Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 483
Filtrar
1.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667320

RESUMO

Neuroplasticity in the central nucleus of the amygdala (CeA) plays a key role in the modulation of pain and its aversive component. The dynorphin/kappa opioid receptor (KOR) system in the amygdala is critical for averse-affective behaviors in pain conditions, but its mechanisms are not well understood. Here, we used chemogenetic manipulations of amygdala KOR-expressing neurons to analyze the behavioral consequences in a chronic neuropathic pain model. For the chemogenetic inhibition or activation of KOR neurons in the CeA, a Cre-inducible viral vector encoding Gi-DREADD (hM4Di) or Gq-DREADD (hM3Dq) was injected stereotaxically into the right CeA of transgenic KOR-Cre mice. The chemogenetic inhibition of KOR neurons expressing hM4Di with a selective DREADD actuator (deschloroclozapine, DCZ) in sham control mice significantly decreased inhibitory transmission, resulting in a shift of inhibition/excitation balance to promote excitation and induced pain behaviors. The chemogenetic activation of KOR neurons expressing hM3Dq with DCZ in neuropathic mice significantly increased inhibitory transmission, decreased excitability, and decreased neuropathic pain behaviors. These data suggest that amygdala KOR neurons modulate pain behaviors by exerting an inhibitory tone on downstream CeA neurons. Therefore, activation of these interneurons or blockade of inhibitory KOR signaling in these neurons could restore control of amygdala output and mitigate pain.


Assuntos
Tonsila do Cerebelo , Camundongos Transgênicos , Neuralgia , Neurônios , Receptores Opioides kappa , Animais , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/genética , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Neurônios/metabolismo , Camundongos , Tonsila do Cerebelo/metabolismo , Comportamento Animal , Masculino , Clozapina/análogos & derivados , Clozapina/farmacologia , Núcleo Central da Amígdala/metabolismo
2.
Zh Nevrol Psikhiatr Im S S Korsakova ; 123(12): 116-123, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38147391

RESUMO

OBJECTIVE: To investigate the associations of OPRM1 gene rs179971, OPRK1 gene rs6473797 and DCC gene rs8084280 polymorphisms with non-suicidal self-injury (NSSI) characteristics and motivations in adults. MATERIAL AND METHODS: A pilot sample included 28 adult patients with history of NSSI (89.3% (n=25) women, median age (Q1-Q3) - 23 (21.25-25) years). Most patients (78.6%, n=20) had a diagnosis of bipolar disorder. NSSI characteristics and motivations were assessed using the Inventory of Statements about Self-Injury (ISAS) scale. The Childhood Trauma Questionnaire (CTQ) was used to control for childhood trauma - one of the most important environmental factors associated with NSSI. The Baratt Impulsivity Scale (BIS) and the Buss-Perry Aggression Questionnaire (BPAQ) were also used to assess impulsivity and aggression, respectively. RT-PCR was used for genotyping, a genetic effect was assessed using the dominant model. Mann-Whitney U-test, Pearson χ2-test and multiple linear regression were used for statistical analysis. RESULTS: Carriers of the minor G allele of OPRM1 gene rs1779971 had a higher level of aggression assessed by BPAQ (p=0.02). The minor C allele of OPRK1 gene rs6473797 was associated with an increase of the subjective importance of «Affect regulation¼ (B=2.23; CI 95% [0.39-4.06]; p=0.022) and «Anti-dissociation¼ (B=3.31; CI 95% [0.18-6.44]; p=0.039) motivations, whereas the minor T allele of DCC gene rs8084280, on the contrary, was associated with a decrease of the importance of «Affect regulation¼ (B=-1.74; CI 95% [-3.30 - -0.18]; p=0.032). Moreover, this effect was found after adjusting for diagnosis, sex, age, and the presence of childhood trauma. CONCLUSIONS: To our knowledge, this is the first study on the association of genetic markers with NSSI motivations. The results of this pilot study demonstrate that OPRK1 and DCC gene polymorphisms can determine differences in motivations for self-harm, however, these results require confirmation in large samples.


