 (Gpx1) and selenoprotein P (Selenop)) were significantly decreased in the selenoneine group. These results suggest that selenoneine attenuates hepatic steatosis and hepatocellular injury in an NAFLD mouse model.


Assuntos
Fígado Gorduroso/prevenção & controle , Histidina/análogos & derivados , Hepatopatia Gordurosa não Alcoólica/patologia , Compostos Organosselênicos/uso terapêutico , Animais , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Hepatomegalia/prevenção & controle , Histidina/análise , Histidina/uso terapêutico , Lipídeos/análise , Lipídeos/sangue , Fígado/química , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Tamanho do Órgão/efeitos dos fármacos , Compostos Organosselênicos/análise , Estresse Oxidativo/genética , RNA Mensageiro/análise , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Selênio/análise
5.
Int J Mol Sci ; 21(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575793

RESUMO

Peroxisome proliferator-activated receptor (PPAR)ß/δ is a member of the nuclear receptor superfamily of transcription factors, which plays fundamental roles in cell proliferation and differentiation, inflammation, adipogenesis, and energy homeostasis. Previous studies demonstrated a reduced choroidal neovascularization (CNV) in Pparß/δ-deficient mice. However, PPARß/δ's role in physiological blood vessel formation and vessel remodeling in the retina has yet to be established. Our study showed that PPARß/δ is specifically required for disordered blood vessel formation in the retina. We further demonstrated an increased arteriovenous crossover and wider venous caliber in Pparß/δ-haplodeficient mice. In summary, these results indicated a critical role of PPARß/δ in pathological angiogenesis and blood vessel remodeling in the retina.


Assuntos
Neovascularização de Coroide/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Remodelação Vascular/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Haploinsuficiência , Humanos , Lasers/efeitos adversos , Camundongos , Vasos Retinianos/citologia , Vasos Retinianos/metabolismo
6.
Lab Invest ; 100(9): 1158-1168, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32404932

RESUMO

Alcoholic fatty liver disease (AFLD) is one of the major causes of liver morbidity and mortality worldwide. We have previously shown that whole-body, but not hepatocyte-specific, deficiency of farnesoid X receptor (FXR) in mice worsens AFLD, suggesting that extrahepatic FXR deficiency is critical for AFLD development. Intestinal FXR is critical in suppressing hepatic bile acid (BA) synthesis by inducing fibroblast growth factor 15 (FGF15) in mice and FGF19 in humans. We hypothesized that intestinal FXR is critical for reducing AFLD development in mice. To test this hypothesis, we compared the AFLD severity in wild type (WT) and intestine-specific Fxr knockout (FXRInt-/-) mice following treatment with control or ethanol-containing diet. We found that FXRInt-/- mice were more susceptible to ethanol-induced liver steatosis and inflammation, compared with WT mice. Ethanol treatment altered the expression of hepatic genes involved in lipid and BA homeostasis, and ethanol detoxification. Gut FXR deficiency increased intestinal permeability, likely due to reduced mucosal integrity, as revealed by decreased secretion of Mucin 2 protein and lower levels of E-cadherin protein. In summary, intestinal FXR may protect AFLD development by maintaining gut integrity.


Assuntos
Etanol/farmacologia , Mucosa Intestinal/metabolismo , Hepatopatias Alcoólicas/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Ácidos e Sais Biliares , Etanol/administração & dosagem , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Citoplasmáticos e Nucleares/deficiência
7.
Oxid Med Cell Longev ; 2020: 8026838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32454943

RESUMO

Acetaminophen (APAP) toxicity leads to severe acute liver injury (ALI) by inducing excessive oxidative stress, inflammatory response, and hepatocyte apoptosis. Imperatorin (IMP) is a furanocoumarin from Angelica dahurica, which has antioxidant and anti-inflammatory effects. However, its potential to ameliorate ALI is unknown. In this study, APAP-treated genetic knockout of Farnesoid X receptor (FXR) and Sirtuin 1 (SIRT1) mice were used for research. The results revealed that IMP could improve the severity of liver injury and inhibit the increase of proinflammatory cytokines, oxidative damage, and apoptosis induced by overdose APAP in an FXR-dependent manner. We also found that IMP enhanced the activation and translocation of FXR by increasing the expression of SIRT1 and the phosphorylation of AMPK. Besides, single administration of IMP at 4 h after APAP injection can also improve necrotic areas and serum transaminase, indicating that IMP have both preventive and therapeutic effects. Taken together, it is the first time to demonstrate that IMP exerts protective effects against APAP overdose-induced hepatotoxicity by stimulating the SIRT1-FXR pathway. These findings suggest that IMP is a potential therapeutic candidate for ALI, offering promise for the treatment of hepatotoxicity associated with APAP overdose.


