Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Nat Commun ; 15(1): 3544, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740791

RESUMO

G-protein-coupled receptors (GPCRs) play pivotal roles in various physiological processes. These receptors are activated to different extents by diverse orthosteric ligands and allosteric modulators. However, the mechanisms underlying these variations in signaling activity by allosteric modulators remain largely elusive. Here, we determine the three-dimensional structure of the µ-opioid receptor (MOR), a class A GPCR, in complex with the Gi protein and an allosteric modulator, BMS-986122, using cryogenic electron microscopy. Our results reveal that BMS-986122 binding induces changes in the map densities corresponding to R1673.50 and Y2545.58, key residues in the structural motifs conserved among class A GPCRs. Nuclear magnetic resonance analyses of MOR in the absence of the Gi protein reveal that BMS-986122 binding enhances the formation of the interaction between R1673.50 and Y2545.58, thus stabilizing the fully-activated conformation, where the intracellular half of TM6 is outward-shifted to allow for interaction with the Gi protein. These findings illuminate that allosteric modulators like BMS-986122 can potentiate receptor activation through alterations in the conformational dynamics in the core region of GPCRs. Together, our results demonstrate the regulatory mechanisms of GPCRs, providing insights into the rational development of therapeutics targeting GPCRs.


Assuntos
Microscopia Crioeletrônica , Receptores Opioides mu , Receptores Opioides mu/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/genética , Regulação Alostérica , Humanos , Ligação Proteica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células HEK293 , Ligantes , Modelos Moleculares , Conformação Proteica
2.
Nature ; 629(8011): 474-480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600384

RESUMO

The µ-opioid receptor (µOR) is an important target for pain management1 and molecular understanding of drug action on µOR will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance and single-molecule fluorescence resonance energy transfer, how ligand-specific conformational changes of µOR translate into a broad range of intrinsic efficacies at the transducer level. We identify several conformations of the cytoplasmic face of the receptor that interconvert on different timescales, including a pre-activated conformation that is capable of G-protein binding, and a fully activated conformation that markedly reduces GDP affinity within the ternary complex. Interaction of ß-arrestin-1 with the µOR core binding site appears less specific and occurs with much lower affinity than binding of Gi.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Conformação Proteica , Receptores Opioides mu , beta-Arrestinas , Receptores Opioides mu/metabolismo , Receptores Opioides mu/química , Ligantes , Humanos , beta-Arrestinas/metabolismo , beta-Arrestinas/química , Sítios de Ligação , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Imagem Individual de Molécula , Modelos Moleculares , Ligação Proteica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Animais
3.
J Org Chem ; 89(1): 798-803, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38131648

RESUMO

The unusual and sterically constrained amino acid, seco-1-azacubane-2-carboxylic acid, was incorporated into a range of bioactive chemical templates, including enalaprilat, perindoprilat, endomorphin-2 and isoniazid, and subjected to biological testing. The endomorphin-2 derivative displayed increased activity at the δ opioid receptor, but a loss in activity was observed in the other cases, although human normal cell line evaluation suggests limited cytotoxic effects.


Assuntos
Ácidos Carboxílicos , Receptores Opioides mu , Humanos , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Aminoácidos , Linhagem Celular
4.
BMC Biol ; 21(1): 213, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817141