Assuntos
Receptor DCC , Polimorfismo Genético , Receptores Opioides kappa , Receptores Opioides mu , Comportamento Autodestrutivo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Receptor DCC/genética , Receptor DCC/metabolismo , Comportamento Autodestrutivo/genética , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Marcadores Genéticos/genética , Inquéritos e Questionários , Comportamento Impulsivo , Agressão , Polimorfismo Genético/genética
3.
Nicotine Tob Res ; 25(12): 1856-1864, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37455648

RESUMO

INTRODUCTION: The kappa-opioid receptor (KOR) has been implicated in mediating the behavioral and biochemical effects associated with nicotine reward and withdrawal; however, its underlying mechanisms remain to be further explored. METHODS: Adult male Sprague-Dawley rats were used to establish a nicotine dependence and withdrawal model by injecting nicotine (3 mg/kg/day, s.c.) or vehicle for 14 days, followed by the termination of nicotine for 7 days. Body weight gain, pain behaviors, and withdrawal scores were assessed in succession. MicroRNA (miRNA) sequencing was performed, and quantitative real-time PCR was used to detect the expression of candidate miRNAs and Oprk1. Western blotting was performed to examine KOR protein expression of KOR. Luciferase assay was conducted to validate the relationship of certain miRNAs/Oprk1. RESULTS: The behavioral results showed that nicotine dependence and withdrawal induced behavioral changes. Biochemical analyses demonstrated that miR-144-3p expression decreased and Oprk1/KOR expression increased in the prefrontal cortex, nucleus accumben, and hippocampus. Further investigation suggested that miR-144-3p exerted an inhibitory effect on Oprk1 expression in PC12 cells. CONCLUSIONS: This study revealed that miR-144-3p/Oprk1/KOR might be a potential pathway underlying the adverse effects induced by nicotine dependence and withdrawal, and might provide a novel therapeutic target for smoking cessation. IMPLICATIONS: This study demonstrates an impact of nicotine dependence and nicotine withdrawal on behavioral outcomes and the expressions of miR-144-3p/Oprk1/KOR in male rats. These findings have important translational implications given the continued use of nicotine and the difficulty in smoking cessation worldwide, which can be applied to alleviated the adverse effects induced by nicotine dependence and withdrawal, thus assist smokers to quit smoking.


Assuntos
MicroRNAs , Receptores Opioides kappa , Síndrome de Abstinência a Substâncias , Tabagismo , Animais , Masculino , Ratos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Nicotina/farmacologia , Ratos Sprague-Dawley , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Tabagismo/genética , Tabagismo/tratamento farmacológico
4.
eNeuro ; 10(7)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37364995

RESUMO

Here we describe the generation and characterization of a Cre knock-in mouse line that harbors a Cre insertion in the 3'UTR of the κ opioid receptor gene (Oprk1) locus and provides genetic access to populations of κ opioid receptor (KOR)-expressing neurons throughout the brain. Using a combination of techniques including RNA in situ hybridization and immunohistochemistry, we report that Cre is expressed with high fidelity in KOR-expressing cells throughout the brain in this mouse line. We also provide evidence that Cre insertion does not alter basal KOR function. Baseline anxiety-like behaviors and nociceptive thresholds are unaltered in Oprk1-Cre mice. Chemogenetic activation of KOR-expressing cells in the basolateral amygdala (BLAKOR cells) resulted in several sex-specific effects on anxiety-like and aversive behaviors. Activation led to decreased anxiety-like behavior on the elevated plus maze and increased sociability in female but not in male Oprk1-Cre mice. Activation of BLAKOR cells also attenuated KOR agonist-induced conditioned place aversion (CPA) in male Oprk1-Cre mice. Overall, these results suggest a potential role for BLAKOR cells in regulating anxiety-like behaviors and KOR-agonist mediated CPA. In summary, these results provide evidence for the utility of the newly generated Oprk1-Cre mice in assessing localization, anatomy, and function of KOR circuits throughout the brain.


Assuntos
Integrases , Receptores Opioides kappa , Camundongos , Masculino , Feminino , Animais , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Integrases/genética , Encéfalo/metabolismo , Aprendizagem da Esquiva/fisiologia
5.
Pharmacogenomics ; 24(6): 325-334, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37166316