Assuntos
Acetaminofen/efeitos adversos , Overdose de Drogas/tratamento farmacológico , Furocumarinas/uso terapêutico , Fígado/lesões , Substâncias Protetoras/uso terapêutico , Doença Aguda , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Overdose de Drogas/genética , Overdose de Drogas/patologia , Furocumarinas/química , Furocumarinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Transcriptoma/genética , Regulação para Cima
8.
J Biol Chem ; 295(23): 8048-8063, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32358067

RESUMO

TSPO2 (translocator protein 2) is a transmembrane protein specifically expressed in late erythroblasts and has been postulated to mediate intracellular redistribution of cholesterol. We identified TSPO2 as the causative gene for the HK (high-K+) trait with immature red cell phenotypes in dogs and investigated the effects of the TSPO2 defects on erythropoiesis in HK dogs with the TSPO2 mutation and Tspo2 knockout (Tspo2-/-) mouse models. Bone marrow-derived erythroblasts from HK dogs showed increased binucleated and apoptotic cells at various stages of maturation and shed large nuclei with incomplete condensation when cultured in the presence of erythropoietin, indicating impaired maturation and cytokinesis. The canine TSPO2 induces cholesterol accumulation in the endoplasmic reticulum and could thereby regulate cholesterol availability by changing intracellular cholesterol distribution in erythroblasts. Tspo2-/- mice consistently showed impaired cytokinesis with increased binucleated erythroblasts, resulting in compensated anemia, and their red cell membranes had increased Na,K-ATPase, resembling the HK phenotype in dogs. Tspo2-deficient mouse embryonic stem cell-derived erythroid progenitor (MEDEP) cells exhibited similar morphological defects associated with a cell-cycle arrest at the G2/M phase, resulting in decreased cell proliferation and had a depletion in intracellular unesterified and esterified cholesterol. When the terminal maturation was induced, Tspo2-/- MEDEP cells showed delays in hemoglobinization; maturation-associated phenotypic changes in CD44, CD71, and TER119 expression; and cell-cycle progression. Taken together, these findings imply that TSPO2 is essential for coordination of maturation and proliferation of erythroblasts during normal erythropoiesis.


Assuntos
Eritroblastos/citologia , Eritroblastos/metabolismo , Eritropoese , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Cães , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/deficiência
9.
J Immunol ; 203(10): 2588-2601, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578267

RESUMO

Peroxisome proliferator-activated receptor (PPAR)-δ is a fatty acid-activated transcription factor that regulates metabolic homeostasis, cell growth, and differentiation. Previously, we reported that mice with a global deficiency of PPAR-δ develop an exacerbated course of experimental autoimmune encephalomyelitis (EAE), highlighting a role for this nuclear receptor in limiting the development of CNS inflammation. However, the cell-specific contribution of PPAR-δ to the more severe CNS inflammatory response remained unclear. In this study, we studied the specific involvement of PPAR-δ in myeloid cells during EAE using mice that had Cre-mediated excision of floxed Ppard driven by the lysozyme M (LysM) promoter (LysM Cre :Ppard fl/fl). We observed that LysM Cre :Ppard fl/fl mice were more susceptible to EAE and developed a more severe course of this disease compared with Ppard fl/fl controls. The more severe EAE in LysM Cre :Ppard fl/fl mice was associated with an increased accumulation of pathogenic CD4+ T cells in the CNS and enhanced myelin-specific Th1 and Th17 responses in the periphery. Adoptive transfer EAE studies linked this EAE phenotype in LysM Cre :Ppard fl/fl mice to heightened Th responses. Furthermore, studies using an in vitro CD11b+ cell:Th cell coculture system revealed that CD11b+CD11c+ dendritic cells (DC) from LysM Cre :Ppard fl/fl mice had a heightened capacity to prime myelin oligodendrocyte glycoprotein (MOG)-specific Th cells compared with Ppard fl/fl counterparts; the effects of DC on Th1 cytokine production were mediated through production of the IL-12p40 homodimer. These studies revealed a role for PPAR-δ in DC in limiting Th cell priming during EAE.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Células Mieloides/imunologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Transferência Adotiva , Animais , Antígeno CD11b/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/imunologia , Subunidade p40 da Interleucina-12/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência
10.
Genes Dev ; 33(15-16): 1083-1094, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31296559