RESUMO

BACKGROUND: The first crystal structure of the active µ opioid receptor (µOR) exhibited several unexplained features. The ligand BU72 exhibited many extreme deviations from ideal geometry, along with unexplained electron density. I previously showed that inverting the benzylic configuration resolved these problems, establishing revised stereochemistry of BU72 and its analog BU74. However, another problem remains unresolved: additional unexplained electron density contacts both BU72 and a histidine residue in the N-terminus, revealing the presence of an as-yet unidentified atom. RESULTS: These short contacts and uninterrupted density are inconsistent with non-covalent interactions. Therefore, BU72 and µOR form a covalent adduct, rather than representing two separate entities as in the original model. A subsequently proposed magnesium complex is inconsistent with multiple lines of evidence. However, oxygen fits the unexplained density well. While the structure I propose is tentative, similar adducts have been reported previously in the presence of reactive oxygen species. Moreover, known sources of reactive oxygen species were present: HEPES buffer, nickel ions, and a sequence motif that forms redox-active nickel complexes. This motif contacts the unexplained density. The adduct exhibits severe strain, and the tethered N-terminus forms contacts with adjacent residues. These forces, along with the nanobody used as a G protein substitute, would be expected to influence the receptor conformation. Consistent with this, the intracellular end of the structure differs markedly from subsequent structures of active µOR bound to Gi protein. CONCLUSIONS: Later Gi-bound structures are likely to be more accurate templates for ligand docking and modelling of active G protein-bound µOR. The possibility of reactions like this should be considered in the choice of protein truncation sites and purification conditions, and in the interpretation of excess or unexplained density.


Assuntos
Níquel , Receptores Opioides mu , Sítios de Ligação , Ligantes , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Níquel/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação ao GTP/metabolismo
5.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513283

RESUMO

The 5-(3-hydroxy)phenylmorphan structural class of compounds are unlike the classical morphinans, 4,5-epoxymorphinans, and 6,7-benzomorphans, in that they have an equatorially oriented aromatic ring rather than the axial orientation of that ring found in the classical opioids. This modified and simplified opioid-like structure has been shown to retain antinociceptive activity, depending on its stereochemistry and substituents, and some of them have been found to be much more potent than morphine. A simple C9-hydroxy-5-(3-hydroxy)phenylmorphan enantiomer was found to be about 500 times more potent than morphine in vivo. We have previously examined C9-alkenyl and hydroxyalkyl substituents in the N-phenethyl-5-(3-hydroxy)phenylmorphan class of compounds. Comparable C9-alkyl (methyl through butyl) substituents, with their sets of diastereomers, have not been explored. All these compounds have now been synthesized to determine the effect chain-length and stereochemistry at the C9 position in the molecule might have on their interaction with opioid receptors. We now report the synthesis and in vitro activity of 16 compounds, the C9-methyl, ethyl, propyl, and butyl diastereomers, using the inhibition of forskolin-induced cAMP accumulation assay. Several potent (sub-nanomolar and nanomolar) MOR compounds were found to be selective agonists with varying efficacy. Of greatest interest, a selective MOR antagonist was discovered; it did not display any DOR or KOR agonist activity in vitro, was three times more potent than naltrexone, and was found to antagonize the EC90 of fentanyl at MOR to a greater extent than naltrexone.


Assuntos
Morfinanos , Receptores Opioides mu , Receptores Opioides mu/química , Naltrexona/farmacologia , Relação Estrutura-Atividade , Morfinanos/química , Morfina , Analgésicos Opioides/farmacologia
6.
Arch Pharm (Weinheim) ; 356(1): e2200432, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328777

RESUMO

The development of novel µ-opioid receptor (MOR) antagonists is one of the main objectives of drug discovery and development. Based on a simplified version of the morphinan scaffold, 3-[3-(phenalkylamino)cyclohexyl]phenol analogs were designed, synthesized, and evaluated for their MOR antagonist activity in vitro and in silico. At the highest concentrations, the compounds decreased by 52% to 75% DAMGO-induced GTPγS stimulation, suggesting that they acted as antagonists. Moreover, Extra-Precision Glide and Generalized-Born Surface Area experiments provided useful information on the nature of the ligand-receptor interactions, indicating a peculiar combination of C-1 stereochemistry and N-substitutions as feasibly essential for MOR-ligand complex stability. Interestingly, compound 9 showed the best experimental binding affinity, the highest antagonist activity, and the finest MOR-ligand complex stability. In silico experiments also revealed that the most promising stereoisomer (1R, 3R, 5S) 9 retained 1,3-cis configuration with phenol ring equatorial oriented. Further studies are needed to better characterize the pharmacodynamics and pharmacokinetic properties of these compounds.