RESUMO

Aim: To evaluate the association between OPRK1 rs963549 and rs997917 and opioid use disorder (OUD) and related phenotypes. Methods: A sample of 208 individuals with (n = 100) and without (n = 108) OUD were enrolled. OPRK1 rs963549 and rs997917 were analyzed by PCR-RFLP. Craving, opioid withdrawal and the intensity of depressive and anxiety symptoms were measured by the appropriate scales. Results: OPRK1 rs963549 variation showed a trend of association with decreased opioid withdrawal. No significant associations were found between OPRK1 rs963549 and rs997917 polymorphisms and craving, depression or anxiety symptoms. Neither single OPRK1 SNPs nor OPRK1 haplotypes were associated with OUD. Conclusion: Our results could be useful for treatment failures of individuals who experience greater opioid withdrawal due to their OPRK1 rs963549 genotypes.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Humanos , Analgésicos Opioides , Receptores Opioides kappa/genética , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/genética , Polimorfismo de Nucleotídeo Único/genética , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/genética , Fenótipo
6.
Alcohol Alcohol ; 58(4): 404-414, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37177778

RESUMO

AIMS: The dynorphin (DYN)/Kappa Opioid Receptor (KOR) system has been suggested to be involved in both negative affective states and the action of alcohol. The present study was undertaken to explore whether the DYN/KOR system genes, PDYN and OPRK1, influence on individual differences in the intensity of depressive symptoms at admission as well as the risk of alcohol use disorder (AUD) risk in a sample of 101 individuals with AUD and 100 controls. METHODS: PDYN (rs2281285, rs2225749 and rs910080) and OPRK1 (rs6473797, rs963549 and rs997917) polymorphisms were analyzed by PCR-RFLP. The intensity of depressive and anxiety symptoms and craving were measured by the Beck Depression Inventory-II (BDI-II), Beck Anxiety Inventory (BAI), and Penn Alcohol Craving Scale, respectively. RESULTS: A significant association between the risk of AUD and OPRK1 rs6473797 (P < 0.05) at the gene level. OPRK1 rs6473797 CC genotype was found to lead to a 3.11 times greater alcohol dependence risk. In addition, the BDI-II score of the OPRK1 rs963549 CC genotype was found to be significantly lower (20.9 ± 11.2, min: 1.0, max: 48.0) than that of the CT + TT genotypes (27.04 ± 12.7, min: 0.0, max: 49.0) (t: -2.332, P = 0.022). None of the PDYN polymorphisms were associated with BDI-II score. CONCLUSION: Variations in the KOR are associated with the risk of AUD and the intensity of depressive symptoms at admission at the gene level in Turkish males. On the other hand, PDYN gene seemed not to be associated with AUD, depression, anxiety, and craving.


Assuntos
Alcoolismo , Humanos , Masculino , Alcoolismo/genética , Alcoolismo/complicações , Depressão/genética , Etanol , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Receptores Opioides kappa/genética
7.
J Chem Neuroanat ; 127: 102205, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464066

RESUMO

Detailed quantification of brain tissue provides a deeper understanding of changes in expression and function. We have created a pipeline to study the detailed expression patterns of the kappa opioid receptor in the rat hypothalamus using high resolution fluorescence microscopy and receptor autoradiography. The workflow involved structured serial sampling of rat hypothalamic nuclei, in situ detection of mRNA and receptor expression, and advanced image analysis. Our results demonstrate how maintaining spatial information can lead to increased understanding of RNA and protein expression. In addition, we show the detailed expression patterns of the kappa opioid receptor in the rat hypothalamus.


Assuntos
Hipotálamo , Receptores Opioides kappa , Ratos , Animais , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , RNA Mensageiro , Ligantes , Hibridização In Situ , Hipotálamo/metabolismo , Autorradiografia
8.
Mol Psychiatry ; 28(1): 434-447, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460726

RESUMO

Modulation of corticostriatal plasticity alters the information flow throughout basal ganglia circuits and represents a fundamental mechanism for motor learning, action selection, and reward. Synaptic plasticity in the striatal direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs) is regulated by two distinct networks of GPCR signaling cascades. While it is well-known that dopamine D2 and adenosine A2a receptors bi-directionally regulate iSPN plasticity, it remains unclear how D1 signaling modulation of synaptic plasticity is counteracted by dSPN-specific Gi signaling. Here, we show that striatal dynorphin selectively suppresses long-term potentiation (LTP) through Kappa Opioid Receptor (KOR) signaling in dSPNs. Both KOR antagonism and conditional deletion of dynorphin in dSPNs enhance LTP counterbalancing with different levels of D1 receptor activation. Behaviorally, mice lacking dynorphin in D1 neurons show comparable motor behavior and reward-based learning, but enhanced flexibility during reversal learning. These findings support a model in which D1R and KOR signaling bi-directionally modulate synaptic plasticity and behavior in the direct pathway.


