Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 903
Filtrar
2.
Br J Pharmacol ; 181(4): 580-592, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37442808

RESUMO

Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cß (PLCß) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Assuntos
Plaquetas , Agregação Plaquetária , Humanos , Difosfato de Adenosina/metabolismo , Plaquetas/fisiologia , Transdução de Sinais , Inflamação/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Ativação Plaquetária
3.
Purinergic Signal ; 20(2): 99-108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37697211

RESUMO

P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). The widely expressed P2Y receptors play important roles in physiology and pathophysiology. This review summarizes the use of pharmacological tools to characterize the P2Y receptor subtypes involved in these responses. MRS2500 is a potent and selective antagonist acting at the P2Y1 receptor. AR-C118925 is useful for the selective antagonism of the P2Y2 receptor. PSB16133 blocks the P2Y4 receptor, MRS2578 is an antagonist at the P2Y6 receptor and NF157 as well as NF340 block the P2Y11 receptor. ADP-induced platelet aggregation is mediated by P2Y1 and P2Y12 receptors. A number of compounds or their active metabolites reduce ADP-induced platelet aggregation by blocking the P2Y12 receptor. These include the active metabolites of the thienopyridine compounds clopidogrel and prasugrel, the nucleoside analogue ticagrelor and the nucleotide analogue cangrelor. PSB0739 is also a potent antagonist at the P2Y12 receptor useful for both in vitro and in vivo studies. MRS2211 and MRS2603 inhibit P2Y13 mediated responses. PPTN is a very potent antagonist at the P2Y14 receptor.


Assuntos
Nucleotídeos , Transdução de Sinais , Animais , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y12 , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Mamíferos
4.
Br J Pharmacol ; 181(4): 564-579, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-36694432

RESUMO

BACKGROUND AND PURPOSE: Platelet function during inflammation is dependent on activation by endogenous nucleotides. Non-canonical signalling via the P2Y1 receptor is important for these non-thrombotic functions of platelets. However, apart from ADP, the role of other endogenous nucleotides acting as agonists at P2Y1 receptors is unknown. This study compared the effects of ADP, Ap3A, NAD+ , ADP-ribose, and Up4A on platelet functions contributing to inflammation or haemostasis. EXPERIMENTAL APPROACH: Platelets obtained from healthy human volunteers were incubated with ADP, Ap3A, NAD+ , ADP-ribose, or Up4A, with aggregation and fibrinogen binding measured (examples of function during haemostasis) or before exposure to fMLP to measure platelet chemotaxis (an inflammatory function). In silico molecular docking of these nucleotides to the binding pocket of P2Y1 receptors was then assessed. KEY RESULTS: Platelet aggregation and binding to fibrinogen induced by ADP was not mimicked by NAD+ , ADP-ribose, and Up4A. However, these endogenous nucleotides induced P2Y1 -dependent platelet chemotaxis, an effect that required RhoA and Rac-1 activity, but not canonical PLC activity. Analysis of molecular docking of the P2Y1 receptor revealed distinct differences of amino acid interactions and depth of fit within the binding pocket for Ap3A, NAD+ , ADP-ribose, or Up4A compared with ADP. CONCLUSION AND IMPLICATIONS: Platelet function (aggregation vs motility) can be differentially modulated by biased-agonist activation of P2Y1 receptors. This may be due to the character of the ligand-binding pocket interaction. This has implications for future therapeutic strategies aimed to suppress platelet activation during inflammation without affecting haemostasis as is the requirement of current ant-platelet drugs. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Assuntos
Plaquetas , NAD , Humanos , Simulação de Acoplamento Molecular , NAD/metabolismo , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Agregação Plaquetária , Inflamação/metabolismo , Fibrinogênio/metabolismo , Fibrinogênio/farmacologia , Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo
5.
Arch Biochem Biophys ; 751: 109844, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043889