Assuntos
Naltrexona , Antagonistas de Entorpecentes , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/química , Ligantes , Fenóis/farmacologia , Relação Estrutura-Atividade , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
7.
Nature ; 613(7945): 767-774, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450356

RESUMO

Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.


Assuntos
Desenho de Fármacos , Fentanila , Morfinanos , Receptores Opioides mu , Animais , Camundongos , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Arrestinas/metabolismo , Microscopia Crioeletrônica , Fentanila/análogos & derivados , Fentanila/química , Fentanila/metabolismo , Ligantes , Morfinanos/química , Morfinanos/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Receptores Opioides mu/ultraestrutura , Sítios de Ligação , Nociceptividade
8.
Proc Natl Acad Sci U S A ; 119(16): e2121918119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412886

RESUMO

Allosteric modulators of G-protein-coupled receptors (GPCRs) enhance signaling by binding to GPCRs concurrently with their orthosteric ligands, offering a novel approach to overcome the efficacy limitations of conventional orthosteric ligands. However, the structural mechanism by which allosteric modulators mediate GPCR signaling remains largely unknown. Here, to elucidate the mechanism of µ-opioid receptor (MOR) activation by allosteric modulators, we conducted solution NMR analyses of MOR by monitoring the signals from methionine methyl groups. We found that the intracellular side of MOR exists in an equilibrium between three conformations with different activities. Interestingly, the populations in the equilibrium determine the apparent signaling activity of MOR. Our analyses also revealed that the equilibrium is not fully shifted to the conformation with the highest activity even in the full agonist-bound state, where the intracellular half of TM6 is outward-shifted. Surprisingly, an allosteric modulator for MOR, BMS-986122, shifted the equilibrium toward the conformation with the highest activity, leading to the increased activity of MOR in the full agonist-bound state. We also determined that BMS-986122 binds to a cleft in the transmembrane region around T162 on TM3. Together, these results suggest that BMS-986122 binding to TM3 increases the activity of MOR by rearranging the direct interactions of TM3 and TM6, thus stabilizing TM6 in the outward-shifted position which is favorable for G-protein binding. These findings shed light on the rational developments of novel allosteric modulators that activate GPCRs further than orthosteric ligands alone and pave the way for next-generation GPCR-targeting therapeutics.


Assuntos
Receptores Opioides mu , Sulfonas , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Ligantes , Conformação Proteica/efeitos dos fármacos , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Transdução de Sinais , Sulfonas/química , Sulfonas/farmacologia
9.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054860

RESUMO

Based on the mechanism of neuropathic pain induction, a new type of bifunctional hybrid peptidomimetics was obtained for potential use in this type of pain. Hybrids consist of two types of pharmacophores that are connected by different types of linkers. The first pharmacophore is an opioid agonist, and the second pharmacophore is an antagonist of the pronociceptive system, i.e., an antagonist of the melanocortin-4 receptor. The results of tests in acute and neuropathic pain models of the obtained compounds have shown that the type of linker used to connect pharmacophores had an effect on antinociceptive activity. Peptidomimetics containing longer flexible linkers were very effective at low doses in the neuropathic pain model. To elucidate the effect of linker lengths, two hybrids showing very high activity and two hybrids with lower activity were further tested for affinity for opioid (mu, delta) and melanocortin-4 receptors. Their complexes with the target receptors were also studied by molecular modelling. Our results do not show a simple relationship between linker length and affinity for particular receptor types but suggest that activity in neuropathic pain is related to a proper balance of receptor affinity rather than maximum binding to any or all of the target receptors.


