Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Pharmacol ; 101(1): 33-44, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718224

RESUMO

The P2X4 receptor is a ligand-gated ion channel activated by extracellular ATP. P2X4 activity is associated with neuropathic pain, vasodilation, and pulmonary secretion and is therefore of therapeutic interest. The structure-activity relationship of P2X4 antagonists is poorly understood. Here we elucidate the structure-activity of 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) at human P2X4 by combining pharmacology, electrophysiology, molecular modeling, and medicinal chemistry. 5-BDBD antagonized P2X4 in a noncompetitive manner but lacked effect at human P2X2. Molecular modeling and site-directed mutagenesis suggested an allosteric binding site for 5-BDBD located between two subunits in the body region of P2X4, with M109, F178, Y300, and I312 on one subunit and R301 on the neighboring subunit as key residues involved in antagonist binding. The bromine group of 5-BDBD was redundant for the antagonist activity of 5-BDBD, although an interaction between the carbonyl group of 5-BDBD and R301 in P2X4 was associated with 5-BDBD activity. 5-BDBD could inhibit the closed channel but poorly inhibited the channel in the open/desensitizing state. We hypothesize that this is due to constriction of the allosteric site after transition from closed to open channel state. We propose that M109, F178, Y300, R301, and I312 are key residues for 5-BDBD binding; provide a structural explanation of how they contribute to 5-BDBD antagonism; and highlight that the limited action of 5-BDBD on open versus closed channels is due to a conformational change in the allosteric site. SIGNIFICANCE STATEMENT: Activity of P2X4 receptor is associated with neuropathic pain, inflammation, and vasodilatation. Molecular information regarding small-molecule interaction with P2X4 is very limited. Here, this study provides a structural explanation for the action of the small-molecule antagonist 5-BDBD at the human P2X4 receptor.


Assuntos
Benzodiazepinonas/química , Benzodiazepinonas/metabolismo , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Benzodiazepinonas/farmacologia , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Antagonistas do Receptor Purinérgico P2X/farmacologia
2.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948407

RESUMO

Non-opioid single-chain variable fragment (scFv) small antibodies were generated as pain-reducing block of P2X4R receptor (P2X4R). A panel of scFvs targeting an extracellular peptide sequence of P2X4R was generated followed by cell-free ribosome display for recombinant antibody selection. After three rounds of bio-panning, a panel of recombinant antibodies was isolated and characterized by ELISA, cross-reactivity analysis, and immunoblotting/immunostaining. Generated scFv antibodies feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their ~30% smaller size. Two anti-P2X4R scFv clones (95, 12) with high specificity and affinity binding were selected for in vivo testing in male and female mice with trigeminal nerve chronic neuropathic pain (FRICT-ION model) persisting for several months in untreated BALBc mice. A single dose of P2X4R scFv (4 mg/kg, i.p.) successfully, completely, and permanently reversed chronic neuropathic pain-like measures in male mice only, providing retention of baseline behaviors indefinitely. Untreated mice retained hypersensitivity, and developed anxiety- and depression-like behaviors within 5 weeks. In vitro P2X4R scFv 95 treatment significantly increased the rheobase of larger-diameter (>25 µm) trigeminal ganglia (TG) neurons from FRICT-ION mice compared to controls. The data support use of engineered scFv antibodies as non-opioid biotherapeutic interventions for chronic pain.