RESUMO

The current study aimed to investigate the hypothesis that purinergic receptors P2Y1 and P2Y2 play a regulatory role in gene expression in unloaded muscle. ATP is released from cells through pannexin channels, and it interacts with P2Y1 and P2Y2 receptors, leading to the activation of markers of protein catabolism and a reduction in protein synthesis. To test this hypothesis thirty-two rats were randomly divided into four groups (8 per group): a non-treated control group (C), a group subjected to three days of hindlimb unloading with a placebo (HS), a group subjected to three days of hindlimb unloading treated with a P2Y1 receptor inhibitor, MRS2179 (HSM), and a group subjected to three days of hindlimb unloading treated with a P2Y2 receptor inhibitor, AR-C 118925XX (HSA). This study revealed several key findings following three days of soleus muscle unloading: 1: Inhibition of P2Y1 or P2Y2 receptors prevented the accumulation of ATP, the increase in IP3 receptor content, and the decrease in the phosphorylation of GSK-3beta. This inhibition also mitigated the reduction in the rate of protein synthesis. However, it had no significant effect on the markers of mTORC1-dependent signaling. 2: Blocking P2Y1 receptors prevented the unloading-induced upregulation of phosphorylated p38MAPK and partially reduced the increase in MuRF1mRNA expression. 3: Blocking P2Y2 receptors prevented muscle atrophy during unloading, partially maintained the levels of phosphorylated ERK1/2, reduced the increase in mRNA expression of MAFbx, ubiquitin, and IL-6 receptor, prevented the decrease in phosphorylated AMPK, and attenuated the increase in phosphorylated p70S6K. Taken together, these results suggest that the prevention of muscle atrophy during unloading, as achieved by the P2Y2 receptor inhibitor, is likely mediated through a reduction in catabolic processes and maintenance of energy homeostasis. In contrast, the P2Y1 receptor appears to play a relatively minor role in muscle atrophy during unloading.


Assuntos
Músculo Esquelético , Transdução de Sinais , Animais , Ratos , Trifosfato de Adenosina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo
6.
Mol Metab ; 79: 101867, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159881

RESUMO

OBJECTIVE: Human functional genomics has proven powerful in discovering drug targets for common metabolic disorders. Through this approach, we investigated the involvement of the purinergic receptor P2RY1 in type 2 diabetes (T2D). METHODS: P2RY1 was sequenced in 9,266 participants including 4,177 patients with T2D. In vitro analyses were then performed to assess the functional effect of each variant. Expression quantitative trait loci (eQTL) analysis was performed in pancreatic islets from 103 pancreatectomized individuals. The effect of P2RY1 on glucose-stimulated insulin secretion was finally assessed in human pancreatic beta cells (EndoCßH5), and RNA sequencing was performed on these cells. RESULTS: Sequencing P2YR1 in 9,266 participants revealed 22 rare variants, seven of which were loss-of-function according to our in vitro analyses. Carriers, except one, exhibited impaired glucose control. Our eQTL analysis of human islets identified P2RY1 variants, in a beta-cell enhancer, linked to increased P2RY1 expression and reduced T2D risk, contrasting with variants located in a silent region associated with decreased P2RY1 expression and increased T2D risk. Additionally, a P2RY1-specific agonist increased insulin secretion upon glucose stimulation, while the antagonist led to decreased insulin secretion. RNA-seq highlighted TXNIP as one of the main transcriptomic markers of insulin secretion triggered by P2RY1 agonist. CONCLUSION: Our findings suggest that P2RY1 inherited or acquired dysfunction increases T2D risk and that P2RY1 activation stimulates insulin secretion. Selective P2RY1 agonists, impermeable to the blood-brain barrier, could serve as potential insulin secretagogues.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Genômica , Glucose/metabolismo , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo
7.
J Physiol ; 601(19): 4375-4395, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37715703

RESUMO

Our sense of hearing depends on the function of a specialised class of sensory cells, the hair cells, which are found in the organ of Corti of the mammalian cochlea. The unique physiological environment in which these cells operate is maintained by a syncitium of non-sensory supporting cells, which are crucial for regulating cochlear physiology and metabolic homeostasis. Despite their importance for cochlear function, the role of these supporting cells in age-related hearing loss, the most common sensory deficit in the elderly, is poorly understood. Here, we investigated the age-related changes in the expression and function of metabotropic purinergic receptors (P2Y1 , P2Y2 and P2Y4 ) in the supporting cells of the cochlear apical coil. Purinergic signalling in supporting cells is crucial during the development of the organ of Corti and purinergic receptors are known to undergo changes in expression during ageing in several tissues. Immunolabelling and Ca2+ imaging experiments revealed a downregulation of P2Y receptor expression and a decrease of purinergic-mediated calcium responses after early postnatal stages in the supporting cells. An upregulation of P2Y receptor expression was observed in the aged cochlea when compared to 1 month-old adults. The aged mice also had significantly larger calcium responses and displayed calcium oscillations during prolonged agonist applications. We conclude that supporting cells in the aged cochlea upregulate P2Y2 and P2Y4 receptors and display purinergic-induced Ca2+ responses that mimic those observed during pre-hearing stages of development, possibly aimed at limiting or preventing further damage to the sensory epithelium. KEY POINTS: Age-related hearing loss is associated with lower hearing sensitivity and decreased ability to understand speech. We investigated age-related changes in the expression and function of metabotropic purinergic (P2Y) receptors in cochlear non-sensory supporting cells of mice displaying early-onset (C57BL/6N) and late-onset (C3H/HeJ) hearing loss. The expression of P2Y1 , P2Y2 and P2Y4 receptors in the supporting cells decreased during cochlear maturation, but that of P2Y2 and P2Y4 was upregulated in the aged cochlea. P2Y2 and P2Y4 receptors were primarily responsible for the ATP-induced Ca2+ responses in the supporting cells. The degree of purinergic expression upregulation in aged supporting cells mirrored hearing loss progression in the different mouse strains. We propose that the upregulation of purinergic-mediated signalling in the aged cochlea is subsequent to age-related changes in the hair cells and may act as a protective mechanism to limit or to avoid further damage to the sensory epithelium.