Assuntos
Melanocortinas/química , Neuralgia/tratamento farmacológico , Peptidomiméticos/uso terapêutico , Sequência de Aminoácidos , Analgésicos , Animais , Sítios de Ligação , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
10.
Cell Mol Life Sci ; 78(23): 7557-7568, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34657173

RESUMO

Opioid receptors (ORs) have been observed as homo- and heterodimers, but it is unclear if the dimers are stable under physiological conditions, and whether monomers or dimers comprise the predominant fraction in a cell. Here, we use three live-cell imaging approaches to assess dimerization of ORs at expression levels that are 10-100 × smaller than in classical biochemical assays. At membrane densities around 25/µm2, a split-GFP assay reveals that κOR dimerizes, while µOR and δOR stay monomeric. At receptor densities < 5/µm2, single-molecule imaging showed no κOR dimers, supporting the concept that dimer formation depends on receptor membrane density. To directly observe the transition from monomers to dimers, we used a single-molecule assay to assess membrane protein interactions at densities up to 100 × higher than conventional single-molecule imaging. We observe that κOR is monomeric at densities < 10/µm2 and forms dimers at densities that are considered physiological. In contrast, µOR and δOR stay monomeric even at the highest densities covered by our approach. The observation of long-lasting co-localization of red and green κOR spots suggests that it is a specific effect based on OR dimerization and not an artefact of coincidental encounters.


Assuntos
Membrana Celular/metabolismo , Receptores Opioides delta/química , Receptores Opioides delta/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Imagem Individual de Molécula/métodos , Análise de Célula Única/métodos , Animais , Camundongos , Conformação Proteica , Multimerização Proteica , Ratos
11.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638767

RESUMO

G protein-coupled receptors (GPCRs) are transmembrane proteins of high pharmacological relevance. It has been proposed that their activity is linked to structurally distinct, dynamically interconverting functional states and the process of activation relies on an interconnecting network of conformational switches in the transmembrane domain. However, it is yet to be uncovered how ligands with different extents of functional effect exert their actions. According to our recent hypothesis, based on indirect observations and the literature data, the transmission of the external stimulus to the intracellular surface is accompanied by the shift of macroscopic polarization in the transmembrane domain, furnished by concerted movements of highly conserved polar motifs and the rearrangement of polar species. In this follow-up study, we have examined the ß2-adrenergic receptor (ß2AR) to see if our hypothesis drawn from an extensive study of the µ-opioid receptor (MOP) is fundamental and directly transferable to other class A GPCRs. We have found that there are some general similarities between the two receptors, in agreement with previous studies, and there are some receptor-specific differences that could be associated with different signaling pathways.


Assuntos
Simulação de Dinâmica Molecular , Receptores Adrenérgicos beta 2/química , Receptores Opioides mu/química , Motivos de Aminoácidos , Humanos , Domínios Proteicos
12.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500841

RESUMO

Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a promising strategy by co-targeting opioid and non-opioid signaling pathways involved in nociception. Despite being intimately linked to the Substance P (SP)/neurokinin 1 (NK1) system, which is broadly examined for pain treatment, the neurokinin receptors NK2 and NK3 have so far been neglected in such DMLs. Herein, a series of newly designed opioid agonist-NK2 or -NK3 antagonists is reported. A selection of reported peptidic, pseudo-peptidic, and non-peptide neurokinin NK2 and NK3 ligands were covalently linked to the peptidic µ-opioid selective pharmacophore Dmt-DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) and the dual µ/δ opioid agonist H-Dmt-d-Arg-Aba-ßAla-NH2 (KGOP01). Opioid binding assays unequivocally demonstrated that only hybrids SBL-OPNK-5, SBL-OPNK-7 and SBL-OPNK-9, bearing the KGOP01 scaffold, conserved nanomolar range µ-opioid receptor (MOR) affinity, and slightly reduced affinity for the δ-opioid receptor (DOR). Moreover, NK binding experiments proved that compounds SBL-OPNK-5, SBL-OPNK-7, and SBL-OPNK-9 exhibited (sub)nanomolar binding affinity for NK2 and NK3, opening promising opportunities for the design of next-generation opioid hybrids.