RESUMO

The orphan nuclear receptor SHP (small heterodimer partner) is a well-known transcriptional corepressor of bile acid and lipid metabolism in the liver; however, its function in other tissues is poorly understood. Here, we report an unexpected role for SHP in the exocrine pancreas as a modulator of the endoplasmic reticulum (ER) stress response. SHP expression is induced in acinar cells in response to ER stress and regulates the protein stability of the spliced form of X-box-binding protein 1 (XBP1s), a key mediator of ER stress response. Loss of SHP reduces XBP1s protein level and transcriptional activity, which in turn attenuates the ER stress response during the fasting-feeding cycle. Consequently, SHP-deficient mice also are more susceptible to cerulein-induced pancreatitis. Mechanistically, we show that SHP physically interacts with the transactivation domain of XBP1s, thereby inhibiting the polyubiquitination and degradation of XBP1s by the Cullin3-SPOP (speckle-type POZ protein) E3 ligase complex. Together, our data implicate SHP in governing ER homeostasis and identify a novel posttranslational regulatory mechanism for the key ER stress response effector XBP1.


Assuntos
Estresse do Retículo Endoplasmático/genética , Proteólise , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Células Acinares/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas Exócrino/metabolismo , Pancreatite/genética , Processamento de Proteína , Estabilidade Proteica , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Ubiquitinação/genética
11.
Hepatology ; 70(3): 955-970, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30664797

RESUMO

Activation of the nuclear bile acid receptor farnesoid X receptor (FXR) protects against hepatic inflammation and injury, while Takeda G protein-coupled receptor 5 (TGR5) promotes adipose tissue browning and energy metabolism. Here, we examined the physiological and metabolic effects of the deficiency of these two bile acid receptors on hepatic metabolism and injury in mice. Fxr/Tgr5 double knockout mice (DKO) were generated for metabolic phenotyping. Male DKO mice fed a chow diet had reduced liver lipid levels but increased serum cholesterol levels. Liver cholesterol 7α-hydroxylase (Cyp7a1) activity and sterol 12α-hydroxylase mRNA levels were induced, while ileum FXR target genes were suppressed in DKO mice compared to wild-type (WT) mice. Bile acid pool size was increased in DKO mice, with increased taurocholic acid and decreased tauromuricholic acids. RNA sequencing analysis of the liver transcriptome revealed that bile acid synthesis and fibrosis gene expression levels are increased in chow-fed DKO mice compared to WT mice and that the top regulated pathways are involved in steroid/cholesterol biosynthesis, liver cirrhosis, and connective tissue disease. Cholestyramine treatment further induced Cyp7a1 mRNA and protein in DKO mice and increased bile acid pool size, while cholic acid also induced Cyp7a1 in DKO mice, suggesting impaired bile acid feedback regulation. A Western diet containing 0.2% cholesterol increased oxidative stress and markers of liver fibrosis but not hepatic steatosis in DKO mice. Conclusion: FXR and TGR5 play critical roles in protecting the liver from inflammation and fibrosis, and deficiency of both of these bile acid receptors in mice increased cholic acid synthesis and the bile acid pool, liver fibrosis, and inflammation; FXR and TGR5 DKO mice may be a model for liver fibrosis.