Assuntos
Dor Crônica/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico , Animais , Afinidade de Anticorpos , Células Cultivadas , Dor Crônica/imunologia , Feminino , Masculino , Camundongos , Biblioteca de Peptídeos , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/imunologia , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia
3.
Front Immunol ; 12: 645834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897694

RESUMO

Extracellular nucleotides are important mediators of activation, triggering various responses through plasma membrane P2 and P1 receptors. P2 receptors are further subdivided into ionotropic P2X receptors and G protein-coupled P2Y receptors. P2X4 is an ATP-gated cation channel broadly expressed in most tissues of the body. Within the P2X family, P2X4 has a unique subcellular distribution, being preferentially localized in lysosomes. In these organelles, high ATP concentrations do not trigger P2X4 because of the low pH. However, when the pH increases to 7.4, P2X4 can be stimulated by intra-lysosomal ATP, which is in its active, tetra-anionic form. Elucidation of P2X4, P2X3 and P2X7 structures has shed some light on the functional differences between these purinergic receptors. The potential interaction between P2X4 and P2X7 has been extensively studied. Despite intensive effort, it has not been possible yet to determine whether P2X4 and P2X7 interact as heterotrimers or homotrimers at the plasma membrane. However, several publications have shown that functional interactions between P2X4 and P2X7 do occur. Importantly, these studies indicate that P2X4 potentiates P2X7-dependent activation of inflammasomes, leading to increased release of IL-1ß and IL-18. The role of P2X4 in various diseases could be beneficial or deleterious even though the pathophysiological mechanisms involved are still poorly defined. However, in diseases whose physiopathology involves activation of the NLRP3 inflammasome, P2X4 was found to exacerbate severity of disease. The recent production of monoclonal antibodies specific for the human and mouse P2X4, some of which are endowed with agonist or antagonist properties, raises the possibility that they could be used therapeutically. Analysis of single nucleotide polymorphisms of the human P2RX4 gene has uncovered the association of P2RX4 gene variants with susceptibility to several human diseases.


Assuntos
Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Degranulação Celular , Encefalomielite Autoimune Experimental/etiologia , Etanol/farmacologia , Humanos , Inflamassomos/fisiologia , Inflamação/etiologia , Mastócitos/fisiologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/fisiologia
4.
J Biochem ; 169(4): 491-496, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33169129

RESUMO

P2X4 receptor is known to be involved in neuropathic pain. In order to detect the expression of P2X4 receptor on microglia at the time of onset of neuropathic pain, one approach consists on the preparation of the monoclonal antibodies with both selective binding and high affinity. We have recently established a monoclonal antibody (named 12-10H) which had high affinity to rat P2X4 receptor expressed in 1321N1 cells. The dissociation constants of the complex between the monoclonal antibodies obtained so far and the head domain (HD) in the rat P2X4 receptor were in the nanomolar range. To improve the affinity by rational mutations, we need to know the precious location of the binding site in these monoclonal antibodies. Here, we have analysed and identified the binding residues in the monoclonal antibody (12-10H) with high affinity for the HD of the rat P2X4 receptor by site-directed mutagenesis.


Assuntos
Anticorpos Monoclonais Murinos/química , Afinidade de Anticorpos , Receptores Purinérgicos P2X4/química , Animais , Anticorpos Monoclonais Murinos/genética , Domínios Proteicos , Ratos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/imunologia
5.
FEBS Lett ; 594(24): 4381-4389, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979222

RESUMO

The P2X4 receptor (P2X4R) is an ATP-gated cation channel. Here, we used fast-scan atomic force microscopy (AFM) to visualize changes in the structure and mobility of individual P2X4Rs in response to activation. P2X4Rs were purified from detergent extracts of transfected cells and integrated into lipid bilayers. Activation resulted in a rapid (2 s) and substantial (10-20 nm2 ) increase in the cross-sectional area of the extracellular region of the receptor and a corresponding decrease in receptor mobility. Both effects were blocked by the P2X4R antagonist 5-BDBD. Addition of cholesterol to the bilayer reduced receptor mobility, although the ATP-induced reduction in mobility was still observed. We suggest that the observed responses to activation may have functional consequences for purinergic signalling.