Assuntos
Corpo Estriado , Dinorfinas , Camundongos , Animais , Dinorfinas/metabolismo , Corpo Estriado/metabolismo , Gânglios da Base , Potenciação de Longa Duração , Plasticidade Neuronal/fisiologia , Receptores Opioides kappa/genética , Receptores de Dopamina D1/metabolismo
9.
J Neuroinflammation ; 19(1): 288, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463243

RESUMO

BACKGROUND: Adverse pathophysiological and behavioral outcomes related to mild traumatic brain injury (mTBI), posttraumatic stress disorder (PTSD), and chronic pain are common following blast exposure and contribute to decreased quality of life, but underlying mechanisms and prophylactic/treatment options remain limited. The dynorphin/kappa opioid receptor (KOR) system helps regulate behavioral and inflammatory responses to stress and injury; however, it has yet to be investigated as a potential mechanism in either humans or animals exposed to blast. We hypothesized that blast-induced KOR activation mediates adverse outcomes related to inflammation and affective behavioral response. METHODS: C57Bl/6 adult male mice were singly or repeatedly exposed to either sham (anesthesia only) or blast delivered by a pneumatic shock tube. The selective KOR antagonist norBNI or vehicle (saline) was administered 72 h prior to repetitive blast or sham exposure. Serum and brain were collected 10 min or 4 h post-exposure for dynorphin A-like immunoreactivity and cytokine measurements, respectively. At 1-month post-exposure, mice were tested in a series of behavioral assays related to adverse outcomes reported by humans with blast trauma. RESULTS: Repetitive but not single blast exposure resulted in increased brain dynorphin A-like immunoreactivity. norBNI pretreatment blocked or significantly reduced blast-induced increase in serum and brain cytokines, including IL-6, at 4 h post exposure and aversive/anxiety-like behavioral dysfunction at 1-month post-exposure. CONCLUSIONS: Our findings demonstrate a previously unreported role for the dynorphin/KOR system as a mediator of biochemical and behavioral dysfunction following repetitive blast exposure and highlight this system as a potential prophylactic/therapeutic treatment target.


Assuntos
Traumatismos por Explosões , Dinorfinas , Receptores Opioides kappa , Animais , Masculino , Camundongos , Traumatismos por Explosões/complicações , Traumatismos por Explosões/genética , Traumatismos por Explosões/imunologia , Encéfalo/imunologia , Encéfalo/fisiologia , Dinorfinas/genética , Dinorfinas/imunologia , Qualidade de Vida , Receptores Opioides kappa/genética , Receptores Opioides kappa/imunologia
10.
Neuron ; 110(24): 4125-4143.e6, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36202097

RESUMO

Social isolation during opioid withdrawal is a major contributor to the current opioid addiction crisis. We find that sociability deficits during protracted opioid withdrawal in mice require activation of kappa opioid receptors (KORs) in the nucleus accumbens (NAc) medial shell. Blockade of release from dynorphin (Pdyn)-expressing dorsal raphe neurons (DRPdyn), but not from NAcPdyn neurons, prevents these deficits in prosocial behaviors. Conversely, optogenetic activation of DRPdyn neurons reproduced NAc KOR-dependent decreases in sociability. Deletion of KORs from serotonin (5-HT) neurons, but not from NAc neurons or dopamine (DA) neurons, prevented sociability deficits during withdrawal. Finally, measurements with the genetically encoded GRAB5-HT sensor revealed that during withdrawal KORs block the NAc 5-HT release that normally occurs during social interactions. These results define a neuromodulatory mechanism that is engaged during protracted opioid withdrawal to induce maladaptive deficits in prosocial behaviors, which in humans contribute to relapse.