Assuntos
Colesterol 7-alfa-Hidroxilase/genética , Cirrose Hepática/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Acoplados a Proteínas G/genética , Animais , Ácidos e Sais Biliares/metabolismo , Biópsia por Agulha , Ácido Cólico/metabolismo , Dieta Ocidental , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Imuno-Histoquímica , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Distribuição Aleatória , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/genética
12.
Am J Physiol Gastrointest Liver Physiol ; 316(3): G404-G411, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653340

RESUMO

The gastrointestinal phenotype of cystic fibrosis (CF) features intestinal bile acid (BA) malabsorption, impaired intestinal farnesoid X receptor (FXR) activation, and consequently reduced fibroblast growth factor 19 (FGF19, FGF15 in mice) production. The osmotic laxative polyethylene glycol (PEG) has been shown to decrease intestinal mucus accumulation in CF mice and could, by doing so, improve BA reabsorption. Here we determined the effect of PEG on BA excretion and FXR-FGF15 signaling in CF mice. Male Cftr-/-tm1Unc (CF) and wild-type (WT) littermates were administered PEG 4000 in drinking water and fed either chow or a semisynthetic diet. PEG was withdrawn for 3 days before termination. Fecal BA excretion was measured at PEG dosages of 37 g/l (100%) and 0 g/l (0%). Ileal FXR activation was assessed by gene expression of its downstream targets Fgf15 and small heterodimer partner ( Shp). In CF mice, PEG withdrawal increased fecal BA excretion on either diet compared with full PEG dosage (chow, 2-fold, P = 0.06; semisynthetic, 4.4-fold, P = 0.007). PEG withdrawal did not affect fecal BA excretion in WT mice on either diet. After PEG withdrawal, gene expression levels of intestinal FXR target genes Fgf15 and Shp were decreased in CF mice but unaffected in WT littermates. PEG did not affect the gene expression of the main intestinal BA transporter apical sodium-dependent bile acid transporter (ASBT). PEG treatment ameliorates intestinal BA malabsorption in CF mice and restores intestinal FXR-FGF15 signaling, independent from Asbt gene expression. These findings highlight the potential of PEG in the prevention and treatment of the gastrointestinal phenotype of CF. NEW & NOTEWORTHY A gastrointestinal feature of cystic fibrosis is bile acid malabsorption and consequent impairment of farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signaling. FXR-FGF15 signaling regulates various metabolic processes and could be implicated in metabolic and gastrointestinal complications of cystic fibrosis, such as diabetes and liver disease. In cystic fibrosis mice, treatment with the osmotic laxative polyethylene glycol is associated with decreased fecal bile acid loss and restoration of FXR-FGF15 signaling.


Assuntos
Fibrose Cística/metabolismo , Homeostase/fisiologia , Laxantes/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Animais , Ácidos e Sais Biliares/metabolismo , Fibrose Cística/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Íleo/metabolismo , Intestinos/fisiologia , Fígado/metabolismo , Masculino , Camundongos Transgênicos , Receptores Citoplasmáticos e Nucleares/genética
13.
J Neuroimmunol ; 331: 87-96, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28844503

RESUMO

The orphan nuclear receptor TLX (Nr2e1) is a key regulator of hippocampal neurogenesis. Impaired adult hippocampal neurogenesis has been reported in neurodegenerative and psychiatric conditions including dementia and stress-related depression. Neuroinflammation is also implicated in the neuropathology of these disorders, and has been shown to negatively affect hippocampal neurogenesis. To investigate a role for TLX in hippocampal neuroinflammation, we assessed microglial activation in the hippocampus of mice with a spontaneous deletion of TLX. Results from our study suggest that a lack of TLX is implicated in deregulation of microglial phenotype and that consequently, the survival and function of newborn cells in the hippocampus is impaired. TLX may be an important target in understanding inflammatory-associated impairments in neurogenesis.


Assuntos
Hipocampo/patologia , Microglia/fisiologia , Neurogênese/fisiologia , Receptores Citoplasmáticos e Nucleares/deficiência , Animais , Sobrevivência Celular , Giro Denteado/metabolismo , Giro Denteado/patologia , Proteína Duplacortina , Hipocampo/metabolismo , Inflamação , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Masculino , Camundongos , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/fisiologia , Nicho de Células-Tronco
14.
Behav Brain Res ; 360: 36-50, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30481511