Assuntos
Movimento , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Colesterol/metabolismo , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica , Ratos , Receptores Purinérgicos P2X4/isolamento & purificação , Receptores Purinérgicos P2X4/ultraestrutura , Transdução de Sinais
6.
Mol Inform ; 39(9): e1900111, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32511896

RESUMO

Recent studies have shown the potential application of ivermectins in the treatment of alcohol use disorder (AUD). Ivermectin is a positive allosteric modulator (PAM) of P2X4R and this molecule exerts its action in the transmembrane region (known as the TM region) of trimeric channel structure (the pocket formed by Asp331, Met336, Trp46, Trp50, and Tyr42). The aim of this study is to identify FDA drugs with potential PAM properties, by exploring the P2X4Rs from four organisms (Danio rerio, Mus musculus, Rattus norvegicus, and Homo sapiens). The in silico study consists of carrying out the molecular docking of 1656 FDA-approved drugs on the structure of P2X4R, using the commercially available compounds from the ZINC15 database for virtual screening. To strengthen the reliability of the results, two docking protocols were used involving the use of two programs, Autodock 4.2 and Autodock Vina. Nine FDA drugs with potential PAM properties were identified. In addition, eight molecules with potential negative allosteric modulator (NAM) action, and 13 molecules with potential allosteric modulator (AM) action were identified. The FDA drugs identified in this study with PAM, NAM, and AM action, shared in the P2X4Rs of the four organisms, can provide a guideline to proceed with research concerning new drugs for the study and treatment of AUD.


Assuntos
Alcoolismo/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/efeitos dos fármacos , Regulação Alostérica , Sequência de Aminoácidos , Animais , Simulação por Computador , Aprovação de Drogas , Humanos , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Ratos , Receptores Purinérgicos P2X4/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Estados Unidos , United States Food and Drug Administration , Peixe-Zebra
7.
Pharmacol Res ; 158: 104875, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32407956

RESUMO

Neuropathic pain (NPP) is a common symptom of most diseases in clinic, which seriously affects the mental health of patients and brings certain pain to patients. Due to its pathological mechanism is very complicated, and thus, its treatment has been one of the challenges in the field of medicine. Therefore, exploring the pathogenesis and treatment approach of NPP has aroused the interest of many researchers. ATP is an important energy information substance, which participates in the signal transmission in the body. The P2 × 4 receptor (P2 × 4R) is dependent on ATP ligand-gated cationic channel receptor, which can be activated by ATP and plays an important role in the transmission of information in the nervous system and the formation of pain. In this paper, we provide a comprehensive review of the structure and function of the P2 × 4R gene. We also discuss the pathogenesis of NPP and the intrinsic relationship between P2 × 4R and NPP. Moreover, we explore the pharmacological properties of P2 × 4R antagonists or inhibitors used as targeted therapies for NPP.


Assuntos
Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X4/metabolismo , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Humanos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Oxazinas/metabolismo , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Estrutura Secundária de Proteína , Agonistas do Receptor Purinérgico P2X/metabolismo , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/química
8.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252459

RESUMO

Mouse models of alcohol use disorder (AUD) revealed purinergic P2X4 receptors (P2X4Rs) as a promising target for AUD drug development. We have previously demonstrated that residues at the transmembrane (TM)-ectodomain interface and within the TM1 segment contribute to the formation of an ethanol action pocket in P2X4Rs. In the present study, we tested the hypothesis that there are more residues in TM1 and TM2 segments that are important for the ethanol sensitivity of P2X4Rs. Using site-directed mutagenesis and two electrode voltage-clamp electrophysiology in Xenopus oocytes, we found that arginine at position 33 (R33) in the TM1 segment plays a role in the ethanol sensitivity of P2X4Rs. Molecular models in both closed and open states provided evidence for interactions between R33 and aspartic acid at position 354 (D354) of the neighboring TM2 segment. The loss of ethanol sensitivity in mixtures of wild-type (WT) and reciprocal single mutants, R33D:WT and D354R:WT, versus the WT-like response in R33D-D354R:WT double mutant provided further support for this interaction. Additional findings indicated that valine at TM1 position 49 plays a role in P2X4R function by providing flexibility/stability during channel opening. Collectively, these findings identified new activity sites and suggest the importance of TM1-TM2 interaction for the function and ethanol sensitivity of P2X4Rs.


