Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
J Neuroendocrinol ; 35(11): e13354, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37946684

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) and the homologous peptide, vasoactive intestinal peptide (VIP), participate in glucose homeostasis using insulinotropic and counterregulatory processes. The role of VIP receptor 2 (VPAC2R) in these opposing actions needs further characterization. In this study, we examined the participation of VPAC2R on basal glycemia, fasted levels of glucoregulatory hormones and on glycemia responses during metabolic and psychogenic stress using gene-deleted (Vipr2-/- ) female mice. The mean basal glycemia was significantly greater in Vipr2-/- in the fed state and after an 8-h overnight fast as compared to wild-type (WT) mice. Insulin tolerance testing following a 5-h fast (morning fast, 0.38 U/kg insulin) indicated no effect of genotype. However, during a more intense metabolic challenge (8 h, ON fast, 0.25 U/kg insulin), Vipr2-/- females displayed significantly impaired insulin hypoglycemia. During immobilization stress, the hyperglycemic response and plasma epinephrine levels were significantly elevated above basal in Vipr2-/- , but not WT mice, in spite of similar stress levels of plasma corticosterone. Together, these results implicate participation of VPAC2R in upregulated counterregulatory processes influenced by enhanced sympathoexcitation. Moreover, the suppression of plasma GLP-1 levels in Vipr2-/- mice may have removed the inhibition on hepatic glucose production and the promotion of glucose disposal by GLP-1. qPCR analysis indicated deregulation of central gene markers of PACAP/VIP signaling in Vipr2-/- , upregulated medulla tyrosine hydroxylase (Th) and downregulated hypothalamic Vip transcripts. These results demonstrate a physiological role for VPAC2R in glucose metabolism, especially during insulin challenge and psychogenic stress, likely involving the participation of sympathoadrenal activity and/or metabolic hormones.


Assuntos
Receptores do Hormônio Hipofisário , Receptores de Peptídeo Intestinal Vasoativo , Camundongos , Feminino , Animais , Receptores de Peptídeo Intestinal Vasoativo/genética , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Deleção de Genes , Peptídeo Intestinal Vasoativo/metabolismo , Insulina/metabolismo , Glucose , Peptídeo 1 Semelhante ao Glucagon , Receptores do Hormônio Hipofisário/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética
2.
J Mol Neurosci ; 73(9-10): 724-737, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37646964

RESUMO

Previous evidence shows that rapid changes occur in the brain following spinal cord injury (SCI). Here, we interrogated the expression of the neuropeptides pituitary adenylyl cyclase-activating peptide (PACAP), vasoactive intestinal peptides (VIP), and their binding receptors in the rat brain 24 h following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebrate (SCI group); the other half underwent sham surgery (sham group). Twenty-four hours post-surgery, the hypothalamus, thalamus, amygdala, hippocampus (dorsal and ventral), prefrontal cortex, and periaqueductal gray were collected. PACAP, VIP, PAC1, VPAC1, and VPAC2 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, PACAP expression was increased in the hypothalamus (104-141% vs sham) and amygdala (138-350%), but downregulated in the thalamus (35-95%) and periaqueductal gray (58-68%). VIP expression was increased only in the thalamus (175-385%), with a reduction in the amygdala (51-68%), hippocampus (40-75%), and periaqueductal gray (74-76%). The expression of the PAC1 receptor was the least disturbed by SCI, with decrease expression in the ventral hippocampus (63-68%) only. The expression levels of VPAC1 and VPAC2 receptors were globally reduced, with more prominent reductions of VPAC1 vs VPAC2 in the amygdala (21-70%) and ventral hippocampus (72-75%). In addition, VPAC1 downregulation also extended to the dorsal hippocampus (69-70%). These findings demonstrate that as early as 24 h post-SCI, there are region-specific disruptions of PACAP, VIP, and related receptor transcript and protein levels in supraspinal regions controlling higher cognitive functions.


Assuntos
Receptores do Hormônio Hipofisário , Traumatismos da Medula Espinal , Feminino , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ratos Sprague-Dawley , Receptores do Hormônio Hipofisário/genética , Receptores do Hormônio Hipofisário/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Traumatismos da Medula Espinal/metabolismo , Encéfalo/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166593, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36328148

