Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.690
Filtrar
1.
Dev Biol ; 505: 122-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972678

RESUMO

A fundamental question in developmental biology is whether tissue architectures formed during development are set for life, or require continuous maintenance signals, and if so, what are those signals. The islets of Langerhans in the pancreas can serve as an elegant model tissue to answer these questions. Islets have a non-random spatial architecture, which is important to proper glucose homeostasis. Islet architecture forms during embryonic development, in a morphogenesis process partially involving expression of Roundabout (Robo) receptors in ß cells, and their ligand, Slit, in the surrounding mesenchyme. Whether islet architecture is set during development and remains passive in adulthood, or whether it requires active maintenance throughout life, has not been determined. Here we conditionally deleted Robo2 in ß cells of adult mice and observed their islet architecture following a two-month chase. We show that deleting Robo2 in adult ß cells causes significant loss of islet architecture without affecting ß cell identity, maturation, or stress, indicating that Robo2 plays a role in actively maintaining adult islet architecture. Understanding the factors required to maintain islet architecture, and thus optimize islet function, is important for developing future diabetes therapies.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Pâncreas , Morfogênese , Ilhotas Pancreáticas/metabolismo , Proteínas Roundabout , Receptores Imunológicos/fisiologia
2.
Neuroscience ; 508: 123-136, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863679

RESUMO

Friedrich Bonhoeffer made seminal contributions to the study of axon guidance in the developing nervous system. His discoveries of key cellular and molecular mechanisms that dictate wiring specificity laid the foundation for countless investigators who have followed in his footsteps. Perhaps his most significant contribution was the cloning and characterization of members of the conserved ephrin family of repulsive axon guidance cues. In this review, we highlight the major contributions that Bonhoeffer and his colleagues made to the field of axon guidance, and discuss ongoing investigations into the diverse array of mechanisms that ensure that axon repulsion is precisely regulated to allow for accurate pathfinding. Specifically, we focus our discussion on the post-translational regulation of two major families of repulsive axon guidance factors: ephrin ligands and their Eph receptors, and slit ligands and their Roundabout (Robo) receptors. We will give special emphasis to the ways in which regulated endocytic trafficking events allow navigating axons to adjust their responses to repellant signals and how these trafficking events are intimately related to receptor signaling. By highlighting parallels and differences between the regulation of these two important repulsive axon guidance pathways, we hope to identify key outstanding questions for future investigation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Orientação de Axônios , Receptores Imunológicos/fisiologia , Ligantes , Proteínas do Tecido Nervoso/metabolismo , Axônios/metabolismo , Efrinas/metabolismo
3.
Clin Sci (Lond) ; 136(5): 309-321, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35132998

RESUMO

Prostaglandin D2 (PGD2) released from immune cells or other cell types activates its receptors, D prostanoid receptor (DP)1 and 2 (DP1 and DP2), to promote inflammatory responses in allergic and lung diseases. Prostaglandin-mediated inflammation may also contribute to vascular diseases such as abdominal aortic aneurysm (AAA). However, the role of DP receptors in the pathogenesis of AAA has not been systematically investigated. In the present study, DP1-deficient mice and pharmacological inhibitors of either DP1 or DP2 were tested in two distinct mouse models of AAA formation: angiotensin II (AngII) infusion and calcium chloride (CaCl2) application. DP1-deficient mice [both heterozygous (DP1+/-) and homozygous (DP1-/-)] were protected against CaCl2-induced AAA formation, in conjunction with decreased matrix metallopeptidase (MMP) activity and adventitial inflammatory cell infiltration. In the AngII infusion model, DP1+/- mice, but not DP1-/- mice, exhibited reduced AAA formation. Interestingly, compensatory up-regulation of the DP2 receptor was detected in DP1-/- mice in response to AngII infusion, suggesting a potential role for DP2 receptors in AAA. Treatment with selective antagonists of DP1 (laropiprant) or DP2 (fevipiprant) protected against AAA formation, in conjunction with reduced elastin degradation and aortic inflammatory responses. In conclusion, PGD2 signaling contributes to AAA formation in mice, suggesting that antagonists of DP receptors, which have been extensively tested in allergic and lung diseases, may be promising candidates to ameliorate AAA.