Assuntos
Dinorfinas , Serotonina , Humanos , Camundongos , Animais , Dinorfinas/genética , Dinorfinas/metabolismo , Analgésicos Opioides , Dopamina/fisiologia , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Entorpecentes , Núcleo Accumbens/metabolismo
11.
Acta Physiol (Oxf) ; 236(3): e13882, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36039689

RESUMO

AIM: Endogenous dynorphin signaling via kappa opioid receptors (KORs) plays a key role in producing the depressive and aversive consequences of stress. We investigated the behavioral effects of the dynorphin/KOR system in the ventral pallidum (VP) and studied the underlying mechanisms. METHODS: To investigate the effects of dynorphin on the VP, we conducted behavioral experiments after microinjection of drugs or shRNA and brain-slice electrophysiological recordings. Histological tracing and molecular biological experiments were used to identify the distribution of KORs and the possible sources of dynorphin projections to the VP. RESULTS: An elevated dynorphin concentration and increased KOR activity were observed in the VP after acute stress. Infusion of dynorphin-A into the VP produced depressive-like phenotypes including anhedonia and despair and anxiety behaviors, but did not alter locomotor behavior. Mechanistically, dynorphin had an inhibitory effect on VP neurons-reducing their firing rate and inhibiting excitatory transmission-through direct activation of KORs and modulation of downstream G-protein-gated inwardly rectifying potassium (GIRK) channels and high-voltage gated calcium channels (VGCCs). Tracing revealed direct innervation of VP neurons by dynorphin-positive projections; potential sources of these dynorphinergic projections include the nucleus accumbens, amygdala, and hypothalamus. Blockade of dynorphin/KOR signaling in the VP by drugs or viral knock-down of KORs significantly reduced despair behavior in rats. CONCLUSIONS: Endogenous dynorphinergic modulation of the VP plays a critical role in mediating depressive reactions to stress.


Assuntos
Prosencéfalo Basal , Dinorfinas , Animais , Camundongos , Ratos , Prosencéfalo Basal/metabolismo , Canais de Cálcio , Dinorfinas/genética , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Potássio/farmacologia , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , RNA Interferente Pequeno , Depressão , Comportamento Animal , Estresse Fisiológico
12.
Am J Vet Res ; 83(7)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35930774

RESUMO

OBJECTIVE: To perform a qualitative analysis of the distribution of µ- and κ-opioid receptor mRNA in the forebrain and midbrain of budgerigars (Melopsittacus undulatus). SAMPLE: 8 brains of male budgerigars. PROCEDURES: Custom-made RNA hybridization probes (RNAscope; Advanced Cell Diagnostics Inc) were used for fluorescent in situ hybridization (FISH) assays performed on selected fresh frozen prepared sections of brain tissue to identify µ- and κ-opioid receptor mRNA. RESULTS: There was κ-opioid receptor mRNA present in the nucleus dorsomedialis posterior thalami, lateral striatum, mesopallium, tractus corticohabenularis et corticoseptalis, griseum et fibrosum, stratum griseum centrale, medial striatum, and area parahippocampalis. There was µ-opioid receptor mRNA present in the stratum griseum centrale, stratum opticum, dorsomedialis posterior thalami, area parahippocampalis, medial striatum, and nidopallium intermedium. CLINICAL RELEVANCE: Consistent with previous studies in pigeons and domestic chicks, κ-opioid receptors were more abundant than µ-opioid receptors in the samples of the present study. The results of this study may also help explain the hyperexcitability or lack of response that can occur with administration of pure µ-opioid receptor agonists, but not κ-opioid receptor agonists. This study was not quantitative, so further research should endeavor to compare the various regions of the brain using FISH technology.


Assuntos
Melopsittacus , Receptores Opioides kappa , Animais , Encéfalo , Hibridização in Situ Fluorescente/veterinária , Masculino , RNA Mensageiro/análise , RNA Mensageiro/genética , Receptores Opioides , Receptores Opioides kappa/genética , Colículos Superiores/química
13.
Nat Commun ; 13(1): 2882, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610225

RESUMO

The yeast Saccharomyces cerevisiae is powerful for studying human G protein-coupled receptors as they can be coupled to its mating pathway. However, some receptors, including the mu opioid receptor, are non-functional, which may be due to the presence of the fungal sterol ergosterol instead of cholesterol. Here we engineer yeast to produce cholesterol and introduce diverse mu, delta, and kappa opioid receptors to create sensitive opioid biosensors that recapitulate agonist binding profiles and antagonist inhibition. Additionally, human mu opioid receptor variants, including those with clinical relevance, largely display expected phenotypes. By testing mu opioid receptor-based biosensors with systematically adjusted cholesterol biosynthetic intermediates, we relate sterol profiles to biosensor sensitivity. Finally, we apply sterol-modified backgrounds to other human receptors revealing sterol influence in SSTR5, 5-HTR4, FPR1, and NPY1R signaling. This work provides a platform for generating human G protein-coupled receptor-based biosensors, facilitating receptor deorphanization and high-throughput screening of receptors and effectors.