RESUMO

Pregnancy outcome relies on the maintenance of immune and metabolic homeostasis at the maternal fetal interface. Maternal and perinatal morbidity and mortality is associated with impaired placental development. Multiple regulatory effects of the endogenous-produced vasoactive intestinal peptide (VIP) on vascular, metabolic and immune functions at the maternal-fetal interface have been reported. Here we studied the involvement of the two primary high affinity receptors for VIP (VPAC1 and VPAC2) on maternal immune response, placental homeostasis and pregnancy outcome. Targeted disruption of each receptor gene led to altered placental structure, vascular and trophoblast functional markers and shaped the functional profiles of macrophages and neutrophils towards a proinflammatory state. Several changes in pregnant mice were receptor specific: ROS production elicited by VIP on neutrophils was selectively dependent on the presence of VPAC1 whereas apoptosis rate was associated with the VPAC2 deletion. In peritoneal macrophages from pregnant mice, levels of MHC-II, TLR2, and IL-10 were selectively altered in VPAC2 receptor-deficient mice, whereas IL-6 gene expression was reduced only in mice lacking VPAC1 receptors. Additionally, MMP9 mRNA in isolated TGCs was reduced in VPAC2 receptor deleted mice, while the percentage of IL-12 cells in post-phagocytosis macrophage cultures was selectively reduced in VPAC2 receptor deficient mice. The results indicate that manipulation of VPAC1 and VPAC2 receptor affects immune, vascular and metabolic environment at the maternal fetal interface. These mouse models offer new approaches to study pregnancy complications adding new perspectives to the development of VPAC receptor-selective drugs.


Assuntos
Complicações na Gravidez , Resultado da Gravidez , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Trofoblastos , Animais , Feminino , Camundongos , Gravidez , Placenta/metabolismo , Resultado da Gravidez/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Trofoblastos/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Deleção de Genes , Complicações na Gravidez/genética , Complicações na Gravidez/imunologia
4.
Mol Vis ; 29: 266-273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38222453

RESUMO

Clinical relevance: Identification of individuals with a higher risk of developing refractive error under specific gene and environmental backgrounds, especially myopia, could enable more personalized myopic control advice for patients. Background: Refractive error is a common disease that affects visual quality and ocular health worldwide. Its mechanisms have not been elaborated, although both genes and the environment are known to contribute to the process. Interactions between genes and the environment have been shown to exert effects on the onset of refractive error, especially myopia. Axial length elongation is the main characteristic of myopia development and could indicate the severity of myopia. Thus, the purpose of the study was to investigate the interaction between environmental factors and genetic markers of VIPR2 and their impact on spherical equivalence and axial length in a population of Han Chinese children. Methods: A total of 1825 children aged 13~15 years in the Anyang Childhood Eye Study (ACES) were measured for cycloplegic autorefraction, axial length, and height. Saliva DNA was extracted for genotyping three single-nucleotide polymorphisms (SNPs) in the candidate gene (VIPR2). The median outdoor time (2 h/day) was used to categorize children into high and low exposure groups, respectively. Genetic quality control and linear and logistic regressions were performed. Generalized multifactor dimensional reduction (GMDR) was used to investigate gene-environment interactions. Results: There were 1391 children who passed genetic quality control. Rs2071623 of VIPR2 was associated with axial length (T allele, ß=-0.11 se=0.04 p=0.006), while SNP nominally interacted with outdoor time (T allele, ß=-0.17 se=0.08 p=0.029). Rs2071623 in children with high outdoor exposure had a significant interaction effect on axial length (p=0.0007, ß=-0.19 se=0.056) compared to children with low outdoor exposure. GMDR further suggested the existence of an interaction effect between outdoor time and rs2071623. Conclusions: Rs2071623 within VIPR2 could interact with outdoor time in Han Chinese children. More outdoor exposure could enhance the protective effect of the T allele on axial elongation.


Assuntos
Miopia , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Refração Ocular , Humanos , Comprimento Axial do Olho , China/epidemiologia , Olho , Miopia/genética , Polimorfismo de Nucleotídeo Único , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Adolescente
5.
Jpn J Ophthalmol ; 66(6): 504-510, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36181643

RESUMO

PURPOSE: To evaluate the association between central serous chorioretinopathy (CSC) susceptibility genes and choroidal parameters in a large Japanese cohort. STUDY DESIGN: Retrospective cohort study. METHODS: Of the 9850 individuals in the Nagahama study whose second visit was between 2013 and 2016, those with optical coherence tomography (OCT) images with enhanced depth imaging (EDI), axial length, and genome-wide single nucleotide polymorphism (SNP) genotyping data were included. We calculated subfoveal choroidal thickness (SFCT), choroidal vascularity index (CVI), normalized choroidal intensity (NCI), and vertical asymmetry of choroidal thickness. Genome-wide quantitative trait locus (QTL) analyses were performed for each parameter. We screened for four CSC susceptibility SNPs: CFH rs800292, TNFRSF10A rs13278062, GATA5 rs6061548, and VIPR2 rs3793217. Whenever an SNP was not included in the genotyping data after quality control, its proxy SNP was selected. RESULTS: In total, 4586 participants were evaluated. CFH rs800292 was significantly associated with SFCT (P < 0.001) and CVI (P < 0.001). VIPR2 rs3793217 was significantly associated with SFCT (P < 0.001) but not with CVI. Whereas, TNFRSF10A rs13254617 and GATA5 rs6061548 were not significantly associated with SFCT or CVI. None of these SNPs was associated with NCIEDI and asymmetry of choroidal thickness. CONCLUSION: CFH, VIPR2, TNFRSF10A, and GATA5 showed different association patterns with choroidal parameters. Although the mechanism of CSC pathogenesis by choroidal changes is not fully understood, this finding suggests that each gene may be involved in different mechanisms of CSC development. Our genetic study provides a basis for understanding the role of CSC susceptibility genes.