RESUMO

The orphan nuclear receptor TLX is predominantly expressed in the central nervous system and is an important factor regulating the maintenance and self-renewal of neural stem cells from embryonic development through adulthood. In adolescence and adulthood, TLX expression is restricted to the neurogenic niches of the brain: the dentate gyrus of the hippocampus and the subventricular zone. The adolescent period is critical for maturation of the hippocampus with heightened levels of neurogenesis observed in rodents. Therefore, we investigated whether lentiviral silencing of TLX expression (TLX knockdown) in the dorsal dentate gyrus of juvenile rats incurred differential impairments in behaviour during late adolescence and adulthood. Our results showed that knockdown of TLX in the dorsal dentate gyrus led to a decrease in cell proliferation in the dorsal but not ventral dentate gyrus. At a behavioural level we observed differential effects in adolescence and adulthood across a number of parameters. A hyperactive phenotype was present in adolescent but not adult TLX knockdown rats, and an increase in immobility during adolescence and in swimming frequency during adulthood was observed in the forced swim test. There was an increased defecation frequency in the open field during adulthood but not adolescence. There were no changes in cognitive performance on hippocampus-dependent tasks or in anxiety-related behaviours. In conclusion, silencing of TLX in the dorsal dentate gyrus led to impairments in hippocampal-independent behaviours which either did not persist or were reversed during adulthood. The current data highlight the temporal importance and function of the nuclear receptor TLX during development.


Assuntos
Envelhecimento , Comportamento Animal/fisiologia , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Animais , Condicionamento Clássico , Discriminação Psicológica , Comportamento Exploratório/fisiologia , Medo/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Interferência de RNA/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores Citoplasmáticos e Nucleares/genética , Aprendizagem Espacial/fisiologia , Natação , Transdução Genética
15.
Theranostics ; 8(19): 5246-5258, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555544

RESUMO

The role of small heterodimer partner (SHP) in regulation of xenobiotic detoxification remains elusive. Here, we uncover a critical role for SHP in circadian regulation of cytochromes P450 (CYPs) and drug-induced hepatotoxicity. Methods: The mRNA and protein levels of CYPs in the livers of wild-type and SHP-/- mice were measured by quantitative real-time polymerase chain reaction and Western blotting, respectively. Regulation of CYP by SHP was investigated using luciferase reporter, mobility shift, chromatin immunoprecipitation, and/or co-immunoprecipitation assays. Results: The circadian rhythmicities of xenobiotic-detoxifying CYP mRNAs and proteins were disrupted in SHP-deficient mice. Of note, SHP ablation up-regulated Cyp2c38 and Cyp2c39, whereas it down-regulated all other CYP genes. Moreover, SHP regulated the expression of CYP genes through different mechanisms. SHP repressed Lrh-1/Hnf4α to down-regulate Cyp2c38, E4bp4 to up-regulate Cyp2a5, Dec2/HNF1α axis to up-regulate Cyp1a2, Cyp2e1 and Cyp3a11, and Rev-erbα to up-regulate Cyp2b10, Cyp4a10 and Cyp4a14. Furthermore, SHP ablation sensitized mice to theophylline (or mitoxantrone)-induced toxicity. Higher level of toxicity was correlated with down-regulated metabolism and clearance of theophylline (or mitoxantrone). In contrast, SHP ablation blunted the circadian rhythmicity of acetaminophen-induced hepatotoxicity and alleviated the toxicity by down-regulating Cyp2e1-mediated metabolism and reducing formation of the toxic metabolite. Toxicity alleviation by SHP ablation was also observed for aflatoxin B1 due to reduced formation of the toxic epoxide metabolite. Conclusion: SHP participates in circadian regulation of CYP enzymes, thereby impacting xenobiotic metabolism and drug-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Ritmo Circadiano , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Xenobióticos/toxicidade , Acetaminofen/toxicidade , Animais , Western Blotting , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Genes Reporter , Luciferases/análise , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/deficiência , Teofilina/toxicidade
16.
Clin Liver Dis ; 22(4): 657-669, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30266155
17.
PLoS One ; 13(5): e0196787, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29723273