Assuntos
Fitosteróis , Saccharomyces cerevisiae , Colesterol/metabolismo , Humanos , Fitosteróis/metabolismo , Receptores Opioides/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Receptores Opioides mu/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo
14.
Cell Commun Signal ; 20(1): 35, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305679

RESUMO

BACKGROUND: As a class of the opioid receptors, the kappa opioid receptor (KOR) has been verified to be a potential biomarker and therapeutic target for human malignant tumors. However, a thorough understanding of whether KOR affects progression of esophageal squamous cell carcinoma (ESCC) is still lacking. This study focused on exploring the effect of knocking down KOR in ESCC and its underlying mechanism. METHODS: Bioinformatics analysis was used to compare the different expression level of OPRK1 (KOR gene) in tumor and adjacent normal tissues, and predict the relationship between KOR expression and overall survival. RNA-sequence analysis was performed to detect the altered functions and mechanisms after down regulating KOR. The in vitro and in vivo assays were used to detect the effects of down-regulated KOR on cell proliferation, migration and invasion. Substrate gel zymography and 3D cell culture assays were used to find the effect of KOR knockdown on the degradation of extracellular matrix (ECM), and immunefluorescence was performed to detect the altered cytoskeleton. Western blotting and immunohistochemistry were used to explore the underlying mechanism pathway. RESULTS: Bioinformatics analysis revealed that the expression of OPRK1 was lower in tumor tissue than that in adjacent normal tissues, and lowered expression of KOR was associated with poorer overall survival. The in vitro assays demonstrated that down-regulation of KOR enhanced ESCC proliferation, metastasis and invasion. Western blotting revealed that down-regulation of KOR could activate PDK1-AKT signaling pathway, which actively regulated the cancer progression. Down-regulation of KOR enhanced the formation of invadopodia, secretion of matrix metalloproteinase-2 (MMP2) and rearrangement of cytoskeleton, which were positively related with the invasion of ESCC. KOR knockdown enhanced the tumor invasion and elevated the AKT phosphorylation in nude mice. The AKT kinase inhibition could reverse the effect of down-regulation of KOR. CONCLUSION: KOR might act as a tumor suppressor in ESCC and down-regulation of KOR could enhance the ESCC tumor phenotype. Video Abstract.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação para Baixo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Transdução de Sinais/genética
15.
J Neurosci Res ; 100(1): 183-190, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32731302

RESUMO

Kappa opioid receptor (KOR) agonists produce robust analgesia with minimal abuse liability and are considered promising pharmacological agents to manage chronic pain and itch. The KOR system is also notable for robust differences between the sexes, with females exhibiting lower analgesic response than males. Sexually dimorphic traits can be due to either the influence of gonadal hormones during development or adulthood, or due to the complement of genes expressed on the X or Y chromosome. Previous studies examining sex differences in KOR antinociception have relied on surgical or pharmacological manipulation of the gonads to determine whether sex hormones influence KOR function. While there are conflicting reports whether gonadal hormones influence KOR function, no study has examined these effects in context with sex chromosomes. Here, we use two genetic mouse models, the four core genotypes and XY*, to isolate the chromosomal and hormonal contributions to sex differences in KOR analgesia. Mice were treated with systemic KOR agonist (U50,488H) and thermal analgesia measured in the tail withdrawal assay. We found that KOR antinociception was influenced predominantly by the number of the X chromosomes. These data suggest that the dose and/or parental imprint on X gene(s) contribute significantly to the sexually dimorphism in KOR analgesia.