Assuntos
Aneurisma da Aorta Abdominal/etiologia , Receptores Imunológicos/fisiologia , Receptores de Prostaglandina/fisiologia , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/prevenção & controle , Masculino , Camundongos , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores
4.
Int J Cancer ; 150(4): 688-704, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34716584

RESUMO

The surface inhibitory receptor NKG2A forms heterodimers with the invariant CD94 chain and is expressed on a subset of activated CD8 T cells. As antibodies to block NKG2A are currently tested in several efficacy trials for different tumor indications, it is important to characterize the NKG2A+ CD8 T cell population in the context of other inhibitory receptors. Here we used a well-controlled culture system to study the kinetics of inhibitory receptor expression. Naïve mouse CD8 T cells were synchronously and repeatedly activated by artificial antigen presenting cells in the presence of the homeostatic cytokine IL-7. The results revealed NKG2A as a late inhibitory receptor, expressed after repeated cognate antigen stimulations. In contrast, the expression of PD-1, TIGIT and LAG-3 was rapidly induced, hours after first contact and subsequently down regulated during each resting phase. This late, but stable expression kinetics of NKG2A was most similar to that of TIM-3 and CD39. Importantly, single-cell transcriptomics of human tumor-infiltrating lymphocytes (TILs) showed indeed that these receptors were often coexpressed by the same CD8 T cell cluster. Furthermore, NKG2A expression was associated with cell division and was promoted by TGF-ß in vitro, although TGF-ß signaling was not necessary in a mouse tumor model in vivo. In summary, our data show that PD-1 reflects recent TCR triggering, but that NKG2A is induced after repeated antigen stimulations and represents a late inhibitory receptor. Together with TIM-3 and CD39, NKG2A might thus mark actively dividing tumor-specific TILs.


Assuntos
Proteínas de Checkpoint Imunológico/fisiologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/fisiologia , Animais , Antígenos CD/fisiologia , Linfócitos T CD8-Positivos/imunologia , Divisão Celular , Receptor Celular 2 do Vírus da Hepatite A/fisiologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores Imunológicos/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Microambiente Tumoral , Proteína do Gene 3 de Ativação de Linfócitos
5.
Cell Rep ; 37(13): 110158, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965428

RESUMO

Non-neuronal responses in neurodegenerative disease have received increasing attention as important contributors to disease pathogenesis and progression. Here we utilize single-cell RNA sequencing to broadly profile 13 cell types in three different mouse models of Alzheimer disease (AD), capturing the effects of tau-only, amyloid-only, or combined tau-amyloid pathology. We highlight microglia, oligodendrocyte, astrocyte, and T cell responses and compare them across these models. Notably, we identify two distinct transcriptional states for oligodendrocytes emerging differentially across disease models, and we determine their spatial distribution. Furthermore, we explore the impact of Trem2 deletion in the context of combined pathology. Trem2 knockout mice exhibit severely blunted microglial responses to combined tau and amyloid pathology, but responses from non-microglial cell types (oligodendrocytes, astrocytes, and T cells) are relatively unchanged. These results delineate core transcriptional states that are engaged in response to AD pathology, and how they are influenced by a key AD risk gene, Trem2.


Assuntos
Doença de Alzheimer/patologia , Amiloide/química , Astrócitos/patologia , Glicoproteínas de Membrana/fisiologia , Oligodendroglia/patologia , Receptores Imunológicos/fisiologia , Linfócitos T/imunologia , Proteínas tau/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodendroglia/imunologia , Oligodendroglia/metabolismo
6.
Sci Rep ; 11(1): 22502, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795387