RESUMO

The nuclear receptors REV-ERBα and REV-ERBß have been demonstrated to be core members of the circadian clock and participate in the regulation of a diverse set of metabolic functions. Due to their overlapping tissue expression patterns and gene expression profiles, REV-ERBß is thought to be redundant to REV-ERBα. Recent work has highlighted REV-ERBα's role in the regulation of skeletal muscle oxidative capacity and mitochondrial biogenesis. Considering the similarity between the REV-ERBs and the hypothesized overlap in function, we sought to determine whether REV-ERBß-deficiency presented with a similar skeletal muscle phenotype as REV-ERBα-deficiency. Ectopic overexpression in C2C12 cells demonstrated that REV-ERBß drives mitochondrial biogenesis and the expression of genes involved in fatty acid oxidation. Intriguingly, knock down of REV-ERBß in C2C12 cultures also resulted in mitochondrial biogenesis and increased expression of genes involved in fatty acid ß-oxidation. To determine whether these effects occurred in vivo, we examined REV-ERBß-deficient mice and observed a similar increase in expression of genes involved in mitochondrial biogenesis and fatty acid ß-oxidation. Consistent with these results, REV-ERBß-deficient mice exhibited an altered metabolic phenotype compared to wild-type littermate controls when measured by indirect calorimetry. This likely compensated for the increased food consumption that occurred, possibly aiding in the maintenance of their weight over time. Since feeding behaviors are a direct circadian output, this study suggests that REV-ERBß may have more subtle effects on circadian behaviors than originally identified. Furthermore, these data implicate REV-ERBß in the control of skeletal muscle metabolism and energy expenditure and suggest that development of REV-ERBα versus REV-ERBß selective ligands may have therapeutic utility in the treatment of metabolic syndrome.


Assuntos
Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Animais , Peso Corporal , Calorimetria Indireta , Linhagem Celular , Ritmo Circadiano/genética , Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Comportamento Alimentar/fisiologia , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Biogênese de Organelas , Oxirredução , Fosforilação Oxidativa , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética
18.
Toxicology ; 400-401: 20-27, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548889

RESUMO

A number of chemicals produce liver and thyroid gland tumours in rodents by nongenotoxic modes of action (MOAs). In this study the hepatic and thyroid gland effects of the constitutive androstane receptor (CAR) activator sodium phenobarbital (NaPB) were examined in male Sprague-Dawley wild type (WT) rats and in CAR knockout (CAR KO) rats and the effects of the pregnane X receptor (PXR) activator pregnenolone-16α-carbonitrile (PCN) were examined in WT and PXR knockout (PXR KO) rats. Rats were either fed diets containing 0 (control) or 500 ppm NaPB or were dosed with 0 (control) or 100 mg/kg/day PCN orally for 7 days. The treatment of WT rats with NaPB and PCN for 7 days resulted in increased relative liver weight, increased hepatocyte replicative DNA synthesis (RDS) and the induction of cytochrome P450 CYP2B and CYP3A subfamily enzyme, mRNA and protein levels. In marked contrast, the treatment of CAR KO rats with NaPB and PXR KO rats with PCN did not result in any increases in liver weight and induction of CYP2B and CYP3A enzymes. The treatment of CAR KO rats with NaPB had no effect on hepatocyte RDS, while PCN produced only a small increase in hepatocyte RDS in PXR KO rats. Treatment with NaPB had no effect on thyroid gland weight in WT and CAR KO rats, whereas treatment with PCN resulted in an increase in relative thyroid gland weight in WT, but not in PXR KO, rats. Thyroid gland follicular cell RDS was increased by the treatment of WT rats with NaPB and PCN, with NaPB also producing a small increase in thyroid gland follicular cell RDS in CAR KO rats. Overall, the present study with CAR KO rats demonstrates that a functional CAR is required for NaPB-mediated increases in liver weight, stimulation of hepatocyte RDS and induction of hepatic CYP enzymes. The studies with PXR KO rats demonstrate that a functional PXR is required for PCN-mediated increases in liver weight and induction of hepatic CYP enzymes; with induction of hepatocyte RDS also being largely mediated through PXR. The hepatic effects of NaPB in CAR KO rats and of PCN in PXR KO rats are in agreement with those observed in other recent literature studies. These results suggest that CAR KO and PXR KO rats are useful experimental models for liver MOA studies with rodent CAR and PXR activators and may also be useful for thyroid gland MOA studies.