Assuntos
Coriorretinopatia Serosa Central , Corioide , Humanos , Coriorretinopatia Serosa Central/diagnóstico , Coriorretinopatia Serosa Central/genética , Corioide/patologia , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética
6.
Psychiatr Genet ; 32(3): 125-130, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35353798

RESUMO

OBJECTIVE: Studies showed that rare copy number variations (CNVs) encompassing the vasoactive intestinal peptide receptor 2 gene (VIPR2) were associated with schizophrenia, indicating VIPR2 is a risk gene for schizophrenia. We hypothesized that besides CNV, rare pathogenic single-nucleotide variant (SNV) or small insertion/deletion (Indel) of VIPR2 might be present in some patients and contribute to the pathogenesis of schizophrenia. METHODS: We performed genome-wide CNV analysis to screen CNV at the VIPR2 locus and targeted sequencing of all the exons of VIPR2 to search for SNV and indel in a sample of patients with chronic schizophrenia from Taiwan. RESULTS: We detected a 230-kb microduplication encompassing the VIPR2 in 1 out of 200 patients. Furthermore, we identified six ultrarare SNVs, including one splicing SNV and five missense SNVs, in 516 patients. In-silico analyses showed these SNVs had a damaging effect on the function of VIPR2. CONCLUSION: Our findings support the idea that besides CNV, rare pathogenic SNVs of VIPR2 might contribute to the pathogenesis of schizophrenia in some patients.


Assuntos
Receptores Tipo II de Peptídeo Intestinal Vasoativo , Esquizofrenia , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Humanos , Mutação , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Esquizofrenia/genética , Taiwan
7.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216232

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a broadly expressed neuropeptide which has diverse effects in both the peripheral and central nervous systems. While its neuroprotective effects have been shown in a variety of disease models, both animal and human data support the role of PACAP in migraine generation. Both PACAP and its truncated derivative PACAP(6-38) increased calcium influx in rat trigeminal ganglia (TG) primary sensory neurons in most experimental settings. PACAP(6-38), however, has been described as an antagonist for PACAP type I (known as PAC1), and Vasoactive Intestinal Polypeptide Receptor 2 (also known as VPAC2) receptors. Here, we aimed to compare the signaling pathways induced by the two peptides using transcriptomic analysis. Rat trigeminal ganglion cell cultures were incubated with 1 µM PACAP-38 or PACAP(6-38). Six hours later RNA was isolated, next-generation RNA sequencing was performed and transcriptomic changes were analyzed to identify differentially expressed genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. We found 200 common differentially expressed (DE) genes for these two neuropeptides. Both PACAP-38 and PACAP(6-38) treatments caused significant downregulation of NADH: ubiquinone oxidoreductase subunit B6 and upregulation of transient receptor potential cation channel, subfamily M, member 8. The common signaling pathways induced by both peptides indicate that they act on the same target, suggesting that PACAP activates trigeminal primary sensory neurons via a mechanism independent of the identified and cloned PAC1/VPAC2 receptor, either via another target structure or a different splice variant of PAC1/VPAC2 receptors. Identification of the target could help to understand key mechanisms of migraine.


Assuntos
Mitocôndrias/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Transcriptoma/efeitos dos fármacos , Gânglio Trigeminal/efeitos dos fármacos , Animais , Células Cultivadas , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Mitocôndrias/genética , Doenças Neuroinflamatórias/genética , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/genética
8.
J Med Genet ; 59(1): 88-100, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33318135

