RESUMO
Recent studies in our laboratory have shown that in some teleosts, 3,5-di-iodothyronine (T2 or 3,5-T2) is as bioactive as 3,5,3'-tri-iodothyronine (T3) and that its effects are in part mediated by a TRß1 (THRB) isoform that contains a 9-amino acid insert in its ligand-binding domain (long TRß1 (L-TRß1)), whereas T3 binds preferentially to a short TRß1 (S-TRß1) isoform that lacks this insert. To further understand the functional relevance of T2 bioactivity and its mechanism of action, we used in vivo and ex vivo (organotypic liver cultures) approaches and analyzed whether T3 and T2 differentially regulate the S-TRß1 and L-TRß1s during a physiological demand such as growth. In vivo, T3 and T2 treatment induced body weight gain in tilapia. The expression of L-TRß1 and S-TRß1 was specifically regulated by T2 and T3 respectively both in vivo and ex vivo. The TR antagonist 1-850 effectively blocked thyroid hormone-dependent gene expression; however, T3 or T2 reversed 1-850 effects only on S-TRß1 or L-TRß1 expression, respectively. Together, our results support the notion that both T3 and T2 participate in the growth process; however, their effects are mediated by different, specific TRß1 isoforms.