RESUMO

T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT), an immune checkpoint, plays a pivotal role in immune suppression. However its role in tumor immunity and correlation with the genetic and epigenetic alterations remains unknown. Here, we comprehensively analyzed the expression patterns of the TIGIT and its value of prognostic prediction among 33 types of cancers based on the data collected from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression projects (GTEx). Furthermore, the correlations of TIGIT with pathological stages, tumor-infiltrating immune cells (TIICs), signatures of T cells subtypes, immune checkpoint genes, the degree of Estimation of STromal and Immune cells in MAlignant Tumor tissues using the Expression data (ESTIMATE), tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) genes, and DNA methyltransferases (DNMTs) were also explored. Gene functional enrichment was conducted by Gene Set Enrichment Analysis (GSEA). Our results showed that the expression of TIGIT was upregulated in most of the cancer types. Cox regression model showed that high expression of TIGIT in tumor samples correlates with poor prognosis in KIRC, KIRP, LGG, UVM, and with favorable prognosis in BRCA, CECS, HNSC, SKCM. TIGIT expression positively correlated with advanced stages, TIICs, the signatures of effector T cells, exhausted T cells, effector Tregs and the degree of ESTIMATE in KIRC, KIRP and UVM. TIGIT expression also positively correlated with CTLA4, PDCD1 (PD-1), CD274 (PD-L1), ICOS in most of the cancer types. Furthermore, the expression of TIGIT was correlated with TMB, MSI, MMR genes and DNMTs in different types of cancers. GSEA analysis showed that the expression of TIGIT was related to cytokine-cytokine receptor interaction, allograft rejection, oxidative phosphorylation. These findings suggested that TIGIT could serve as a potential biomarker for prognosis and a novel target for immunotherapies in cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Receptores Imunológicos/biossíntese , Receptores Imunológicos/fisiologia , Microambiente Tumoral , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Genoma Humano , Genótipo , Humanos , Estimativa de Kaplan-Meier , Instabilidade de Microssatélites , Neoplasias/genética , Prognóstico , Modelos de Riscos Proporcionais
7.
Biochem Biophys Res Commun ; 579: 146-152, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34601199

RESUMO

Although allergic contact dermatitis (ACD) is the most common T cell-mediated inflammatory responses against an allergen in the skin, the pathogenesis of ACD remains incompletely understood. In the sensitization phase in ACD, hapten-bearing dermal dendritic cells (DCs) play a pivotal role in the transport of an antigen to the lymph nodes (LNs), where they present the antigen to naïve T cells. Here we report that Allergin-1, an inhibitory immunoreceptor containing immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic region, is highly expressed on dermal DCs. Mice deficient in Allergin-1 exhibited exacerbated fluorescein isothiocyanate (FITC)-induced type 2 contact hypersensitivity (CHS) such as ear swelling and skin eosinophilia. Allergin-1-deficient mice also showed larger numbers of CD4+ T cells and FITC-bearing DCs and greater expressions of type 2 cytokines, including IL-5, IL-10 and IL-13, in the draining LNs than did wild type mice. In sharp contrast, Allergin-1-deficient mice showed comparable level of type 1 CHS induced by 2,4-dinitrofluorobenzene (DNFB). These results suggest that Allergin-1 on dermal DC inhibits type 2, but not type 1, immune responses in the sensitization phase of CHS.


Assuntos
Células Dendríticas/metabolismo , Dermatite de Contato/metabolismo , Fluoresceína-5-Isotiocianato/química , Receptores Imunológicos/fisiologia , Pele/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Células Dendríticas/citologia , Dinitrofluorbenzeno/química , Feminino , Hipersensibilidade Imediata , Interleucina-10/biossíntese , Interleucina-13/biossíntese , Interleucina-5/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Receptores Imunológicos/metabolismo
8.
FEBS Open Bio ; 11(11): 3063-3080, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34523252

RESUMO

Loss-of-function variants of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of developing Alzheimer's disease (AD). The mechanism through which TREM2 contributes to the disease (TREM2 activation vs inactivation) is largely unknown. Here, we analyzed changes in a gene set downstream of TREM2 to determine whether TREM2 signaling is modified by AD progression. We generated an anti-human TREM2 agonistic antibody and defined TREM2 activation in terms of the downstream expression changes induced by this antibody in microglia developed from human induced pluripotent stem cells (iPSC). Differentially expressed genes (DEGs) following TREM2 activation were compared with the gene set extracted from microglial single nuclear RNA sequencing data of patients with AD, using gene set enrichment analysis. We isolated an anti-TREM2-specific agonistic antibody, Hyb87, from anti-human TREM2 antibodies generated using binding and agonism assays, which helped us identify 300 upregulated and 251 downregulated DEGs. Pathway enrichment analysis suggested that TREM2 activation may be associated with Th2-related pathways. TREM2 activation was lower in AD microglia than in microglia from healthy subjects or patients with mild cognitive impairment. TREM2 activation also showed a significant negative correlation with disease progression. Pathway enrichment analysis of DEGs controlled by TREM2 activity indicated that TREM2 activation in AD may lead to anti-apoptotic signaling, immune response, and cytoskeletal changes in the microglia. We showed that TREM2 activation decreases with AD progression, in support of a protective role of TREM2 activation in AD. In addition, the agonistic anti-TREM2 antibody can be used to identify TREM2 activation state in AD microglia.