RESUMO

BACKGROUND: Myopia is the leading cause of refractive errors. As its pathogenesis is poorly understood, we determined if the retinal VIP-VIPR2 signalling pathway axis has a role in controlling signalling output that affects myopia development in mice. METHODS: Association analysis meta-study, single-cell transcriptome, bulk RNA sequencing, pharmacological manipulation and VIPR2 gene knockout studies were used to clarify if changes in the VIP-VIPR2 signalling pathway affect refractive development in mice. RESULTS: The SNP rs6979985 of the VIPR2 gene was associated with high myopia in a Chinese Han cohort (randomceffect model: p=0.013). After either 1 or 2 days' form deprivation (FD) retinal VIP mRNA expression was downregulated. Retinal single-cell transcriptome sequencing showed that VIPR2 was expressed mainly by bipolar cells. Furthermore, the cAMP signalling pathway axis was inhibited in some VIPR2+ clusters after 2 days of FD. The selective VIPR2 antagonist PG99-465 induced relative myopia, whereas the selective VIPR2 agonist Ro25-1553 inhibited this response. In Vipr2 knockout (Vipr2-KO) mice, refraction was significantly shifted towards myopia (p<0.05). The amplitudes of the bipolar cell derived b-waves in 7-week-old Vipr2-KO mice were significantly larger than those in their WT littermates (p<0.05). CONCLUSIONS: Loss of VIPR2 function likely compromises bipolar cell function based on presumed changes in signal transduction due to altered signature electrical wave activity output in these mice. As these effects correspond with increases in form deprivation myopia (FDM), the VIP-VIPR2 signalling pathway axis is a viable novel target to control the development of this condition.


Assuntos
Predisposição Genética para Doença , Miopia/genética , Polimorfismo de Nucleotídeo Único , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Retina/metabolismo , Animais , Povo Asiático/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Miopia/metabolismo , RNA-Seq , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Transdução de Sinais , Análise de Célula Única
9.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884960

RESUMO

Molecular mechanisms underlying the beneficial effect of sitagliptin repurposed for hepatic ischemia-reperfusion injury (IRI) are poorly understood. We aimed to evaluate the impact of IRI and sitagliptin on the hepatic profile of eicosanoids (LC-MS/MS) and expression/concentration (RTqPCR/ELISA) of GLP-1/GLP-1R, SDF-1α/CXCR4 and VIP/VPAC1, VPAC2, and PAC1 in 36 rats. Animals were divided into four groups and subjected to ischemia (60 min) and reperfusion (24 h) with or without pretreatment with sitagliptin (5 mg/kg) (IR and SIR) or sham-operated with or without sitagliptin pretreatment (controls and sitagliptin). PGI2, PGE2, and 13,14-dihydro-PGE1 were significantly upregulated in IR but not SIR, while sitagliptin upregulated PGD2 and 15-deoxy-12,14-PGJ2. IR and sitagliptin non-significantly upregulated GLP-1 while Glp1r expression was borderline detectable. VIP concentration and Vpac2 expression were downregulated in IR but not SIR, while Vpac1 was significantly downregulated solely in SIR. IRI upregulated both CXCR4 expression and concentration, and sitagliptin pretreatment abrogated receptor overexpression and downregulated Sdf1. In conclusion, hepatic IRI is accompanied by an elevation in proinflammatory prostanoids and overexpression of CXCR4, combined with downregulation of VIP/VPAC2. Beneficial effects of sitagliptin during hepatic IRI might be mediated by drug-induced normalization of proinflammatory prostanoids and upregulation of PGD2 and by concomitant downregulation of SDF-1α/CXCR4 and reinstating VIP/VCAP2 signaling.


Assuntos
Hepatopatias/tratamento farmacológico , Prostaglandinas/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Fosfato de Sitagliptina/administração & dosagem , Animais , Quimiocina CXCL12/genética , Cromatografia Líquida , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatopatias/etiologia , Ratos , Receptores CXCR4/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Traumatismo por Reperfusão/complicações , Transdução de Sinais/efeitos dos fármacos , Fosfato de Sitagliptina/farmacologia , Espectrometria de Massas em Tandem , Peptídeo Intestinal Vasoativo/genética
10.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625492

RESUMO

Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Linfócitos/imunologia , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Células Dendríticas/imunologia , Microbioma Gastrointestinal/imunologia , Interleucinas/análise , Tecido Linfoide/citologia , Tecido Linfoide/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR/biossíntese , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Tretinoína/metabolismo , Peptídeo Intestinal Vasoativo/genética , Interleucina 22
11.
Front Endocrinol (Lausanne) ; 12: 737581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539582