Assuntos
Analgesia , Receptores Opioides kappa , Analgésicos Opioides/farmacologia , Animais , Feminino , Masculino , Camundongos , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Caracteres Sexuais , Cromossomo X
16.
Handb Exp Pharmacol ; 271: 255-274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33145633

RESUMO

The opioid peptides and their receptors have been linked to multiple key biological processes in the nervous system. Here we review the functions of the kappa opioid receptor (KOR) and its endogenous agonists dynorphins (Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L, Proc Natl Acad Sci U S A 76:6666-6670, 1979) in modulating itch and pain (nociception). Specifically, we discuss their roles relative to recent findings that tell us more about the cells and circuits which are impacted by this opioid and its receptor and present reanalysis of single-cell sequencing data showing the expression profiles of these molecules. Since the KOR is relatively specifically activated by peptides derived from the prodynorphin gene and other opioid peptides that show lower affinities, this will be the only interactions we consider (Chavkin C, Goldstein A, Nature 291:591-593, 1981; Chavkin C, James IF, Goldstein A, Science 215:413-415, 1982), although it was noted that at higher doses peptides other than dynorphins might stimulate KOR (Lai J, Luo MC, Chen Q, Ma S, Gardell LR, Ossipov MH, Porreca F, Nat Neurosci 9:1534-1540, 2006). This review has been organized based on anatomy with each section describing the effect of the kappa opioid system in a specific location but let us not forget that most of these circuits are interconnected and are therefore interdependent.


Assuntos
Analgésicos Opioides , Dinorfinas , Humanos , Biologia Molecular , Dor/tratamento farmacológico , Receptores Opioides kappa/genética
17.
Handb Exp Pharmacol ; 271: 419-433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33580386

RESUMO

The kappa opioid receptor (KOR) is expressed on a number of hematopoietic cell populations, based on both protein binding analysis and the detection of kappa opioid receptor gene (Oprk1) transcripts. There are prominent Oprk1 splice variants that are expressed in the mouse and human brain cells and leukocytes. The activation of KOR results in reduced antibody production, an inhibition of phagocytic cell activity, an inhibition of T cell development, alterations in the production of various pro-inflammatory cytokines, chemokines, and the receptors for these mediators. Finally, the activation of KOR also leads to the regulation of receptor functional activity of chemokine receptors through the process of heterologous desensitization. The functional activity of KOR is important for the regulation of inflammatory responses and may provide opportunities for the development of therapeutics for the treatment of inflammatory disease states.


Assuntos
Citocinas , Receptores Opioides kappa , Animais , Sistema Imunitário , Camundongos , Receptores Opioides kappa/genética
18.
Neurosci Lett ; 768: 136364, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34843875

RESUMO

RATIONALE: The dynorphin/kappa-opioid receptor (KOR) system (encoded by PDYN and OPRK1 genes respectively) is highly regulated by repeated exposure to drugs of abuse, including mu-opioid agonists and cocaine. These changes in the dynorphin/KOR system can then influence the rewarding effects of these drugs of abuse. Activation of the dynorphin/KOR system is also thought to have a role in the pro-addictive effects of stress. Recent in vitro assays showed that the OPRK1 intron 2 may function as a genomic enhancer in the regulation KOR expression, and contains a glucocorticiod-responsive sequence site. We hypothesize that SNPs in intron 2 of OPRK1 are associated with categorical opioid or cocaine dependence diagnoses, as well as with dimensional aspects of drug use (i.e., magnitude of drug exposure). METHODS: This study includes 577 subjects ≥ 18 years old, with African ancestry (AA) from the USA. They were divided into three groups: 152 control subjects, 142 persons with lifetime opioid dependence diagnosis (OD), and 283 subjects with lifetime cocaine dependence diagnosis (CD). Five SNPs (rs16918909, rs7016778, rs997917, rs6473797, rs10111937) that span 10 Kb nucleotides in intron 2 of OPRK1 were used for the association analyses. Genotyping was performed with the Smokescreen® array or sequencing of PCR-amplified DNA fragments. Association analyses for OD and CD diagnoses and the OPRK1 intron 2 alleles were carried out with Fisher's exact test. The Kreek-McHugh-Schluger-Kellogg (KMSK) scales were used for dimensional measure of maximum exposure to specific drugs, using Mann-Whitney tests. RESULTS: Two SNPs, rs997917 and rs10111937 showed point-wise significant allelic association (p < 0.05) with CD diagnosis, and rs10111937 showed a point-wise significance in association with OD. None of these single SNP associations with categorical diagnoses were significant after correction for multiple testing (pcorr > 0.05). However, significant associations of several genotype patterns (diplotypes) were found with cocaine dependence, but none for opioid dependence. The most significant genotype pattern with cocaine dependence diagnosis occurred for rs6473797 and rs10111937 (pcorr = 0.036, odds ratio = 1.92, FDR < 0.05), and survived correction for multiple testing. Dimensional analyses with KMSK scores show that persons with either rs997917 or rs10111937 variants had greater exposure to cocaine, compared to those with prototype allele (Mann-Whitney tests, point-wise). CONCLUSIONS: This study provides additional support of potential importance of regulatory regions of intron 2 of the OPRK1 gene in development of cocaine and opioid dependence diagnoses, in a population with African-American ancestry.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Predisposição Genética para Doença/genética , Transtornos Relacionados ao Uso de Opioides/genética , Receptores Opioides kappa/genética , Adulto , Negro ou Afro-Americano/genética , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
19.
Cell Rep ; 37(5): 109913, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731618