Assuntos
Aminoácidos/química , Etanol/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Alanina/química , Alcoolismo/etiologia , Alcoolismo/metabolismo , Arginina/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios Proteicos , Agonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X4/genética , Relação Estrutura-Atividade
9.
J Chem Inf Model ; 60(2): 923-932, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31747275

RESUMO

P2X receptors are a family of trimeric cationic channels located in the membrane of mammalian cells. They open in response to the binding of ATP. The differences between the closed and open structures have been described in detail for some members of the family. However, the order in which the conformational changes take place as ATP enters the binding cleft, and the residues involved in the intermediate stages, are still unknown. Here, we present the results of umbrella sampling simulations aimed to elucidate the sequence of conformational changes that occur during the reversible binding of ATP to the P2X4 receptor. The simulations also provided information about the interactions that develop in the course of the process. In particular, they revealed the existence of a metastable state which assists the binding. This state is stabilized by positively charged residues located in the head domain of the receptor. Based on these findings, we propose a novel mechanism for the capture of ATP by P2X4 receptors.


Assuntos
Trifosfato de Adenosina/metabolismo , Simulação de Dinâmica Molecular , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Ligação Proteica , Domínios Proteicos
10.
J Med Chem ; 62(24): 11194-11217, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31746599

RESUMO

The P2X4 receptor is a ligand-gated ion channel that is expressed on a variety of cell types, especially those involved in inflammatory and immune processes. High-throughput screening led to a new class of P2X4 inhibitors with substantial CYP 3A4 induction in human hepatocytes. A structure-guided optimization with respect to decreased pregnane X receptor (PXR) binding was started. It was found that the introduction of larger and more polar substituents on the ether linker led to less PXR binding while maintaining the P2X4 inhibitory potency. This translated into significantly reduced CYP 3A4 induction for compounds 71 and 73. Unfortunately, the in vivo pharmacokinetic (PK) profiles of these compounds were insufficient for the desired profile in humans. However, BAY-1797 (10) was identified and characterized as a potent and selective P2X4 antagonist. This compound is suitable for in vivo studies in rodents, and the anti-inflammatory and anti-nociceptive effects of BAY-1797 were demonstrated in a mouse complete Freund's adjuvant (CFA) inflammatory pain model.


Assuntos
Acetamidas/farmacologia , Indutores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Descoberta de Drogas , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X4/química , Acetamidas/química , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Indutores do Citocromo P-450 CYP3A/química , Indução Enzimática , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/metabolismo , Dor/patologia , Antagonistas do Receptor Purinérgico P2X/química , Ratos , Ratos Wistar
11.
Purinergic Signal ; 15(1): 27-35, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30684150

RESUMO

P2X purinergic receptors are ATP-driven ionic channels expressed as trimers and showing various functions. A subtype, the P2X4 receptor present on microglial cells is highly involved in neuropathic pain. In this study, in order to prepare antibodies recognizing the native structure of rat P2X4 (rP2X4) receptor, we immunized mice with rP2X4's head domain (rHD, Gln111-Val167), which possesses an intact structure stabilized by S-S bond formation (Igawa and Abe et al. FEBS Lett. 2015), as an antigen. We generated five monoclonal antibodies with the ability to recognize the native structure of its head domain, stabilized by S-S bond formation. Site-directed mutagenesis revealed that Asn127 and Asp131 of the rHD, in which combination of these amino acid residues is only conserved in P2X4 receptor among P2X family, were closely involved in the interaction between rHD and these antibodies. We also demonstrated the antibodies obtained here could detect rP2X4 receptor expressed in 1321N1 human astrocytoma cells.