RESUMO

VIP/VPAC2-receptor signaling is crucial for functioning of the circadian clock in the suprachiasmatic nucleus (SCN) since the lack results in disrupted synchrony between SCN cells and altered locomotor activity, body temperature, hormone secretion and heart rhythm. Endocrine glands, including the thyroid, show daily oscillations in clock gene expression and hormone secretion, and SCN projections target neurosecretory hypothalamic thyroid-stimulating hormone (TSH)-releasing hormone cells. The aim of the study was to gain knowledge of mechanisms important for regulation of the thyroid clock by evaluating the impact of VIP/VPAC2-receptor signaling. Quantifications of mRNAs of three clock genes (Per1, Per2 and Bmal1) in thyroids of wild type (WT) and VPAC2-receptor deficient mice were done by qPCR. Tissues were taken every 4th h during 24-h 12:12 light-dark (LD) and constant darkness (DD) periods, both genders were used. PER1 immunoreactivity was visualized on sections of both WT and VPAC2 lacking mice during a LD cycle. Finally, TSH and the thyroid hormone T4 levels were measured in the sera by commercial ELISAs. During LD, rhythmic expression of all three mRNA was found in both the WT and knockout animals. In VPAC2-receptor knockout animals, the amplitudes were approximately halved compared to the ones in the WT mice. In the WT, Per1 mRNA peaked around "sunset", Per2 mRNA followed with approximately 2 h, while Bmal1 mRNA was in antiphase with Per1. In the VPAC2 knockout mice, the phases of the mRNAs were advanced approximately 5 h compared to the WT. During DD, the phases of all the mRNAs were identical to the ones found during LD in both groups of mice. PER1 immunoreactivity was delayed compared to its mRNA and peaked during the night in follicular cells of both the thyroid and parathyroid glands in the WT animals. In WT animals, TSH was high around the transition to darkness compared to light-on, while T4 did not change during the 24 h cycle. In conclusion, sustained and identical rhythms (phases and amplitudes) of three clock genes were found in VPAC2 deficient mice during LD and DD suggesting high degree of independence of the thyroid clock from the master SCN clock.


Assuntos
Relógios Circadianos/fisiologia , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Glândula Tireoide/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Tireotropina Subunidade beta/sangue
12.
Anim Reprod Sci ; 225: 106680, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388613

RESUMO

Vasoactive intestinal peptide (VIP) receptor (VPAC1, VPAC2) abundances in the myometrium and functions in the regulation of inflamed uterine contractility in pigs were studied. In the CON group with gilts, only laparotomy was performed. The gilts of SAL- and E. coli-treated groups were administered saline or E. coli into the uterine horns, respectively. The E. coli-induced endometritis resulted in a lesser myometrial relative abundance of VPAC1 and VPAC2 receptor mRNA transcripts and larger abundance of protein for these receptors. In the myometrium, treatment with VIP resulted in a lesser contractility amplitude than in the tissues of the CON- and SAL- and E. coli-treated groups and in frequency in the CON- and E.coli-treated group compared to the period before VIP treatment. Compared to when there was VIP treatment alone, treatment with VPAC1 and VPAC2 receptor antagonists resulted in a lesser inhibitory effect of VIP on contractility amplitude in the myometrium of the CON and SAL-treated groups and there was complete abolishment of the inhibitory VIP effect on frequency of myometrial contractility of the CON group. In the myometrium of E. coli-treated group, treatment with VPAC1 and VPAC2 receptor antagonists resulted in a reversal of the inhibitory effect of VIP on contractility amplitude, while treatment with VPAC2 receptor antagonist resulted in elimination of contractility and a lesser endometrium/myometrium inhibitory effect of VIP on frequency of these contractions. Results indicate VIP functions to decrease myometrial contractility of the inflamed pig uterus by having functions at VPAC1 and VPAC2 receptors.


Assuntos
Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Suínos/fisiologia , Contração Uterina/fisiologia , Animais , Feminino , Regulação da Expressão Gênica , Miométrio/efeitos dos fármacos , Miométrio/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/farmacologia
13.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R116-R128, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146556

RESUMO

The evidence is mounting for a role for abnormal signaling of the stress peptide pituitary adenylate cyclase activating polypeptide (PACAP) and its canonical receptor PAC1 in the pathogenesis of sudden infant death syndrome. In this study, we investigated whether the PACAP receptors PAC1 or VPAC2 are involved in the neonatal cardiorespiratory response to hypercapnic stress. We used head-out plethysmography and surface ECG electrodes to assess cardiorespiratory responses to an 8% hypercapnic challenge in unanesthetized and spontaneously breathing 4-day-old PAC1 or VPAC2 knockout (KO) and wild-type mouse pups. We demonstrate that compared with WTs, breathing frequency (RR) and minute ventilation ([Formula: see text]) in PAC1 KO pups were significantly blunted in response to hypercapnia. Although heart rate was unaltered in PAC1 KO pups during hypercapnia, heart rate recovery posthypercapnia was impaired. In contrast, cardiorespiratory impairments in VPAC2 KO pups were limited to only an overall higher tidal volume (VT), independent of treatment. These findings suggest that PACAP signaling through the PAC1 receptor plays a more important role than signaling through the VPAC2 receptor in neonatal respiratory responses to hypercapnia. Thus deficits in PACAP signaling primarily via PAC1 may contribute to the inability of infants to mount an appropriate protective response to homeostatic stressors in childhood disorders such as SIDS.