Assuntos
Cálcio , Perda Auditiva , Humanos , Camundongos , Animais , Idoso , Lactente , Cálcio/metabolismo , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P2Y , Receptores Purinérgicos P2Y2 , Receptores Purinérgicos P2Y1 , Trifosfato de Adenosina/fisiologia , Mamíferos/metabolismo
8.
J Thromb Haemost ; 21(7): 1891-1902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958516

RESUMO

BACKGROUND: The hemostatic plug formation at sites of vascular injury is strongly dependent on rapid platelet activation and integrin-mediated adhesion and aggregation. However, to prevent thrombotic complications, platelet aggregate formation must be a self-limiting process. The second-wave mediator adenosine diphosphate (ADP) activates platelets via Gq-coupled P2Y1 and Gi-coupled P2Y12 receptors. After ADP exposure, the P2Y1 receptor undergoes rapid phosphorylation-induced desensitization, a negative feedback mechanism believed to be critical for limiting thrombus growth. OBJECTIVE: The objective of this study was to examine the role of rapid P2Y1 receptor desensitization on platelet function and thrombus formation in vivo. METHODS: We analyzed a novel knock-in mouse strain expressing a P2Y1 receptor variant that cannot be phosphorylated beyond residue 340 (P2Y1340-0P), thereby preventing the desensitization of the receptor. RESULTS: P2Y1340-0P mice followed a Mendelian inheritance pattern, and peripheral platelet counts were comparable between P2Y1340-0P/340-0P and control mice. In vitro, P2Y1340-0P/340-0P platelets were hyperreactive to ADP, showed a robust activation response to the P2Y1 receptor-selective agonist, MRS2365, and did not desensitize in response to repeated ADP challenge. We observed increased calcium mobilization, protein kinase C substrate phosphorylation, alpha granule release, activation of the small GTPase Rap1, and integrin inside-out activation/aggregation. This hyperreactivity, however, did not lead to increased platelet adhesion or excessive plug formation under physiological shear conditions. CONCLUSION: Our studies demonstrate that receptor phosphorylation at the C-terminus is critical for P2Y1 receptor desensitization in platelets and that impaired desensitization leads to increased P2Y1 receptor signaling in vitro. Surprisingly, desensitization of the P2Y1 receptor is not required for limiting platelet adhesion/aggregation at sites of vascular injury, likely because ADP is degraded quickly or washed away in the bloodstream.


Assuntos
Trombose , Lesões do Sistema Vascular , Camundongos , Animais , Agregação Plaquetária , Plaquetas/metabolismo , Hemostasia , Trombose/genética , Trombose/prevenção & controle , Trombose/metabolismo , Difosfato de Adenosina/farmacologia , Integrinas/metabolismo , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo
9.
BMC Biol ; 21(1): 14, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721118