Assuntos
Doença de Alzheimer/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos , Microglia/metabolismo , Receptores Imunológicos/fisiologia
9.
PLoS Pathog ; 17(6): e1009662, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097709

RESUMO

Signal-regulatory protein alpha (SIRPA) is a well-known inhibitor of phagocytosis when it complexes with CD47 expressed on target cells. Here we show that SIRPA decreased in vitro infection by a number of pathogenic viruses, including New World and Old World arenaviruses, Zika virus, vesicular stomatitis virus and pseudoviruses bearing the Machupo virus, Ebola virus and SARS-CoV-2 glycoproteins, but not HSV-1, MLV or mNoV. Moreover, mice with targeted mutation of the Sirpa gene that renders it non-functional were more susceptible to infection with the New World arenaviruses Junín virus vaccine strain Candid 1 and Tacaribe virus, but not MLV or mNoV. All SIRPA-inhibited viruses have in common the requirement for trafficking to a low pH endosomal compartment. This was clearly demonstrated with SARS-CoV-2 pseudovirus, which was only inhibited by SIRPA in cells in which it required trafficking to the endosome. Similar to its role in phagocytosis inhibition, SIRPA decreased virus internalization but not binding to cell surface receptors. We also found that increasing SIRPA levels via treatment with IL-4 led to even greater anti-viral activity. These data suggest that enhancing SIRPA's activity could be a target for anti-viral therapies.


Assuntos
Endocitose , Vírus de RNA/imunologia , Receptores Imunológicos/fisiologia , Internalização do Vírus , Animais , Antivirais/farmacologia , Linhagem Celular , Membrana Celular/virologia , Chlorocebus aethiops , Sistemas de Liberação de Medicamentos , Integrinas/imunologia , Interleucina-4/farmacologia , Camundongos , Camundongos Knockout , Domínios Proteicos , Receptores Imunológicos/genética , Células Vero
10.
FASEB J ; 35(6): e21616, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33978990

RESUMO

IgE-dependent/independent activation of mast cell (MC) has been assumed to play a host defensive role against venom injection in skin. However, its detailed mechanisms remain unknown. We aimed to investigate the contribution of MC-derived prostaglandin D2 (PGD2 )-mediated signaling in host defense against bee venom (BV). To achieve this, we utilized gene-deficient mice of a PGD2 receptor, chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). We first confirmed that subcutaneous injection of BV produced PGD2 equally in wild-type (WT) and CRTH2-deficient (Crth2-/- ) mice skins. The BV injection dropped body temperature and impaired kidney equally in both lines of mice. In WT mice, pre-injection of BV (3 weeks) significantly inhibited the hypothermia and kidney impairment caused by second BV injection. In contrast, this pre-injection was not effective for the second BV injection in Crth2-/- mice. We also found that BV injections increased serum BV-specific IgE levels in WT mice, and its serum transfused mice improved the BV-induced hypothermia in naïve WT mice. In contrast, serum BV-specific IgE level was significantly lower in Crth2-/- mice. FACS analysis showed the BV injection stimulate migration of dendritic cells (DCs) into regional lymph nodes in WT mice. In Crth2-/- mice, its number was significantly smaller than that of WT mice. In conclusion, PGD2 /CRTH2 signaling plays defensive role against second BV injection. This signaling promotes BV-specific IgE production at least partially by promoting DCs migration into regional lymph node.