Assuntos
Anticorpos Monoclonais , Receptores Purinérgicos P2X4 , Animais , Humanos , Camundongos , Domínios Proteicos , Ratos , Receptores Purinérgicos P2X4/análise , Receptores Purinérgicos P2X4/química
12.
Cell Physiol Biochem ; 51(2): 812-826, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30463084

RESUMO

BACKGROUND/AIMS: Neuropathic pain (NPP) is the consequence of a number of central nervous system injuries or diseases. Previous studies have shown that NPP is mediated by P2X4 receptors that are expressed on satellite glial cells (SGCs) of dorsal root ganglia (DRG). Catestatin (CST), a neuroendocrine multifunctional peptide, may be involved in the pathogenesis of NPP. Here, we studied the mechanism through which CST affects NPP. METHODS: We made rat models of chronic constriction injury (CCI) that simulate neuropathic pain. Rat behavioral changes were estimated by measuring the degree of hyperalgesia as assessed by the mechanical withdrawal threshold (MWT) and the thermal withdrawal latency (TWL). P2X4 mRNA expression was detected by quantitative real-time reverse transcription-polymerase chain reaction. P2X4 protein level and related signal pathways were assessed by western blot. Additionally, double-labeled immunofluorescence was employed to visualize the correspondence between the P2X4 receptor and glial fibrillary acidic protein. An enzyme-linked immunosorbent assay was performed to determine the concentration of CST and inflammatory factors. RESULTS: CST led to lower MWT and TWL and increased P2X4 mRNA and protein expression on the SGCs of model rats. Further, CST upregulated the expression of phosphor-p38 and phosphor-ERK 1/2 on the SGCs of CCI rats. However, the expression level of phosphor-JNK and phosphor-p65 did not obviously change. CONCLUSION: Taken together, CST might boost NPP by enhancing the sensitivity of P2X4 receptors in the DRG of rats, which would provide us a novel perspective and research direction to explore new therapeutic targets for NPP.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cromogranina A/farmacologia , Gânglios Espinais/metabolismo , Neuralgia/patologia , Fragmentos de Peptídeos/farmacologia , Receptores Purinérgicos P2X4/metabolismo , Animais , Cromogranina A/uso terapêutico , Constrição , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Fragmentos de Peptídeos/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
J Physiol ; 596(20): 4893-4907, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144063

RESUMO

KEY POINTS: Re-sensitization of P2X4 receptors depends on a protonation/de-protonation cycle Protonation and de-protonation of the receptors is achieved by internalization and recycling of P2X4 receptors via acidic compartments Protonation and de-protonation occurs at critical histidine residues within the extracellular loop of P2X4 receptors Re-sensitization is blocked in the presence of the receptor agonist ATP ABSTRACT: P2X4 receptors are members of the P2X receptor family of cation-permeable, ligand-gated ion channels that open in response to the binding of extracellular ATP. P2X4 receptors are implicated in a variety of biological processes, including cardiac function, cell death, pain sensation and immune responses. These physiological functions depend on receptor activation on the cell surface. Receptor activation is followed by receptor desensitization and deactivation upon removal of ATP. Subsequent re-sensitization is required to return the receptor into its resting state. Desensitization and re-sensitization are therefore crucial determinants of P2X receptor signal transduction and responsiveness to ATP. However, the molecular mechanisms controlling desensitization and re-sensitization are not fully understood. In the present study, we provide evidence that internalization and recycling via acidic compartments is essential for P2X4 receptor re-sensitization. Re-sensitization depends on a protonation/de-protonation cycle of critical histidine residues within the extracellular loop of P2X4 receptors that is mediated by receptor internalization and recycling. Interestingly, re-sensitization under acidic conditions is completely revoked by receptor agonist ATP. Our data support the physiological importance of the unique subcellular distribution of P2X4 receptors that is predominantly found within acidic compartments. Based on these findings, we suggest that recycling of P2X4 receptors regulates the cellular responsiveness in the sustained presence of ATP.