Assuntos
Analgésicos Opioides/química , Antagonistas dos Receptores de Neurocinina-1/química , Peptidomiméticos/química , Receptores da Neurocinina-1/química , Receptores Opioides mu/química , Sequência de Aminoácidos , Humanos , Ligantes , Oligopeptídeos/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Substância P/química
13.
Commun Biol ; 4(1): 1070, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34522000

RESUMO

G protein-coupled receptors (GPCRs) are notoriously difficult to detect in native tissues. In an effort to resolve this problem, we have developed a novel mouse model by fusing the hemagglutinin (HA)-epitope tag sequence to the amino-terminus of the µ-opioid receptor (MOP). Although HA-MOP knock-in mice exhibit reduced receptor expression, we found that this approach allowed for highly efficient immunodetection of low abundant GPCR targets. We also show that the HA-tag facilitates both high-resolution imaging and immunoisolation of MOP. Mass spectrometry (MS) confirmed post-translational modifications, most notably agonist-selective phosphorylation of carboxyl-terminal serine and threonine residues. MS also unequivocally identified the carboxyl-terminal 387LENLEAETAPLP398 motif, which is part of the canonical MOP sequence. Unexpectedly, MS analysis of brain lysates failed to detect any of the 15 MOP isoforms that have been proposed to arise from alternative splicing of the MOP carboxyl-terminus. For quantitative analysis, we performed multiple successive rounds of immunodepletion using the well-characterized rabbit monoclonal antibody UMB-3 that selectively detects the 387LENLEAETAPLP398 motif. We found that >98% of HA-tagged MOP contain the UMB-3 epitope indicating that virtually all MOP expressed in the mouse brain exhibit the canonical amino acid sequence.


Assuntos
Hemaglutininas/genética , Receptores Opioides mu/genética , Sequência de Aminoácidos , Animais , Feminino , Hemaglutininas/metabolismo , Masculino , Camundongos , Fosforilação , Isoformas de Proteínas , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
14.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199486

RESUMO

In this study, we aimed to design and synthesize novel molecules carrying both the thiazole and piperazine rings in their structures and to investigate their antinociceptive activity. Targeted compounds were obtained by reacting thiosemicarbazide derivative and appropriate 2-bromoacetophenone in ethanol. The structures of the obtained compounds were determined using data from various spectroscopic methods (IR, 1H-NMR, 13C-NMR, and LCMSMS). Experimental data from in vivo tests showed that test compounds 3a-3c, 3f, and 3g (50 mg/kg) significantly prolonged reaction times of animals in tail-clip and hot-plate tests compared to the controls, indicating that these compounds possess centrally mediated antinociceptive activities. Furthermore, these compounds reduced the number of writhing behaviors in the acetic acid-induced writhing tests, showing that the compounds also possess peripheral antinociceptive activity. In the mechanistic studies, naloxone pre-treatments abolished the antinociceptive activities of compounds 3a-3c, 3f, and 3g, indicating that opioidergic mechanisms were involved in their antinociceptive effects. Molecular docking studies demonstrating significant interactions between the active compounds and µ- and δ-opioid receptor proteins supported the pharmacological findings. This study is the first showing that molecules designed to bear thiazole and piperazine moieties together on their structure exert centrally and peripherally mediated antinociceptive effects by activating the opioid system.


Assuntos
Acetofenonas/química , Analgésicos/administração & dosagem , Analgésicos/síntese química , Dor/tratamento farmacológico , Receptores Opioides/metabolismo , Semicarbazidas/química , Analgésicos/química , Analgésicos/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Naloxona/administração & dosagem , Naloxona/farmacologia , Dor/metabolismo , Conformação Proteica , Receptores Opioides/química , Receptores Opioides delta/química , Receptores Opioides delta/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
15.
Proteins ; 89(10): 1386-1393, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34152652