Assuntos
Imunidade Adaptativa/genética , Venenos de Abelha/toxicidade , Mastócitos/imunologia , Prostaglandina D2/metabolismo , Receptores Imunológicos/fisiologia , Receptores de Prostaglandina/fisiologia , Células Th2/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Feminino , Imunoglobulina E/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Células Th2/efeitos dos fármacos , Células Th2/metabolismo
11.
Front Immunol ; 12: 642715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815396

RESUMO

A systematic and flexible immunoregulatory network is required to ensure the proper outcome of antiviral immune signaling and maintain homeostasis during viral infection. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a novel immunoregulatory protein, has been extensively studied in inflammatory response, apoptosis, and cancer. However, the function of TIPE2 in antiviral innate immunity is poorly clarified. In this study, we reported that the expression of TIPE2 declined at the early period and then climbed up in macrophages under RNA virus stimulation. Knockout of TIPE2 in the macrophages enhanced the antiviral capacity and facilitated type I interferon (IFN) signaling after RNA viral infection both in vitro and in vivo. Consistently, overexpression of TIPE2 inhibited the production of type I IFNs and pro-inflammatory cytokines, and thus promoted the viral infection. Moreover, TIPE2 restrained the activation of TBK1 and IRF3 in the retinoic acid inducible gene-I (RIG-I)-like receptors (RLR) signaling pathway by directly interacting with retinoic acid inducible gene-I (RIG-I). Taken together, our results suggested that TIPE2 suppresses the type I IFN response induced by RNA virus by targeting RIG-I and blocking the activation of downstream signaling. These findings will provide new insights to reveal the immunological function of TIPE2 and may help to develop new strategies for the clinical treatment of RNA viral infections.


Assuntos
Proteína DEAD-box 58/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Macrófagos/imunologia , Infecções por Vírus de RNA/imunologia , Receptores Imunológicos/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células Cultivadas , Humanos , Imunidade Inata , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Replicação Viral
12.
Mol Neurodegener ; 16(1): 22, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823896

RESUMO

The central role of the resident innate immune cells of the brain (microglia) in neurodegeneration has become clear over the past few years largely through genome-wide association studies (GWAS), and has rapidly become an active area of research. However, a mechanistic understanding (gene to function) has lagged behind. That is now beginning to change, as exemplified by a number of recent exciting and important reports that provide insight into the function of two key gene products - TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) and PLCγ2 (Phospholipase C gamma2) - in microglia, and their role in neurodegenerative disorders. In this review we explore and discuss these recent advances and the opportunities that they may provide for the development of new therapies.


Assuntos
Doença de Alzheimer/imunologia , Células do Tecido Conjuntivo/metabolismo , Linfócitos/metabolismo , Glicoproteínas de Membrana/fisiologia , Microglia/metabolismo , Células Mieloides/metabolismo , Fosfolipase C gama/fisiologia , Receptores Imunológicos/fisiologia , Transdução de Sinais/fisiologia , Idade de Início , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/prevenção & controle , Humanos , Metabolismo dos Lipídeos , Glicoproteínas de Membrana/química , Microglia/fisiologia , Modelos Moleculares , Mutação , Fosfolipase C gama/química , Fosfolipase C gama/genética , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Receptores Imunológicos/química , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
13.
J Biol Chem ; 296: 100631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823153

RESUMO

TREM2 is a pattern recognition receptor, expressed on microglia and myeloid cells, detecting lipids and Aß and inducing an innate immune response. Missense mutations (e.g., R47H) of TREM2 increase risk of Alzheimer's disease (AD). The soluble ectodomain of wild-type TREM2 (sTREM2) has been shown to protect against AD in vivo, but the underlying mechanisms are unclear. We show that Aß oligomers bind to cellular TREM2, inducing shedding of the sTREM2 domain. Wild-type sTREM2 bound to Aß oligomers (measured by single-molecule imaging, dot blots, and Bio-Layer Interferometry) inhibited Aß oligomerization and disaggregated preformed Aß oligomers and protofibrils (measured by transmission electron microscopy, dot blots, and size-exclusion chromatography). Wild-type sTREM2 also inhibited Aß fibrillization (measured by imaging and thioflavin T fluorescence) and blocked Aß-induced neurotoxicity (measured by permeabilization of artificial membranes and by loss of neurons in primary neuronal-glial cocultures). In contrast, the R47H AD-risk variant of sTREM2 is less able to bind and disaggregate oligomeric Aß but rather promotes Aß protofibril formation and neurotoxicity. Thus, in addition to inducing an immune response, wild-type TREM2 may protect against amyloid pathology by the Aß-induced release of sTREM2, which blocks Aß aggregation and neurotoxicity. In contrast, R47H sTREM2 promotes Aß aggregation into protofibril that may be toxic to neurons. These findings may explain how wild-type sTREM2 apparently protects against AD in vivo and why a single copy of the R47H variant gene is associated with increased AD risk.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Glicoproteínas de Membrana/fisiologia , Proteínas Mutantes/metabolismo , Mutação , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Receptores Imunológicos/fisiologia , Doença de Alzheimer , Amiloide/metabolismo , Animais , Camundongos , Camundongos Knockout , Proteínas Mutantes/genética , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia
14.
J Biol Chem ; 296: 100368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33545173