Assuntos
Dióxido de Carbono/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Hipercapnia/induzido quimicamente , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Apneia , Peso Corporal , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Hipercapnia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Temperatura
14.
J Neurosci ; 41(3): 502-512, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33234609

RESUMO

Circadian (approximately daily) rhythms pervade mammalian behavior. They are generated by cell-autonomous, transcriptional/translational feedback loops (TTFLs), active in all tissues. This distributed clock network is coordinated by the principal circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). Its robust and accurate time-keeping arises from circuit-level interactions that bind its individual cellular clocks into a coherent time-keeper. Cells that express the neuropeptide vasoactive intestinal peptide (VIP) mediate retinal entrainment of the SCN; and in the absence of VIP, or its cognate receptor VPAC2, circadian behavior is compromised because SCN cells cannot synchronize. The contributions to pace-making of other cell types, including VPAC2-expressing target cells of VIP, are, however, not understood. We therefore used intersectional genetics to manipulate the cell-autonomous TTFLs of VPAC2-expressing cells. Measuring circadian behavioral and SCN rhythmicity in these temporally chimeric male mice thus enabled us to determine the contribution of VPAC2-expressing cells (∼35% of SCN cells) to SCN time-keeping. Lengthening of the intrinsic TTFL period of VPAC2 cells by deletion of the CK1εTau allele concomitantly lengthened the period of circadian behavioral rhythms. It also increased the variability of the circadian period of bioluminescent TTFL rhythms in SCN slices recorded ex vivo Abrogation of circadian competence in VPAC2 cells by deletion of Bmal1 severely disrupted circadian behavioral rhythms and compromised TTFL time-keeping in the corresponding SCN slices. Thus, VPAC2-expressing cells are a distinct, functionally powerful subset of the SCN circuit, contributing to computation of ensemble period and maintenance of circadian robustness. These findings extend our understanding of SCN circuit topology.


Assuntos
Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Periodicidade , Receptores Tipo II de Peptídeo Intestinal Vasoativo/fisiologia , Receptores de Peptídeo Intestinal Vasoativo/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/fisiologia , Animais , Ritmo Circadiano/genética , Retroalimentação Fisiológica , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Proteínas Mutantes Quiméricas/genética , Receptores de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Núcleo Supraquiasmático/fisiologia
15.
Ophthalmic Genet ; 41(1): 41-48, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32166996

RESUMO

Background: To investigate the associations of Single Nucleotide Polymorphisms (SNPs) in the VIPR2 and ZMAT4 genes with high myopia in a Han Chinese population.Materials and Methods: In this case-control genetic association study comprising 193 high myopia participants and 135 normal emmetropic controls from a Han Chinese population, 15 SNPs from the VIPR2 and ZMAT4 genes were selected for genotyping based on previous studies. Allelic frequencies of the SNPs and haplotypes were compared for association with high myopia and axial length (AL).Results: RS885863 (G-reference/A-effect) and RS7829127 (A-reference/G-effect) were significantly associated with high myopia (OR = 1.832, P = .045; OR = 0.539, P = .023 respectively). The associations of RS885863 with high myopia were observed under the dominant (GA+AA: OR = 1.972, P < .05) and co-dominant models (Heterozygous GA: OR = 1.874; Homozygous AA: OR = 5.310; P < .05) against GG (reference). The mean AL of GG was 25.94 mm, compared with that in GA and AA of 26.64 mm and 27.48 mm respectively. The associations of RS7829127 with high myopia were observed under the dominant (AG+GG: OR = 0.512, P < .05) and co-dominant models (Heterozygous AG: OR = 0.524; Homozygous GG: OR = 0.307; P < .05) against AA (reference). The mean AL of AA was 26.35 mm, compared with that in AG and GG of 25.62 mm and 25.17 mm respectively. The importance of RS885863 and RS7829127 were also highlighted by their being the constituent SNPs in the haplotypes (ACGA, P = .002; and GA, P = .008 respectively) that were significantly associated with high myopia.Conclusions: Our findings agree that RS885863 from VIPR2 and RS7829127 from ZMAT4 are significantly associated with high myopia in a Han Chinese population.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Miopia/patologia , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a RNA/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Adulto , Estudos de Casos e Controles , China/epidemiologia , Feminino , Genótipo , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Miopia/epidemiologia , Miopia/genética , Adulto Jovem
16.
Sci Rep ; 9(1): 18165, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796800

RESUMO

Myopia is the commonest eye disorder in the world. High myopes are predisposed to ocular pathologies. The vasoactive intestinal peptide receptor 2 (VIPR2) gene was identified as a myopia susceptibility locus by our group and another group. We continued to fine-map this locus. A case-control study was performed in 4 sequential stages with a total of 941 highly myopic subjects and 846 control subjects, all unrelated Chinese. Stage 1 experimentally genotyped 64.4% of the entire cohort for 152 single-nucleotide polymorphisms (SNPs) and Stage 2 the remaining subjects for 21 SNPs. Stage 3 combined the genotypes for 21 SNPs for the entire cohort, and identified one group of high-risk haplotypes and one group of protective haplotypes significantly associated with high myopia. Stage 4 imputed genotypes for variants in the VIPR2 region and identified two independent groups of variants: one group with high-risk minor alleles and another with protective minor alleles. Variants within each group were generally in strong linkage disequilibrium among themselves while high-risk variants were in linkage equilibrium with protective variants. Therefore, the VIPR2 locus seems to contain variants with opposite effects. This is the first study that has examined the genetic architecture of a myopia susceptibility locus in detail.