RESUMO

We have shown that water-soluble variants of the human mu opioid receptor (wsMOR) containing a reduced number of hydrophobic residues at the lipid-facing residues of the transmembrane (TM) helices can be expressed in E. coli. In this study, we tested the consequences of increasing the number of mutations on the surface of the transmembrane domain on the receptor's aqueous solubility and ligand binding properties, along with mutation of 11 cysteine residues regardless of their solvent exposure value and location in the protein. We computationally engineered 10 different variants of MOR, and tested four of them for expression in E. coli. We found that all four variants were successfully expressed and could be purified in high quantities. The variants have alpha helical structural content similar to that of the native MOR, and they also display binding affinities for the MOR antagonist (naltrexone) similar to the wsMOR variants we engineered previously that contained many fewer mutations. Furthermore, for these full-length variants, the helical content remains unchanged over a wide range of pH values (pH 6 ~ 9). This study demonstrates the flexibility and robustness of the water-soluble MOR variants with respect to additional designed mutations in the TM domain and changes in pH, whereupon the protein's structural integrity and its ligand binding affinity are maintained. These variants of the full-length MOR with less hydrophobic surface residues and less cysteines can be obtained in large amounts from expression in E. coli and can serve as novel tools to investigate structure-function relationships of the receptor.


Assuntos
Receptores Opioides mu/química , Escherichia coli/metabolismo , Humanos , Mutação , Receptores Opioides mu/genética , Solubilidade , Água
16.
J Med Chem ; 64(11): 7702-7723, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34027668

RESUMO

Crystal structures of ligand-bound G-protein-coupled receptors provide tangible templates for rationally designing molecular probes. Herein, we report the structure-based design, chemical synthesis, and biological investigations of bivalent ligands targeting putative mu opioid receptor C-C motif chemokine ligand 5 (MOR-CCR5) heterodimers. The bivalent ligand VZMC013 possessed nanomolar level binding affinities for both the MOR and CCR5, inhibited CCL5-stimulated calcium mobilization, and remarkably improved anti-HIV-1BaL activity over previously reported bivalent ligands. VZMC013 inhibited viral infection in TZM-bl cells coexpressing CCR5 and MOR to a greater degree than cells expressing CCR5 alone. Furthermore, VZMC013 blocked human immunodeficiency virus (HIV)-1 entry in peripheral blood mononuclear cells (PBMC) cells in a concentration-dependent manner and inhibited opioid-accelerated HIV-1 entry more effectively in phytohemagglutinin-stimulated PBMC cells than in the absence of opioids. A three-dimensional molecular model of VZMC013 binding to the MOR-CCR5 heterodimer complex is constructed to elucidate its mechanism of action. VZMC013 is a potent chemical probe targeting MOR-CCR5 heterodimers and may serve as a pharmacological agent to inhibit opioid-exacerbated HIV-1 entry.


Assuntos
Desenho de Fármacos , Ligantes , Receptores CCR5/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Dimerização , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Maraviroc/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naltrexona/química , Fito-Hemaglutininas/farmacologia , Ligação Proteica , Receptores CCR5/química , Receptores Opioides mu/química , Internalização do Vírus/efeitos dos fármacos
17.
Biomolecules ; 11(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946214

RESUMO

Recent advancements in the field of experimental structural biology have provided high-resolution structures of active and inactive state G protein-coupled receptors (GPCRs), a highly important pharmaceutical target family, but the process of transition between these states is poorly understood. According to the current theory, GPCRs exist in structurally distinct, dynamically interconverting functional states of which populations are shifted upon binding of ligands and intracellular signaling proteins. However, explanation of the activation mechanism, on an entirely structural basis, gets complicated when multiple activation pathways and active receptor states are considered. Our unbiased, atomistic molecular dynamics simulations of the µ opioid receptor (MOP) revealed that transmission of external stimulus to the intracellular surface of the receptor is accompanied by subtle, concerted movements of highly conserved polar amino acid side chains along the 7th transmembrane helix. This may entail the rearrangement of polar species and the shift of macroscopic polarization in the transmembrane domain, triggered by agonist binding. Based on our observations and numerous independent indications, we suggest amending the widely accepted theory that the initiation event of GPCR activation is the shift of macroscopic polarization between the ortho- and allosteric binding pockets and the intracellular G protein-binding interface.