Assuntos
Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Transporte Proteico , Prótons , Receptores Purinérgicos P2X4/química , Transdução de Sinais
14.
J Biol Chem ; 293(33): 12820-12831, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29997254

RESUMO

ATP is the native agonist for cell-surface ligand-gated P2X receptor (P2XR) cation channels. The seven mammalian subunits (P2X1-7) form homo- and heterotrimeric P2XRs having significant physiological and pathophysiological roles. Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) is an effective antagonist at most mammalian P2XRs. Lys-249 in the extracellular domain of P2XR has previously been shown to contribute to PPADS action. To map this antagonist site, we generated human P2X1R cysteine substitutions within a circle centered at Lys-249 (with a radius of 13 Å equal to the length of PPADS). We hypothesized that cysteine substitutions of residues involved in PPADS binding would (i) reduce cysteine accessibility (measured by MTSEA-biotinylation), (ii) exhibit altered PPADS affinity, and (iii) quench the fluorescence of cysteine residues modified with MTS-TAMRA. Of the 26 residues tested, these criteria were met by only four (Lys-70, Asp-170, Lys-190, and Lys-249), defining the antagonist site, validating molecular docking results, and thereby providing the first experimentally supported model of PPADS binding. This binding site overlapped with the ATP-binding site, indicating that PPADS sterically blocks agonist access. Moreover, PPADS induced a conformational change at the cysteine-rich head (CRH) region adjacent to the orthosteric ATP-binding pocket. The importance of this movement was confirmed by demonstrating that substitution introducing positive charge present in the CRH of the hP2X1R causes PPADS sensitivity at the normally insensitive rat P2X4R. This study provides a template for developing P2XR subtype selectivity based on the differences among the mammalian subunits around the orthosteric P2XR-binding site and the CRH.


Assuntos
Modelos Moleculares , Antagonistas do Receptor Purinérgico P2X/química , Fosfato de Piridoxal/análogos & derivados , Receptores Purinérgicos P2X1/química , Animais , Sítios de Ligação , Humanos , Fosfato de Piridoxal/química , Ratos , Receptores Purinérgicos P2X1/genética , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Xenopus laevis
15.
J Chem Inf Model ; 58(2): 315-327, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29266929

RESUMO

Many biologically important ligands of proteins are large, flexible, and in many cases charged molecules that bind to extended regions on the protein surface. It is infeasible or expensive to locate such ligands on proteins with standard methods such as docking or molecular dynamics (MD) simulation. The alternative approach proposed here is scanning of a spatial and angular grid around the protein with smaller fragments of the large ligand. Energy values for complete grids can be computed efficiently with a well-known fast Fourier transform-accelerated algorithm and a physically meaningful interaction model. We show that the approach can readily incorporate flexibility of the protein and ligand. The energy grids (EGs) resulting from the ligand fragment scans can be transformed into probability distributions and then directly compared to probability distributions estimated from MD simulations and experimental structural data. We test the approach on a diverse set of complexes between proteins and large, flexible ligands, including a complex of sonic hedgehog protein and heparin, three heparin sulfate substrates or nonsubstrates of an epimerase, a multibranched supramolecular ligand that stabilizes a protein-peptide complex, a flexible zwitterionic ligand that binds to a surface basin of a Kringle domain, and binding of ATP to a flexible site of an ion channel. In all cases, the EG approach gives results that are in good agreement with experimental data or MD simulations.