Assuntos
Predisposição Genética para Doença/genética , Miopia Degenerativa/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Adulto , Alelos , Povo Asiático/genética , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Genótipo , Haplótipos/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino
17.
PLoS One ; 14(11): e0224399, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31689297

RESUMO

There is a reciprocal relationship between the circadian and the reward systems. Polymorphisms in several circadian rhythm-related (clock) genes were associated with drug addiction. This study aims to search for associations between 895 variants in 39 circadian rhythm-related genes and opioid addiction (OUD). Genotyping was performed with the Smokescreen® array. Ancestry was verified by principal/MDS component analysis and the sample was limited to European Americans (EA) (OUD; n = 435, controls; n = 138). Nominally significant associations (p < 0.01) were detected for several variants in genes encoding vasoactive intestinal peptide receptor 2 (VIPR2), period circadian regulator 2 (PER2), casein kinase 1 epsilon (CSNK1E), and activator of transcription and developmental regulator (AUTS2), but no signal survived correction for multiple testing. There was intriguing association signal for the untranslated region (3' UTR) variant rs885863 in VIPR2, (p = .0065; OR = 0.51; 95% CI 0.31-0.51). The result was corroborated in an independent EA OUD sample (n = 398, p = 0.0036; for the combined samples). Notably, this SNP is an expression quantitative trait locus (cis-eQTL) for VIPR2 and a long intergenic non-coding RNA, lincRNA 689, in a tissue-specific manner, based on the Genotype-Tissue Expression (GTEx) project. Vasoactive intestinal peptide (VIP) is an important peptide of light-activated suprachiasmatic nucleus cells. It regulates diverse physiological processes including circadian rhythms, learning and memory, and stress response. This is the first report of an association of a VIPR2 variant and OUD. Additionally, analysis of combinations of single nucleotide polymorphisms (SNPs) genotypes revealed an association of PER2 SNP rs80136044, and SNP rs4128839, located 41.6 kb downstream of neuropeptide Y receptor type 1 gene, NPY1R (p = 3.4 × 10-6, OR = 11.4, 95% CI 2.7-48.2). The study provides preliminary insight into the relationship between genetic variants in circadian rhythm genes and long non-coding RNA (lncRNAs) in their vicinity, and opioid addiction.


Assuntos
Regiões 3' não Traduzidas/genética , Transtornos Relacionados ao Uso de Opioides/genética , Proteínas Circadianas Period/genética , Locos de Características Quantitativas/genética , RNA Longo não Codificante/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ritmo Circadiano/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Proteínas Repressoras/genética , Recompensa
18.
Mol Psychiatry ; 24(12): 1884-1901, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31444475

RESUMO

Recent genome-wide association studies (GWAS) have identified copy number variations (CNVs) at chromosomal locus 7q36.3 that significantly contribute to the risk of schizophrenia, with all of the microduplications occurring within a single gene: vasoactive intestinal peptide receptor 2 (VIPR2). To confirm disease causality and translate such a genetic vulnerability into mechanistic and pathophysiological insights, we have developed a series of conditional VIPR2 bacterial artificial chromosome (BAC) transgenic mouse models of VIPR2 CNV. VIPR2 CNV mouse model recapitulates gene expression and signaling deficits seen in human CNV carriers. VIPR2 microduplication in mice elicits prominent dorsal striatal dopamine dysfunction, cognitive, sensorimotor gating, and social behavioral deficits preceded by an increase of striatal cAMP/PKA signaling and the disrupted early postnatal striatal development. Genetic removal of VIPR2 transgene expression via crossing with Drd1a-Cre BAC transgenic mice rescued the dopamine D2 receptor abnormality and multiple behavioral deficits, implicating a pathogenic role of VIPR2 overexpression in dopaminoceptive neurons. Thus, our results provide further evidence to support the GWAS studies that the dosage sensitivity intolerance of VIPR2 is disease causative to manifest schizophrenia-like dopamine, cognitive, and social behavioral deficits in mice. The conditional BAC transgenesis offers a novel strategy to model CNVs with a gain-of -copies and facilitate the genetic dissection of when/where/how the genetic vulnerabilities affect development, structure, and function of neural circuits. Our findings have important implications for therapeutic development, and the etiology-relevant mouse model provides a useful preclinical platform for drug discovery.