Assuntos
Microdomínios da Membrana/química , Simulação de Dinâmica Molecular , Receptores Opioides mu/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Transdução de Sinais
18.
Future Med Chem ; 13(6): 551-573, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33590767

RESUMO

The modulation and selectivity mechanisms of seven mixed-action kappa opioid receptor (KOR)/mu opioid receptor (MOR) bitopic modulators were explored. Molecular modeling results indicated that the 'message' moiety of seven bitopic modulators shared the same binding mode with the orthosteric site of the KOR and MOR, whereas the 'address' moiety bound with different subdomains of the allosteric site of the KOR and MOR. The 'address' moiety of seven bitopic modulators bound to different subdomains of the allosteric site of the KOR and MOR may exhibit distinguishable allosteric modulations to the binding affinity and/or efficacy of the 'message' moiety. Moreover, the 3-hydroxy group on the phenolic moiety of the seven bitopic modulators induced selectivity to the KOR over the MOR.


Assuntos
Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Morfinanos/química , Morfinanos/metabolismo , Naltrexona/análogos & derivados , Naltrexona/química , Naltrexona/metabolismo , Ligação Proteica , Receptores Opioides kappa/química , Receptores Opioides mu/química , Compostos de Espiro/química , Compostos de Espiro/metabolismo , Termodinâmica
19.
Elife ; 102021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33555255

RESUMO

Controlling receptor functional selectivity profiles for opioid receptors is a promising approach for discovering safer analgesics; however, the structural determinants conferring functional selectivity are not well understood. Here, we used crystal structures of opioid receptors, including the recently solved active state kappa opioid complex with MP1104, to rationally design novel mixed mu (MOR) and kappa (KOR) opioid receptor agonists with reduced arrestin signaling. Analysis of structure-activity relationships for new MP1104 analogs points to a region between transmembrane 5 (TM5) and extracellular loop (ECL2) as key for modulation of arrestin recruitment to both MOR and KOR. The lead compounds, MP1207 and MP1208, displayed MOR/KOR Gi-partial agonism with diminished arrestin signaling, showed efficient analgesia with attenuated liabilities, including respiratory depression and conditioned place preference and aversion in mice. The findings validate a novel structure-inspired paradigm for achieving beneficial in vivo profiles for analgesia through different mechanisms that include bias, partial agonism, and dual MOR/KOR agonism.


Assuntos
Morfinanos/química , Receptores Opioides kappa/química , Receptores Opioides mu/química , Motivos de Aminoácidos , Analgésicos/química , Analgésicos/metabolismo , Animais , Sítios de Ligação , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Relação Estrutura-Atividade
20.
Nat Commun ; 12(1): 984, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579956

RESUMO

Roughly half of the drug overdose-related deaths in the United States are related to synthetic opioids represented by fentanyl which is a potent agonist of mu-opioid receptor (mOR). In recent years, X-ray crystal structures of mOR in complex with morphine derivatives have been determined; however, structural basis of mOR activation by fentanyl-like opioids remains lacking. Exploiting the X-ray structure of BU72-bound mOR and several molecular simulation techniques, we elucidated the detailed binding mechanism of fentanyl. Surprisingly, in addition to the salt-bridge binding mode common to morphinan opiates, fentanyl can move deeper and form a stable hydrogen bond with the conserved His2976.52, which has been suggested to modulate mOR's ligand affinity and pH dependence by previous mutagenesis experiments. Intriguingly, this secondary binding mode is only accessible when His2976.52 adopts a neutral HID tautomer. Alternative binding modes may represent a general mechanism in G protein-coupled receptor-ligand recognition.


Assuntos
Fentanila/química , Fentanila/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Morfina , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...