RESUMO

The human mannose receptor expressed on macrophages and hepatic endothelial cells scavenges released lysosomal enzymes, glycopeptide fragments of collagen, and pathogenic microorganisms and thus reduces damage following tissue injury. The receptor binds mannose, fucose, or N-acetylglucosamine (GlcNAc) residues on these targets. C-type carbohydrate-recognition domain 4 (CRD4) of the receptor contains the site for Ca2+-dependent interaction with sugars. To investigate the details of CRD4 binding, glycan array screening was used to identify oligosaccharide ligands. The strongest signals were for glycans that contain either Manα1-2Man constituents or fucose in various linkages. The mechanisms of binding to monosaccharides and oligosaccharide substructures present in many of these ligands were examined in multiple crystal structures of CRD4. Binding of mannose residues to CRD4 results primarily from interaction of the equatorial 3- and 4-OH groups with a conserved principal Ca2+ common to almost all sugar-binding C-type CRDs. In the Manα1-2Man complex, supplementary interactions with the reducing mannose residue explain the enhanced affinity for this disaccharide. Bound GlcNAc also interacts with the principal Ca2+ through equatorial 3- and 4-OH groups, whereas fucose residues can bind in several orientations, through either the 2- and 3-OH groups or the 3- and 4-OH groups. Secondary contacts with additional sugars in fucose-containing oligosaccharides, such as the Lewis-a trisaccharide, provide enhanced affinity for these glycans. These results explain many of the biologically important interactions of the mannose receptor with both mammalian glycoproteins and microbes such as yeast and suggest additional classes of ligands that have not been previously identified.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Sítios de Ligação , Carboidratos/química , Carboidratos/fisiologia , Cristalografia por Raios X/métodos , Dissacarídeos/metabolismo , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/fisiologia , Ligantes , Manose/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/fisiologia , Glicoproteínas de Membrana/fisiologia , Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Receptores Imunológicos/fisiologia
15.
J Infect Dev Ctries ; 15(1): 1-8, 2021 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-33571140

RESUMO

An innate immune response is essential to mobilize protective immunity upon the infection of respiratory epithelial cells with influenza A virus (IAV). The response is classified as early (nonspecific effectors), local systematic (effector cells recruitment) and late (antigen to lymphoid organ transport, naive B and T cells recognition, effector cells clonal expansion and differentiation). Virus particles are detected by the host cells as non-self by various sensors that are present on the cell surface, endosomes and cytosol. These sensors are collectively termed as pattern recognition receptors (PRRs). The PRRs distinguish unique molecular signatures known as pathogen-associated molecular pattern, which are present either on the cell surface or within intracellular compartments. PRRs have been classified into five major groups: C-Type Lectin Receptor (CLR), Toll-like receptor (TLR), Nod-like receptor (NLR), Retinoic acid-inducible gene-I-like receptor (RLR), which play a role in innate immunity to IAV infection, and the pyrin and hematopoietic interferon-inducible nuclear (PYHIN) domain protein. Here, we discuss the role of PRRs in cellular infectivity of IAV and highlight the recent progress.