Assuntos
Biologia Computacional/métodos , Proteínas Hedgehog/química , Heparina/química , Proteínas/química , Proteínas 14-3-3/química , Trifosfato de Adenosina/química , Cátions , Cristalografia por Raios X , Kringles , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica , Racemases e Epimerases/química , Receptores Purinérgicos P2X4/química , Eletricidade Estática
16.
Bioorg Med Chem ; 25(14): 3835-3844, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28554730

RESUMO

P2X4 receptor has become an interesting molecular target for treatment and PET imaging of neuroinflammation and associated brain diseases such as Alzheimer's disease. This study reports the first design, synthesis, radiolabeling and biological evaluation of new candidate PET P2X4 receptor radioligands using 5-BDBD, a specific P2X4 receptor antagonist, as a scaffold. 5-(3-Hydroxyphenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD analog, [11C]9) and 5-(3-Bromophenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD, [11C]8c) were prepared from their corresponding desmethylated precursors with [11C]CH3OTf through N-[11C]methylation and isolated by HPLC combined with SPE in 30-50% decay corrected radiochemical yields with 370-1110GBq/µmol specific activity at EOB. 5-(3-[18F]Fluorophenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]F-5-BDBD, [18F]5a) and 5-(3-(2-[18F]fluoroethoxy)phenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]FE-5-BDBD, [18F]11) were prepared from their corresponding nitro- and tosylated precursors by nucleophilic substitution with K[18F]F/Kryptofix 2.2.2 and isolated by HPLC-SPE in 5-25% decay corrected radiochemical yields with 111-740GBq/µmol specific activity at EOB. The preliminary biological evaluation of radiolabeled 5-BDBD analogs indicated these new radioligands have similar biological activity with their parent compound 5-BDBD.


Assuntos
Azirinas/química , Di-Hidropiridinas/química , Compostos Radiofarmacêuticos/síntese química , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Azirinas/síntese química , Azirinas/metabolismo , Ligação Competitiva , Radioisótopos de Carbono/química , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/metabolismo , Radioisótopos de Flúor/química , Células HEK293 , Humanos , Marcação por Isótopo , Tomografia por Emissão de Pósitrons , Ligação Proteica , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
17.
J Biol Chem ; 292(18): 7619-7635, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28302727

RESUMO

P2X receptors are ATP-gated trimeric channels with important roles in diverse pathophysiological functions. A detailed understanding of the mechanism underlying the gating process of these receptors is thus fundamentally important and may open new therapeutic avenues. The left flipper (LF) domain of the P2X receptors is a flexible loop structure, and its coordinated motions together with the dorsal fin (DF) domain are crucial for the channel gating of the P2X receptors. However, the mechanism underlying the crucial role of the LF domain in the channel gating remains obscure. Here, we propose that the ATP-induced allosteric changes of the LF domain enable it to foster intersubunit physical couplings among the DF and two lower body domains, which are pivotal for the channel gating of P2X4 receptors. Metadynamics analysis indicated that these newly established intersubunit couplings correlate well with the ATP-bound open state of the receptors. Moreover, weakening or strengthening these physical interactions with engineered intersubunit metal bridges remarkably decreased or increased the open probability of the receptors, respectively. Further disulfide cross-linking and covalent modification confirmed that the intersubunit physical couplings among the DF and two lower body domains fostered by the LF domain at the open state act as an integrated structural element that is stringently required for the channel gating of P2X4 receptors. Our observations provide new mechanistic insights into P2X receptor activation and will stimulate development of new allosteric modulators of P2X receptors.


Assuntos
Ativação do Canal Iônico/fisiologia , Simulação de Dinâmica Molecular , Receptores Purinérgicos P2X4/química , Células HEK293 , Humanos , Domínios Proteicos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
18.
Biophys J ; 111(12): 2642-2650, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28002740

RESUMO

We present the results of a detailed molecular dynamics study of the closed form of the P2X4 receptor. The fluctuations observed in the simulations were compared with the changes that occur in the transition from the closed to the open structure. To get further insight on the opening mechanism, the actual displacements were decomposed into interchain motions and intrachain deformations. This analysis revealed that the iris-like expansion of the transmembrane helices mainly results from interchain motions that already take place in the closed conformation. However, these movements cannot reach the amplitude required for the opening of the channel because they are impeded by interactions occurring around the ATP binding pocket. This suggests that the union of ATP produces distortions in the chains that eliminate the restrictions on the interchain displacements, leading to the opening of the pore.