Assuntos
Hepatócitos/metabolismo , Fenobarbital/farmacologia , Receptor de Pregnano X/deficiência , Carbonitrila de Pregnenolona/farmacologia , Receptores Citoplasmáticos e Nucleares/deficiência , Glândula Tireoide/metabolismo , Animais , Receptor Constitutivo de Androstano , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Receptor de Pregnano X/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores Citoplasmáticos e Nucleares/genética , Glândula Tireoide/efeitos dos fármacos
19.
Toxicol Sci ; 163(1): 254-264, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29409050

RESUMO

Although detailed pathophysiological mechanisms of fulminant hepatitis remain elusive, immune cell recruitment with excessive cytokine production is a well-recognized hallmark of the disease. We determined the function of orphan nuclear receptor small heterodimer partner (SHP) in concanavalin A (ConA)-induced hepatitis model. Male C57BL/6 J mice were injected intravenously with either a lethal dose (25 mg/kg) or a sub-lethal dose (15 mg/kg) of ConA. For the C-X-C motif chemokine ligand (CXCL) 2 neutralization study, mice were intravenously administered anti-mouse CXCL2 antibody (100 µg/mouse). Thirty-six hours following lethal dose of ConA administration, 47% wild type (WT) mice were alive, whereas >85% of Shp knockout (KO) were dead. Shp KO mice were highly susceptible to ConA-induced liver injury and exhibited increased liver necrosis upon sub-lethal dose of ConA administration. FACS analysis and immunohistochemical staining showed significantly higher neutrophil infiltration in Shp KO mice, as compared with WT mice. We found that also in the WT situation, Shp expression gradually decreased, while Cxcl2 expression increased until 6 h, and vice versa at 24 h upon ConA-treatment, indicating an inverse correlation between Shp and Cxcl2 expression during ConA-induced hepatitis. Furthermore, in vivo neutralization of CXCL2 with neutralizing antibody reduces ConA-induced plasma ALT and AST levels, hepatocyte death and neutrophil infiltration in Shp KO mice. Collectively, these results confirm that lacking of SHP results in CXCL2-dependent neutrophil infiltration in ConA-induced liver damage. SHP plays a protective, anti-inflammatory role in liver during acute liver inflammation.


Assuntos
Quimiocina CXCL2/metabolismo , Hepatite/metabolismo , Fígado/metabolismo , Infiltração de Neutrófilos/imunologia , Receptores Citoplasmáticos e Nucleares/deficiência , Animais , Concanavalina A , Modelos Animais de Doenças , Hepatite/imunologia , Hepatite/patologia , Fígado/imunologia , Fígado/patologia , Testes de Função Hepática , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/genética
20.
Mol Med Rep ; 17(4): 4989-4998, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393499

RESUMO

Binge drinking among alcohol consumers is a common occurrence, and may result in the development of numerous diseases, including liver disorders. It has previously been reported that natural killer T (NKT) cells induce alcohol­associated liver injury by promoting neutrophil infiltration. In the present study, the role of the orphan nuclear receptor small heterodimer partner (SHP), which is encoded by the NR0B2 gene, in acute binge drinking­induced liver injury was investigated. SHP­knockout (KO) and wild­type (WT) control mice were intragastrically administered single doses of alcohol. The plasma concentrations of alanine aminotransferase and aspartate aminotransferase in SHP­KO mice following alcohol treatment were significantly increased compared with WT mice. However, results of oil red O staining and 2',7'­dichlorodihydrofluorescein diacetate staining indicated that levels of acute binge drinking­associated hepatic lipid accumulation and oxidative stress were not significantly different between WT and SHP­KO alcohol­treated mice. Notably, tumor necrosis factor­α mRNA expression in the liver of SHP­KO mice was significantly increased following alcohol administration, compared with WT mice. Furthermore, the mRNA expression levels of C­C motif chemokine ligand 2, C­X­C motif chemokine ligand 2 and interleukin­4, which are all potent chemoattractants of NKT cells, as well as neutrophil expression levels, were significantly increased in the livers of SHP­KO mice compared with WT mice following alcohol administration, as determined by reverse transcription­quantitative polymerase chain reaction and flow cytometry. Enhanced infiltration of NKT cells, determined by flow cytometry, was also demonstrated in the livers of SHP­KO mice following alcohol administration, compared with WT mice. The results of the present study indicate that SHP may be involved in liver­associated protective mechanisms, with regards to the attenuation of damage caused by acute binge drinking, via regulation of NKT cell and neutrophil migration to the liver. The modulation of SHP may be a novel therapeutic strategy for the treatment of acute binge drinking­induced liver injury.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/complicações , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Infiltração de Neutrófilos/imunologia , Receptores Citoplasmáticos e Nucleares/deficiência , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...