Assuntos
Vírus da Influenza A/fisiologia , Vírus da Influenza A/patogenicidade , Influenza Humana/imunologia , Influenza Humana/virologia , Receptores de Reconhecimento de Padrão/fisiologia , Transdução de Sinais , Animais , Proteína DEAD-box 58/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Imunidade Inata , Lectinas Tipo C/fisiologia , Proteína Adaptadora de Sinalização NOD1/fisiologia , Proteínas Nucleares/fisiologia , Receptores Imunológicos/fisiologia , Receptores Virais/fisiologia , Receptores Toll-Like/fisiologia
17.
Biochem J ; 478(3): 493-510, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33459340

RESUMO

An integral aspect of innate immunity is the ability to detect foreign molecules of viral origin to initiate antiviral signaling via pattern recognition receptors (PRRs). One such receptor is the RNA helicase retinoic acid inducible gene 1 (RIG-I), which detects and is activated by 5'triphosphate uncapped double stranded RNA (dsRNA) as well as the cytoplasmic viral mimic dsRNA polyI:C. Once activated, RIG-I's CARD domains oligomerize and initiate downstream signaling via mitochondrial antiviral signaling protein (MAVS), ultimately inducing interferon (IFN) production. Another dsRNA binding protein PACT, originally identified as the cellular protein activator of dsRNA-activated protein kinase (PKR), is known to enhance RIG-I signaling in response to polyI:C treatment, in part by stimulating RIG-I's ATPase and helicase activities. TAR-RNA-binding protein (TRBP), which is ∼45% homologous to PACT, inhibits PKR signaling by binding to PKR as well as by sequestration of its' activators, dsRNA and PACT. Despite the extensive homology and similar structure of PACT and TRBP, the role of TRBP has not been explored much in RIG-I signaling. This work focuses on the effect of TRBP on RIG-I signaling and IFN production. Our results indicate that TRBP acts as an inhibitor of RIG-I signaling in a PACT- and PKR-independent manner. Surprisingly, this inhibition is independent of TRBP's post-translational modifications that are important for other signaling functions of TRBP, but TRBP's dsRNA-binding ability is essential. Our work has major implications on viral susceptibility, disease progression, and antiviral immunity as it demonstrates the regulatory interplay between PACT and TRBP IFN production.


Assuntos
Proteínas de Transporte/fisiologia , Proteína DEAD-box 58/fisiologia , Proteínas de Ligação a RNA/fisiologia , Receptores Imunológicos/fisiologia , Transdução de Sinais/fisiologia , Transporte Ativo do Núcleo Celular , Trifosfato de Adenosina/metabolismo , Animais , Fibroblastos , Genes Reporter , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferons/fisiologia , Camundongos , Modelos Biológicos , Mutação , Fosforilação , Poli I-C/farmacologia , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , RNA de Cadeia Dupla/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
18.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L193-L204, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112186

RESUMO

Premature infants, especially those with bronchopulmonary dysplasia (BPD), develop recurrent severe respiratory viral illnesses. We have shown that hyperoxic exposure of immature mice, a model of BPD, increases lung IL-12-producing Clec9a+ CD103+ dendritic cells (DCs), pro-inflammatory responses, and airway hyperreactivity following rhinovirus (RV) infection. However, the requirement for CD103+ DCs and Clec9a, a DAMP receptor that binds necrotic cell cytoskeletal filamentous actin (F-actin), for RV-induced inflammatory responses has not been demonstrated. To test this, 2-day-old C57BL/6J, CD103+ DC-deficient Batf3-/- or Clec9agfp-/- mice were exposed to normoxia or hyperoxia for 14 days. Also, selected mice were treated with neutralizing antibody against CD103. Immediately after hyperoxia, the mice were inoculated with RV intranasally. We found that compared with wild-type mice, hyperoxia-exposed Batf3-/- mice showed reduced levels of IL-12p40, IFN-γ, and TNF-α, fewer IFN-γ-producing CD4+ T cells, and decreased airway responsiveness following RV infection. Similar effects were observed in anti-CD103-treated and Clec9agfp-/- mice. Furthermore, hyperoxia increased airway dead cell number and extracellular F-actin levels. Finally, studies in preterm infants with respiratory distress syndrome showed that tracheal aspirate CLEC9A expression positively correlated with IL12B expression, consistent with the notion that CLEC9A+ cells are responsible for IL-12 production in humans as well as mice. We conclude that CD103+ DCs and Clec9a are required for hyperoxia-induced pro-inflammatory responses to RV infection. In premature infants, Clec9a-mediated activation of CD103+ DCs may promote pro-inflammatory responses to viral infection, thereby driving respiratory morbidity.