RESUMO

Opiates produce a strong rewarding effect, but abstinence from opiate use emerges with severe negative emotions. Depression is one of the most frequent emotion disorders associated with opiate abstinence, which is thought to be a main cause for relapse. However, neurobiological bases of such an aversive emotion processing are poorly understood. Here, we find that morphine abstinence activates κ-opioid receptors (KORs) by increasing endogenous KOR ligand dynorphin expression in the amygdala, which in turn facilitates glutamate transporter 1 (GLT1) expression by activation of p38 mitogen-activated protein kinase (MAPK). Upregulation of GLT1 expression contributes to opiate-abstinence-elicited depressive-like behaviors through modulating amygdalar glutamatergic inputs to the nucleus accumbens (NAc). Intra-amygdala injection of GLT1 inhibitor DHK or knockdown of GLT1 expression in the amygdala significantly suppresses morphine-abstinence-induced depressive-like behaviors. Pharmacological and pharmacogenetic activation of amygdala-NAc projections prevents morphine-abstinence-induced behaviors. Overall, our study provides key molecular and circuit insights into the mechanisms of depression associated with opiate abstinence.


Assuntos
Tonsila do Cerebelo/metabolismo , Comportamento Animal , Depressão/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Ácido Glutâmico/metabolismo , Morfina , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Depressão/induzido quimicamente , Depressão/fisiopatologia , Depressão/psicologia , Modelos Animais de Doenças , Dinorfinas/metabolismo , Potenciais Pós-Sinápticos Excitadores , Transportador de Glucose Tipo 1/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Núcleo Accumbens/fisiopatologia , Receptores Opioides kappa/genética , Transdução de Sinais , Síndrome de Abstinência a Substâncias/fisiopatologia , Síndrome de Abstinência a Substâncias/psicologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Biomed Pharmacother ; 143: 112173, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536757

RESUMO

We explored the utility of the real-time FLIPR Membrane Potential (FMP) assay as a method to assess kappa opioid receptor (KOR)-induced hyperpolarization. The FMP Blue dye was used to measure fluorescent signals reflecting changes in membrane potential in KOR expressing CHO (CHO-KOR) cells. Treatment of CHO-KOR cells with kappa agonists U50,488 or dynorphin [Dyn (1-13)NH2] produced rapid and concentration-dependent decreases in FMP Blue fluorescence reflecting membrane hyperpolarization. Both the nonselective opioid antagonist naloxone and the κ-selective antagonists nor-binaltorphimine (nor-BNI) and zyklophin produced rightward shifts in the U50,488 concentration-response curves, consistent with competitive antagonism of the KOR mediated response. The decrease in fluorescent emission produced by U50,488 was blocked by overnight pertussis toxin pretreatment, indicating the requirement for PTX-sensitive G proteins in the KOR mediated response. We directly compared the potency of U50,488 and Dyn (1-13)NH2 in the FMP and [35S]GTPγS binding assays, and found that both were approximately 10 times more potent in the cellular fluorescence assay. The maximum responses of both U50,488 and Dyn (1-13)NH2 declined following repeated additions, reflecting receptor desensitization. We assessed the efficacy and potency of structurally distinct KOR small molecule and peptide ligands. The FMP assay reliably detected both partial agonists and stereoselectivity. Using KOR-selective peptides with varying efficacies, we found that the FMP assay allowed high throughput quantification of peptide efficacy. These data demonstrate that the FMP assay is a sensitive method for assessing κ-opioid receptor induced hyperpolarization, and represents a useful approach for quantification of potency, efficacy and desensitization of KOR ligands.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos Opioides/farmacologia , Bioensaio , Dinorfinas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores Opioides kappa/agonistas , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , Ligantes , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Espectrometria de Fluorescência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...