Assuntos
Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Animais , Cromossomos Artificiais Bacterianos/genética , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Duplicação Gênica/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Camundongos , Camundongos Transgênicos , Fenótipo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo
19.
Ophthalmol Retina ; 3(11): 985-992, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31331787

RESUMO

PURPOSE: To investigate potential genetic prognostic factors associated with spontaneous resolution of serous retinal detachment (SRD) and development of choroidal neovascularization (CNV) in central serous chorioretinopathy (CSC). DESIGN: Retrospective analysis of a case series. PARTICIPANTS: One hundred ninety-six eyes from 196 patients with active CSC. METHODS: We retrospectively reviewed medical records and determined the presence or absence of SRD using OCT imaging. The duration until the spontaneous SRD resolution was analyzed using the Kaplan-Meier method, and associations between the duration to spontaneous resolution and Complement factor H (CFH) I62V, Age-Related Maculopathy Susceptibility 2 (ARMS2) A69S, or Vasoactive Intestinal Peptide Receptor 2 (VIPR2) rs3793217 genotypes were evaluated, followed by the assessment of their associations with CNV that developed secondary to CSC. MAIN OUTCOME MEASURES: Genetic associations of CFH rs800292, ARMS2 rs10490924, and VIPR2 rs3793217 genotypes with the duration to spontaneous resolution of SRD and development of CNV during follow-up of CSC. RESULTS: In 105 of the 196 study participants, we revealed spontaneous SRD resolution in their eyes during follow-up evaluation. Sixty-eight eyes received treatment, and 23 eyes dropped out before spontaneous SRD resolution. Among the 3 genetic polymorphisms assessed herein, only the CFH I62V genotype was predictive of spontaneous SRD resolution among its genotypes (P = 0.017); the average durations for the spontaneous SRD resolution for the individuals with AA, AG, and GG genotype were 126.6±115.5 days, 157.7±243.1 days, and 242.7±198.0 days, respectively, indicating that the G allele was associated with significantly longer persistent SRD (P = 0.035). Among the total number of eyes of all participants, 14 demonstrated CNV during follow-up evaluation. The CFH I62V G and ARMS2 A69S T alleles were associated significantly with CNV development (P = 0.0023 and P = 0.019, respectively), whereas the VIPR2 rs3793217 genotype was not. CONCLUSIONS: The CFH I62V and ARMS2 A69S genotypes can predict the prognosis of CSC. Knowledge of the genetic status may help physicians determine the need for early treatment and possibly prevent subsequent CNV development. Further prospective studies are needed to confirm the observed genotype-phenotype relationship.


Assuntos
Coriorretinopatia Serosa Central/diagnóstico , Coriorretinopatia Serosa Central/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Adulto , Coriorretinopatia Serosa Central/fisiopatologia , Neovascularização de Coroide/diagnóstico , Corantes/administração & dosagem , Fator H do Complemento/genética , Feminino , Angiofluoresceinografia , Genótipo , Humanos , Verde de Indocianina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Prognóstico , Descolamento Retiniano/fisiopatologia , Estudos Retrospectivos
20.
Eur J Neurosci ; 50(7): 3115-3132, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31211910

RESUMO

Neurons of the hypothalamic suprachiasmatic nucleus (SCN) express clock genes, which regulate their own transcription and generate daily output signals driving circadian rhythmic behavior and physiology. The neuropeptide VIP and its specific receptor, the VPAC2 receptor, are important for synchronization of clock neurons. In the present study, we characterized PER1 and PER2 expressing neurons in wild-type and VPAC2-deficient mice. We found evidence for distinct spatiotemporal circadian oscillation in the expression of the PER genes in two separate clusters of SCN neurons. In wild-type mice corresponding to the SCN shell and ventral core, high expression of PER was found at lights-off most likely representing an evening clock (E-clock). In another smaller cluster of neurons located in the central core of the SCN, PER expression peaks in antiphase at lights-on and could represent a morning clock (M-clock). BMAL1 immunoreactivity was found to be expressed in antiphase to PER in M and E neurons, respectively. PER was found in 98% of neurons expressing vasopressin (AVP) and in 92% of VIP neurons. The chemotype of M neurons was not identified. M but not E cells were responsive to long but not short photoperiods. The expression of the VPAC2 receptor was found in both M and E cells, and VPAC2-deficient mice displayed markedly blunted PER expression in both cell clusters of the SCN. Conclusion: These observations support the existence of M and E clocks involved in circadian and seasonal adaptation, which seem dependent on intact VIP/VPAC2 signaling in the SCN.


Assuntos
Ritmo Circadiano/fisiologia , Neurônios/metabolismo , Proteínas Circadianas Period/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Feminino , Masculino , Camundongos Knockout , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...