Assuntos
Antígenos CD/metabolismo , Células Dendríticas/imunologia , Hiperóxia/fisiopatologia , Cadeias alfa de Integrinas/metabolismo , Lectinas Tipo C/fisiologia , Pulmão/imunologia , Pneumonia/imunologia , Receptores Imunológicos/fisiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/imunologia , Animais , Animais Recém-Nascidos , Antígenos CD/genética , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro/imunologia , Cadeias alfa de Integrinas/genética , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/virologia , Pneumonia/virologia , Proteínas Repressoras/fisiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/patologia , Rhinovirus/isolamento & purificação
19.
Mol Immunol ; 130: 69-76, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360745

RESUMO

Ubiquitin specific protease 14 (USP14) is a regulator of protein deubiquitination and proteasome activation, and has been implicated in negative regulation of type I IFN signaling pathway. However, the effect of USP14 on RNA virus-related inflammatory response has not been studied. Retinoic acid-inducible gene I (RIG-I) is the important pattern recognition receptor of the innate immunity to detect RNA viruses or intracellular Poly(I:C)-LMW. Here, we reported that USP14 knockdown increased pro-inflammatory cytokines production in macrophages upon VSV infection or intracellular Poly(I:C)-LMW stimulation. USP14-overexpressed HeLa cells exhibited a decrease in RIG-I-mediated IL-6 and TNF-α expression. IU1, USP14 inhibitor, significantly promotes pro-inflammatory cytokines production in VSV-infected mice in vivo. Furthermore, USP14 was also found to inhibit the RIG-I-triggered NF-κB activation by deubiquitinating K63-linked RIG-I. Thus, our results demonstrate that USP14 is a negative regulator of RIG-I-mediated inflammatory response.


Assuntos
Proteína DEAD-box 58/genética , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Receptores Imunológicos/genética , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina Tiolesterase/fisiologia , Animais , Células Cultivadas , Proteína DEAD-box 58/fisiologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Feminino , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Inflamação/genética , Inflamação/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Imunológicos/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células THP-1
20.
Shock ; 56(1): 98-107, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991795

RESUMO

BACKGROUND: Advancing age is an independent predictor of mortality in septic patients. Recent animal studies were unable to reflect this clinical pathophysiological process, largely hampering the development of new efficacious therapies. Triggering receptor expressed on myeloid cells-2 (TREM-2) is a novel immune regulator with multiple activities. However, very little is known about the regulatory role of TREM-2 in sepsis upon aging. METHODS: Blood samples were collected from septic patients within 24 h after intensive care unit admission. The patients were preselected into two groups based on the age (age with ≥60 years old and age with <60 years old). Sepsis in aged mice was induced by cecal ligation and puncture. The expression of TREM-2 was evaluated in septic patients and aged septic mice. Aged macrophages overexpressing TREM-2 and green fluorescent protein (GFP) were administered to aged septic mice after cecal ligation and puncture. Survival rate was monitored, and bacterial load and inflammatory mediators levels were evaluated. In vivo IL-23 function was blocked using appropriate monoclonal antibodies. RESULTS: The expression levels of TREM-2 were downregulated in both aged septic patients and aged septic mice. The administration of TREM-2-overexpressing macrophages significantly prolonged survival and alleviated organ injury in the aged septic mice. The protective effect did not affect host bacterial burden, but markedly inhibited the host IL-17A response, as determined by a multiplex cytokine assay. Screening the expression of IL-17A-related activating factors revealed that the IL-23 level in TREM-2-overexpressing macrophages was significantly lower than that in GFP-expressing macrophages. Blocking IL-23 after the administration of GFP-expressing macrophages protected aged mice against sepsis. CONCLUSIONS: TREM-2 prolonged survival of aged mice from sepsis by finely modulating the IL-23/IL-17A immune pathway. These results provide previously unidentified mechanistic insight into immune regulation by TREM-2 and new therapeutic targets in sepsis upon aging.


Assuntos
Interleucina-17/fisiologia , Interleucina-23/fisiologia , Glicoproteínas de Membrana/fisiologia , Glicoproteínas de Membrana/uso terapêutico , Receptores Imunológicos/fisiologia , Receptores Imunológicos/uso terapêutico , Sepse/imunologia , Sepse/prevenção & controle , Fatores Etários , Animais , Feminino , Humanos , Interleucina-17/antagonistas & inibidores , Interleucina-23/antagonistas & inibidores , Masculino , Glicoproteínas de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...