RESUMO

BACKGROUND: Purinergic P2Y1 and P2Y12 receptors (P2Y1-R and P2Y12-R) are G protein-coupled receptors (GPCR) activated by adenosine diphosphate (ADP) to mediate platelet activation, thereby playing a pivotal role in hemostasis and thrombosis. While P2Y12-R is the major target of antiplatelet drugs, no P2Y1-R antagonist has yet been developed for clinical use. However, accumulating data suggest that P2Y1-R inhibition would ensure efficient platelet inhibition with minimal effects on bleeding. In this context, an accurate characterization of P2Y1-R antagonists constitutes an important preliminary step. RESULTS: Here, we investigated the pharmacology of P2Y1-R signaling through Gq and ß-arrestin pathways in HEK293T cells and in mouse and human platelets using highly sensitive resonance energy transfer-based technologies (BRET/HTRF). We demonstrated that at basal state, in the absence of agonist ligand, P2Y1-R activates Gq protein signaling in HEK293T cells and in mouse and human platelets, indicating that P2Y1-R is constitutively active in physiological conditions. We showed that P2Y1-R also promotes constitutive recruitment of ß-arrestin 2 in HEK293T cells. Moreover, the P2Y1-R antagonists MRS2179, MRS2279 and MRS2500 abolished the receptor dependent-constitutive activation, thus behaving as inverse agonists. CONCLUSIONS: This study sheds new light on P2Y1-R pharmacology, highlighting for the first time the existence of a constitutively active P2Y1-R population in human platelets. Given the recent interest of P2Y12-R constitutive activity in patients with diabetes, this study suggests that modification of constitutive P2Y1-R signaling might be involved in pathological conditions, including bleeding syndrome or high susceptibility to thrombotic risk. Thus, targeting platelet P2Y1-R constitutive activation might be a promising and powerful strategy for future antiplatelet therapy.


Assuntos
Agonismo Inverso de Drogas , Proteínas de Ligação ao GTP , Receptores Purinérgicos P2Y1 , Transdução de Sinais , beta-Arrestina 2 , Animais , Humanos , Camundongos , beta-Arrestina 2/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Receptores Purinérgicos P2Y1/metabolismo , Plaquetas
10.
Cardiovasc Res ; 119(1): 252-267, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35420120

RESUMO

AIM: The importance of endothelial cell (EC) autophagy to vascular homeostasis in the context of health and disease is evolving. Earlier, we reported that intact EC autophagy is requisite to maintain shear-stress-induced nitric oxide (NO) generation via glycolysis-dependent purinergic signalling to endothelial NO synthase (eNOS). Here, we illustrate the translational and functional significance of these findings. METHODS AND RESULTS: First, we assessed translational relevance using older male humans and mice that exhibit blunted EC autophagy and impaired arterial function vs. adult controls. Active hyperaemia evoked by rhythmic handgrip exercise-elevated radial artery shear-rate similarly from baseline in adult and older subjects for 60 min. Compared with baseline, indexes of autophagy initiation, p-eNOSS1177 activation, and NO generation, occurred in radial artery ECs obtained from adult but not older volunteers. Regarding mice, indexes of autophagy and p-eNOSS1177 activation were robust in ECs from adult but not older animals that completed 60-min treadmill-running. Furthermore, 20 dyne • cm2 laminar shear stress × 45-min increased autophagic flux, glycolysis, ATP production, and p-eNOSS1177 in primary arterial ECs obtained from adult but not older mice. Concerning functional relevance, we next questioned whether the inability to initiate EC autophagy, glycolysis, and p-eNOSS1177in vitro precipitates arterial dysfunction ex vivo. Compromised intraluminal flow-mediated vasodilation displayed by arteries from older vs. adult mice was recapitulated in vessels from adult mice by (i) NO synthase inhibition; (ii) acute autophagy impairment using 3-methyladenine (3-MA); (iii) EC Atg3 depletion (iecAtg3KO mice); (iv) purinergic 2Y1-receptor (P2Y1-R) blockade; and (v) germline depletion of P2Y1-Rs. Importantly, P2Y1-R activation using 2-methylthio-ADP (2-Me-ADP) improved vasodilatory capacity in arteries from (i) adult mice treated with 3-MA; (ii) adult iecAtg3KO mice; and (iii) older animals with repressed EC autophagy. CONCLUSIONS: Arterial dysfunction concurrent with pharmacological, genetic, and age-associated EC autophagy compromise is improved by activating P2Y1-Rs.


Assuntos
Artérias , Força da Mão , Adulto , Humanos , Masculino , Animais , Camundongos , Receptores Purinérgicos P2Y1 , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase , Autofagia , Óxido Nítrico
11.
Purinergic Signal ; 19(1): 55-68, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35094240

RESUMO

Depression is a common neuropsychiatric disorder with high incidence and disability. Electroacupuncture (EA) is effective in the treatment of depression. However, the underlying mechanisms are not fully understood. Social isolation stress during post-weaning period can impair purinergic signaling in the brain of rodents and has emerged as a major risk factor for depression. The purpose of this study was to investigate the involvement of P2Y1 receptor (P2Y1R) in the antidepressant-like effects of EA. In this study, C57BL/6 mice were randomly assigned to group-housed (GH) or social isolated (SI) groups at post-natal day 21. After 6 weeks of social isolation, EA was performed on acupoints "Bai-hui" (GV20) and "Yin-tang" (GV29), or non-acupoints for 4 weeks. The SI mice received either intracerebroventricular injection of a selective P2Y1R agonist, MRS2365 (1 nmol); or a selective P2Y1R antagonist, MRS2179 (2 µmol), before and after EA. We found that SI mice exhibited depression-like behaviors accompanied with anxiety-like behaviors. The expressions of P2Y1R were well co-localized with GFAP-positive astrocytes and increased in the prefrontal cortex and hippocampus of SI mice. After treated with MRS2179, the depression-like behaviors of SI mice were attenuated, but not with MRS2365. Meanwhile, we found that EA could attenuate social isolation caused depression- and anxiety-like behaviors, and inhibited the up-regulation of P2Y1R in the prefrontal cortex and hippocampus of SI mice. Notably, the positive effects of EA on depression-like behaviors of SI mice could be reversed by MRS2365, while MRS2365 had no effect on the anxiolytic-like effects of EA. Therefore, we provide new evidence that EA could ameliorate depression- and anxiety-like behaviors in social isolation stress mice, and P2Y1R was involved in the antidepressant-like effects of EA.


Assuntos
Eletroacupuntura , Camundongos , Animais , Receptores Purinérgicos P2Y1/metabolismo , Camundongos Endogâmicos C57BL , Antidepressivos , Hipocampo/metabolismo , Receptores Purinérgicos/metabolismo , Isolamento Social
12.
Purinergic Signal ; 19(1): 265-272, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34981330

RESUMO

Atherosclerosis is the main pathological basis of cardiovascular disease and involves damage to vascular endothelial cells (ECs) that results in endothelial dysfunction (ED). The vascular endothelium is the key to maintaining blood vessel health and homeostasis. ED is a complex pathological process involving inflammation, shear stress, vascular tone, adhesion of leukocytes to ECs, and platelet aggregation. The activation of P2X4, P2X7, and P2Y2 receptors regulates vascular tone in response to shear stress, while activation of the A2A, P2X4, P2X7, P2Y1, P2Y2, P2Y6, and P2Y12 receptors promotes the secretion of inflammatory cytokines. Finally, P2X1, P2Y1, and P2Y12 receptor activation regulates platelet activity. These purinergic receptors mediate ED and participate in atherosclerosis. In short, P2X4, P2X7, P2Y1, and P2Y12 receptors are potential therapeutic targets for atherosclerosis.


Assuntos
Aterosclerose , Receptores Purinérgicos P2 , Humanos , Células Endoteliais , Receptores Purinérgicos , Endotélio Vascular , Receptores Purinérgicos P2Y1
13.
Purinergic Signal ; 19(1): 305-313, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35902482

RESUMO

Muscle regeneration is indispensable for skeletal muscle health and daily life when injury, muscular disease, and aging occur. Among the muscle regeneration, muscle stem cells' (MuSCs) activation, proliferation, and differentiation play a key role in muscle regeneration. Purines bind to its specific receptors during muscle development, which transmit environmental stimuli and play a crucial role of modulator of muscle regeneration. Evidences proved P2R expression during development and regeneration of skeletal muscle, both in human and mouse. In contrast to P2XR, which have been extensively investigated in skeletal muscles, the knowledge of P2YR in this tissue is less comprehensive. This review summarized muscle regeneration via P2Y1R and P2Y2R and speculated that P2Y1R and P2Y2R might be potential molecular triggers for MuSCs' activation and proliferation via the p-ERK1/2 and PLC pathways, explored their cascade effects on skeletal muscle, and proposed P2Y1/2 receptors as potential pharmacological targets in muscle regeneration, to advance the purinergic signaling within muscle and provide promising strategies for alleviating muscular disease.


Assuntos
Músculo Esquelético , Doenças Musculares , Animais , Humanos , Camundongos , Diferenciação Celular , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Regeneração/fisiologia , Transdução de Sinais , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y2/metabolismo
14.
Purinergic Signal ; 18(4): 515-528, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018534

RESUMO

Pulmonary vascular tone is modulated by nucleotides, but which P2 receptors mediate these actions is largely unclear. The aim of this study, therefore, was to use subtype-selective antagonists to determine the roles of individual P2Y receptor subtypes in nucleotide-evoked pulmonary vasodilation and vasoconstriction. Isometric tension was recorded from rat intrapulmonary artery rings (i.d. 200-500 µm) mounted on a wire myograph. Nucleotides evoked concentration- and endothelium-dependent vasodilation of precontracted tissues, but the concentration-response curves were shallow and did not reach a plateau. The selective P2Y2 antagonist, AR-C118925XX, inhibited uridine 5'-triphosphate (UTP)- but not adenosine 5'-triphosphate (ATP)-evoked relaxation, whereas the P2Y6 receptor antagonist, MRS2578, had no effect on UTP but inhibited relaxation elicited by uridine 5'-diphosphate (UDP). ATP-evoked relaxations were unaffected by the P2Y1 receptor antagonist, MRS2179, which substantially inhibited responses to adenosine 5'-diphosphate (ADP), and by the P2Y12/13 receptor antagonist, cangrelor, which potentiated responses to ADP. Both agonists were unaffected by CGS1593, an adenosine receptor antagonist. Finally, AR-C118925XX had no effect on vasoconstriction elicited by UTP or ATP at resting tone, although P2Y2 receptor mRNA was extracted from endothelium-denuded tissues using reverse transcription polymerase chain reaction with specific oligonucleotide primers. In conclusion, UTP elicits pulmonary vasodilation via P2Y2 receptors, whereas UDP acts at P2Y6 and ADP at P2Y1 receptors, respectively. How ATP induces vasodilation is unclear, but it does not involve P2Y1, P2Y2, P2Y12, P2Y13, or adenosine receptors. UTP- and ATP-evoked vasoconstriction was not mediated by P2Y2 receptors. Thus, this study advances our understanding of how nucleotides modulate pulmonary vascular tone.


Assuntos
Artéria Pulmonar , Vasodilatação , Ratos , Animais , Uridina Trifosfato/farmacologia , Difosfatos/farmacologia , Trifosfato de Adenosina/farmacologia , Difosfato de Uridina/farmacologia , Uridina/farmacologia , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y2
15.
Cell Mol Life Sci ; 79(8): 457, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907034

RESUMO

The contribution of astrocytes to Alzheimer's disease (AD) is still ill defined. AD involves an abnormal accumulation of amyloid-ß peptides (Aß) and increased production of danger signals such as ATP. ATP can direct or indirectly, through its metabolism into adenosine, trigger adaptive astrocytic responses resulting from intracellular Ca2+ oscillations. AD also triggers an upregulation of astrocytic adenosine A2A receptors (A2AR), which blockade prevents memory dysfunction in AD. We now investigated how Aß peptides affect ATP-mediated Ca2+ responses in astrocytes measured by fluorescence live-cell imaging and whether A2AR control astrocytic Ca2+ responses mediated by ATP receptors, mainly P2X7R and P2Y1R. In primary cultures of rat astrocytes exposed to Aß1-42, ATP-evoked Ca2+ responses had a lower amplitude but a longer duration than in control astrocytes and involved P2X7R and P2Y1R, the former potentiating the later. Moreover, Aß1-42 exposure increased protein levels of P2Y1R in astrocytes. A2AR antagonism with SCH58261 controlled in a protein kinase A-dependent manner both P2X7R- and P2Y1R-mediated Ca2+ responses in astrocytes. The interplay between these purinoceptors in astrocytes was blunted upon exposure to Aß1-42. These findings uncover the ability of A2AR to regulate the inter-twinned P2X7R- and P2Y1R-mediated Ca2+ dynamics in astrocytes, which is disrupted in conditions of early AD.


Assuntos
Doença de Alzheimer , Astrócitos , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Fragmentos de Peptídeos , Ratos , Receptor A2A de Adenosina/metabolismo , Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2Y1
16.
Platelets ; 33(8): 1301-1306, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35514261

RESUMO

Platelet activation by adenosine diphosphate (ADP) is mediated through two G-protein-coupled receptors, P2Y1 and P2Y12, which signal through Gq and Gi, respectively. P2Y1 stimulation leads to phospholipase C activation and an increase in cytosolic calcium necessary for CalDAG-GEF1 activation. Engagement of P2Y12 inhibits adenylate cyclase, which reduces cAMP, and activation of PI3-kinase, which inhibits RASA3 resulting in sustained activated Rap1b. In this study we activated human platelets with 2-MeSADP in the presence of LY294002, a PI3-kinase inhibitor, AR-C69931MX, a P2Y12 antagonist or MRS2179, a P2Y1 antagonist. We measured the phosphorylation of Akt on Ser473 as an indicator of PI3-kinase activity. As previously shown, LY294002 and ARC69931MX abolished 2MeSADP-induced Akt phosphorylation. MRS2179 reduced ADP-induced Akt phosphorylation but did not abolish it. Rap1b activation, however, was only reduced, but not ablated, using LY294002 and was completely inhibited by ARC69931MX or MRS2179. Furthermore, 2MeSADP-induced Rap1b activation was abolished in either P2Y1 or P2Y12 null platelets. These data suggest that ADP-induced Rap1b activation requires both P2Y1 and P2Y12. In addition, although stimulation of P2Y12 results in PI3-kinase activation leading to Akt phosphorylation and Rap1b activation, Rap1b activation can occur independently of PI3-kinase downstream of P2Y12. Thus, we propose that the P2Y12 receptor can regulate Rap1b, possibly through RASA3, in a pathway independent of PI3-kinase.


Assuntos
Fosfatidilinositol 3-Quinases , Receptores Purinérgicos P2 , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Adenilil Ciclases/metabolismo , Plaquetas/metabolismo , Cálcio/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antagonistas do Receptor Purinérgico P2Y , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Tionucleotídeos , Fosfolipases Tipo C/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo
17.
Thromb Res ; 211: 88-97, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35134667

RESUMO

INTRODUCTION: The combination index (CI), a common quantitative indicator of the degree of synergy/antagonism, may be determined using different regression methods. However, any analysis with constraints has the potential for underestimating the combined effect of multiple drugs. OBJECTIVES: This in vitro study describes the combined effects of selected platelet antagonists on ADP-induced platelet activation in different regression models. METHODS: The inhibitory effects of P2Y12 receptor antagonists in combination with P2Y1 receptor antagonists (i.e. cangrelor with MRS 2279, prasugrel metabolite with MRS 2179 and PSB 0739 with MRS 2179) were characterized with the aid of three software packages: CompuSyn (for linear regression with constraints), CISNE (for non-linear regression with constraints) and GraphPad Prism (for non-linear regression without constraints). The synergism between P2Y12 and P2Y1 inhibitors was quantified by CI and synergy area. RESULTS: MRS 2279 and MRS 2179 were found to act synergistically with selected P2Y12 receptor antagonists to potentiate their antiplatelet effect. The models of regression with constraints, linear regression in particular, demonstrated a worse fit for experimental data than non-linear regression without constraints; this resulted in an incorrect estimation of the combined effects of two antiplatelet drugs, i.e., underestimating the CI and overestimating the synergy area. Also, the synergy area was found to better reflect the differences among models than the CI. CONCLUSIONS: These findings suggest that non-linear regression without constraints offers more precise quantitative determination of combined effects between two drugs compared to the regression models with constraints.


Assuntos
Ativação Plaquetária , Agregação Plaquetária , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Plaquetas/metabolismo , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Cloridrato de Prasugrel/farmacologia , Cloridrato de Prasugrel/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo
18.
Apoptosis ; 27(3-4): 283-295, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35129730

RESUMO

P2Y receptors belong to the large superfamily of G-protein-coupled receptors and play a crucial role in cell death and survival. P2Y1 receptor has been identified as a marker for prostate cancer (PCa). A previously unveiled selective P2Y1 receptor agonist, the indoline-derived HIC (1-(1-((2-hydroxy-5-nitrophenyl)(4-hydroxyphenyl)methyl)indoline-4-carbonitrile), induces a series of molecular and biological responses in PCa cells PC3 and DU145, but minimal toxicity to normal cells. Here, we evaluated the combinatorial effect of HIC with abiraterone acetate (AA) targeted on androgen receptor (AR) on the inhibition of PCa cells. Here, the presence of HIC and AA significantly inhibited cell proliferation of PC3 and DU145 cells with time-dependent manner as a synerfistic combination. Moreover, it was also shown that the anticancer and antimetastasis effects of the combinratorial drugs were noticed through a decrease in colony-forming ability, cell migration, and cell invasion. In addition, the HIC + AA induced apoptotic population of PCa cells as well as cell cycle arrest in G1 progression phase. In summary, these studies show that the combination of P2Y1 receptor agonist, HIC and AR inhibitor, AA, effectively improved the antitumor activity of each drug. Thus, the combinatorial model of HIC and AA should be a novel and promising therapeutic strategy for treating prostate cancer.


Assuntos
Acetato de Abiraterona , Neoplasias da Próstata , Agonistas do Receptor Purinérgico P2Y , Acetato de Abiraterona/farmacologia , Acetato de Abiraterona/uso terapêutico , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Indóis/análise , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Agonistas do Receptor Purinérgico P2Y/uso terapêutico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Purinérgicos P2Y1
19.
Elife ; 112022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188462

RESUMO

The mammalian circadian clock drives daily oscillations in physiology and behavior through an autoregulatory transcription feedback loop present in central and peripheral cells. Ablation of the core clock within the endocrine pancreas of adult animals impairs the transcription and splicing of genes involved in hormone exocytosis and causes hypoinsulinemic diabetes. Here, we developed a genetically sensitized small-molecule screen to identify druggable proteins and mechanistic pathways involved in circadian ß-cell failure. Our approach was to generate ß-cells expressing a nanoluciferase reporter within the proinsulin polypeptide to screen 2640 pharmacologically active compounds and identify insulinotropic molecules that bypass the secretory defect in CRISPR-Cas9-targeted clock mutant ß-cells. We validated hit compounds in primary mouse islets and identified known modulators of ligand-gated ion channels and G-protein-coupled receptors, including the antihelmintic ivermectin. Single-cell electrophysiology in circadian mutant mouse and human cadaveric islets revealed ivermectin as a glucose-dependent secretagogue. Genetic, genomic, and pharmacological analyses established the P2Y1 receptor as a clock-controlled mediator of the insulinotropic activity of ivermectin. These findings identify the P2Y1 purinergic receptor as a diabetes target based upon a genetically sensitized phenotypic screen.


Circadian rhythms ­ 'inbuilt' 24-hour cycles ­ control many aspects of behaviour and physiology. In mammals, they operate in nearly all tissues, including those involved in glucose metabolism. Recent studies have shown that mice with faulty genes involved in circadian rhythms, the core clock genes, can develop diabetes. Diabetes arises when the body struggles to regulate blood sugar levels. In healthy individuals, the hormone insulin produced by beta cells in the pancreas regulates the amount of sugar in the blood. But when beta cells are faulty and do not generate sufficient insulin levels, or when insulin lacks the ability to stimulate cells to take up glucose, diabetes can develop. Marcheva, Weidemann, Taguchi et al. wanted to find out if diabetes caused by impaired clock genes could be treated by targeting pathways regulating the secretion of insulin. To do so, they tested over 2,500 potential drugs on genetically modified beta cells with faulty core clock genes. They further screened the drugs on mice with the same defect in their beta cells. Marcheva et al. identified one potential compound, the anti-parasite drug ivermectin, which was able to restore the secretion of insulin. When ivermectin was applied to both healthy mice and mice with faulty beta cells, the drug improved the control over glucose levels by activating a specific protein receptor that senses molecules important for storing and utilizing energy. The findings reveal new drug targets for treating forms of diabetes associated with deregulation of the pancreatic circadian clock. The drug screening strategy used in the study may also be applied to reveal mechanisms underlying other conditions associated with disrupted circadian clocks, including sleep loss and jetlag.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Fatores de Transcrição ARNTL , Animais , Linhagem Celular , Relógios Circadianos , Ritmo Circadiano , Criptocromos/genética , Criptocromos/metabolismo , Diabetes Mellitus/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Ensaios de Triagem em Larga Escala , Homeostase , Humanos , Insulina/metabolismo , Células Secretoras de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Bioengineered ; 13(2): 2346-2359, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35034579

RESUMO

Mechanical ventilation can induce lung injury and exacerbate brain injury due to lung-brain interaction. The current study sought to investigate the mechanism of lung-brain interaction induced by mechanical ventilation and offer theoretical insight into the management of ventilator-induced brain injury. The experimental mice were assigned into the spontaneously breathing group and the mechanical ventilation group and injected with dopamine (DA) receptor antagonist haloperidol or P2Y1 receptor antagonist MRS2279 before ventilation. In vitro assay was conducted using lung epithelial cells MLE-12 hippocampal neuron cells and HT-22. Mouse recognition function and lung injury were examined. The condition and concentration of neurons in the hippocampus were observed. The levels of several inflammatory factors, DA, adenosine triphosphate (ATP), P2Y1R, and dysbindin-1 were detected. Mechanical ventilation induced lung and brain injury in mice, manifested in increased inflammatory factors in the bronchoalveolar lavage fluid and hippocampus, prolonged escape latency, and swimming distance and time in the target quadrant with a weakened concentration of neurons in the hippocampus. Our results presented elevated ATP and P2Y1R expressions in the mechanically ventilated mice and stretched MLE-12 cells. The mechanically ventilated mice and P2Y1 receptor activator MRS2365-treated HT-22 cells presented with elevated levels of DA and dysbindin-1. Inactivation of P2Y1 receptor in the hippocampus or blockage of DA receptor alleviated brain injury induced by mechanical ventilation in mice. To conclude, the current study elicited that lung injury induced by mechanical ventilation exacerbated brain injury in mice by increasing ATP production, activating the P2Y1 receptor, and thus promoting DA release.


Assuntos
Trifosfato de Adenosina/metabolismo , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Pulmão/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...