Assuntos
Ativação do Canal Iônico , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica
19.
Biochem Pharmacol ; 116: 130-9, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27481062

RESUMO

The P2X7 receptor (P2X7R) plays an important role in diverse conditions associated with tissue damage and inflammation, meaning that the human P2X7R (hP2X7R) is an attractive therapeutic target. The crystal structures of the zebrafish P2X4R in the closed and ATP-bound open states provide an unprecedented opportunity for structure-guided identification of new ligands. The present study performed virtual screening of ∼100,000 structurally diverse compounds against the ATP-binding pocket in the hP2X7R. This identified three compounds (C23, C40 and C60) out of 73 top-ranked compounds by testing against hP2X7R-mediated Ca(2+) responses. These compounds were further characterised using Ca(2+) imaging, patch-clamp current recording, YO-PRO-1 uptake and propidium iodide cell death assays. All three compounds inhibited BzATP-induced Ca(2+) responses concentration-dependently with IC50s of 5.1±0.3µM, 4.8±0.8µM and 3.2±0.2µM, respectively. C23 and C40 inhibited BzATP-induced currents in a reversible and concentration-dependent manner, with IC50s of 0.35±0.3µM and 1.2±0.1µM, respectively, but surprisingly C60 did not affect BzATP-induced currents up to 100µM. They suppressed BzATP-induced YO-PRO-1 uptake with IC50s of 1.8±0.9µM, 1.0±0.1µM and 0.8±0.2µM, respectively. Furthermore, these three compounds strongly protected against ATP-induced cell death. Among them, C40 and C60 exhibited strong specificity towards the hP2X7R over the hP2X4R and rP2X3R. In conclusion, our study reports the identification of three novel hP2X7R antagonists with micromolar potency for the first time using a structure-based approach, including the first P2X7R antagonist with preferential inhibition of large pore formation.


Assuntos
Amidas/farmacologia , Hepatócitos/efeitos dos fármacos , Indóis/farmacologia , Modelos Moleculares , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Tiofenos/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Amidas/química , Amidas/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Sítios de Ligação , Sinalização do Cálcio/efeitos dos fármacos , Células HEK293 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Indóis/química , Indóis/metabolismo , Ligantes , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/metabolismo , Ratos , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise de Célula Única , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/metabolismo
20.
Biochem Biophys Res Commun ; 472(2): 293-8, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26946358

RESUMO

The GPI-anchored prion protein (PrP(C)) is involved in neurodegeneration, either through misfolding in the Transmissible Spongiform Encephalopathies (TSE), or as a mediator of the neurotoxicity of peptide oligomers in Alzheimer's Disease. PrP(C) has been attributed pleiotropic functions, and appears to scaffold a variety of cell surface signaling modules, for example through its binding to several neurotransmitter receptors. Here we used transfected HEK293 cells to test for an interaction of PrP(C) with purinergic receptor P2X4R. The prion protein bound P2X4R in both overlay and co-immunoprecipitation assays, and co-localized mostly intracellularly, but occasionaly at the cell surface in confocal micrographs. Functional PrP(C):P2X4R interaction was tested by the uptake of a P2X4R-permeant compound, and by modulation of intracellular calcium. Unexpectedly, however, this interaction was traced to a selective effect of PrP(C) upon the content of co-transfected P2X4R. The results suggest a role of PrP(C) in proteostasis, dysfunctions of which may be involved in the pathogenesis of neurodegenerative diseases such as TSE and Alzheimer's Disease.


Assuntos
Cerebelo/química , Cerebelo/metabolismo , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/metabolismo , Animais , Sítios de Ligação , Células HEK293 , Humanos , Ligação Proteica , Ratos , Frações Subcelulares/química , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA