Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.426
Filtrar
1.
Sci Rep ; 14(1): 10573, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719983

RESUMO

Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammatory demyelination that disrupts neuronal transmission resulting in neurodegeneration progressive disability. While current treatments focus on immunosuppression to limit inflammation and further myelin loss, no approved therapies effectively promote remyelination to mitigate the progressive disability associated with chronic demyelination. Lysophosphatidic acid (LPA) is a pro-inflammatory lipid that is upregulated in MS patient plasma and cerebrospinal fluid (CSF). LPA activates the LPA1 receptor, resulting in elevated CNS cytokine and chemokine levels, infiltration of immune cells, and microglial/astrocyte activation. This results in a neuroinflammatory response leading to demyelination and suppressed remyelination. A medicinal chemistry effort identified PIPE-791, an oral, brain-penetrant, LPA1 antagonist. PIPE-791 was characterized in vitro and in vivo and was found to be a potent, selective LPA1 antagonist with slow receptor off-rate kinetics. In vitro, PIPE-791 induced OPC differentiation and promoted remyelination following a demyelinating insult. PIPE-791 further mitigated the macrophage-mediated inhibition of OPC differentiation and inhibited microglial and fibroblast activation. In vivo, the compound readily crossed the blood-brain barrier and blocked LPA1 in the CNS after oral dosing. Direct dosing of PIPE-791 in vivo increased oligodendrocyte number, and in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS, we observed that PIPE-791 promoted myelination, reduced neuroinflammation, and restored visual evoked potential latencies (VEP). These findings support targeting LPA1 for remyelination and encourage development of PIPE-791 for treating MS patients with advantages not seen with current immunosuppressive disease modifying therapies.


Assuntos
Esclerose Múltipla , Receptores de Ácidos Lisofosfatídicos , Remielinização , Animais , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Remielinização/efeitos dos fármacos , Humanos , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Diferenciação Celular/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
2.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G631-G642, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593468

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid molecule that regulates a wide array of cellular functions, including proliferation, differentiation, and survival, via activation of cognate receptors. The LPA5 receptor is highly expressed in the intestinal epithelium, but its function in restoring intestinal epithelial integrity following injury has not been examined. Here, we use a radiation-induced injury model to study the role of LPA5 in regulating intestinal epithelial regeneration. Control mice (Lpar5f/f) and mice with an inducible, epithelial cell-specific deletion of Lpar5 in the small intestine (Lpar5IECKO) were subjected to 10 Gy total body X-ray irradiation and analyzed during recovery. Repair of the intestinal mucosa was delayed in Lpar5IECKO mice with reduced epithelial proliferation and increased crypt cell apoptosis. These effects were accompanied by reduced numbers of OLFM4+ intestinal stem cells (ISCs). The effects of LPA5 on ISCs were corroborated by studies using organoids derived from Lgr5-lineage tracking reporter mice with deletion of Lpar5 in Lgr5+-stem cells (Lgr5Cont or Lgr5ΔLpar5). Irradiation of organoids resulted in fewer numbers of Lgr5ΔLpar5 organoids retaining Lgr5+-derived progenitor cells compared with Lgr5Cont organoids. Finally, we observed that impaired regeneration in Lpar5IECKO mice was associated with reduced numbers of Paneth cells and decreased expression of Yes-associated protein (YAP), a critical factor for intestinal epithelial repair. Our study highlights a novel role for LPA5 in regeneration of the intestinal epithelium following irradiation and its effect on the maintenance of Paneth cells that support the stem cell niche.NEW & NOTEWORTHY We used mice lacking expression of the lysophosphatidic acid receptor 5 (LPA5) in intestinal epithelial cells and intestinal organoids to show that the LPA5 receptor protects intestinal stem cells and progenitors from radiation-induced injury. We show that LPA5 induces YAP signaling and regulates Paneth cells.


Assuntos
Proliferação de Células , Mucosa Intestinal , Receptores de Ácidos Lisofosfatídicos , Regeneração , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Camundongos , Regeneração/efeitos da radiação , Proteínas de Sinalização YAP/metabolismo , Proliferação de Células/efeitos da radiação , Células-Tronco/efeitos da radiação , Células-Tronco/metabolismo , Organoides/metabolismo , Organoides/efeitos da radiação , Camundongos Knockout , Apoptose/efeitos da radiação , Lisofosfolipídeos/metabolismo , Intestino Delgado/efeitos da radiação , Intestino Delgado/metabolismo , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia
3.
Biochem Biophys Res Commun ; 715: 149982, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38676998

RESUMO

The tumor microenvironment is an extremely complex composed of cancer cells and various non-cancer cells, including lymphatic endothelial cells. Lysophosphatidic acid (LPA) receptors (LPA1 to LPA6) activate a variety of malignant properties in human malignancies. In the present study, we examined the roles of LPA receptor-mediated signaling in biological responses of lymphatic endothelial SVEC4-10 cells induced by hypoxia. Lpar1, Lpar2 and Lpar3 expressions were decreased in SVEC4-10 cells cultured at hypoxic conditions (1 % O2). LPA had no impact on the cell growth activity of SVEC4-10 cells in 21 % O2 culture conditions. Conversely, the cell growth activity of SVEC4-10 cells in 1 % O2 culture conditions was reduced by LPA. The cell motile activity of SVEC4-10 cells was elevated by 1 % O2 culture conditions. GRI-977143 (LPA2 agonist) and (2S)-OMPT (LPA3 agonist) stimulated SVEC4-10 cell motility as well as AM966 (LPA1 antagonist). In tube formation assay, the tube formation of SVEC4-10 cells in 1 % O2 culture conditions was markedly increased, in comparison with 21 % O2. GRI-977143 and (2S)-OMPT elevated the tube formation of SVEC4-10 cells. Furthermore, the tube formation of SVEC4-10 cells was increased by AM966. These results suggest that LPA receptor-mediated signaling contributes to the modulation of hypoxic-induced biological functions of lymphatic endothelial cells.


Assuntos
Hipóxia Celular , Movimento Celular , Células Endoteliais , Lisofosfolipídeos , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Linhagem Celular , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos
4.
Pathol Res Pract ; 257: 155293, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615508

RESUMO

Lysophosphatidic acid (LPA) binds to its specific G protein-coupled LPA receptors (LPA1 to LPA6), resulting in the activation of various cellular functions. LPA receptor-mediated signaling facilitates tumor progression in human malignancies. In the present study, we investigated whether LPA receptor-mediated signaling contributes to cellular responses to X-ray irradiation in osteosarcoma MG-63 cells. After X-ray irradiation (2, 4 and 8 Gy), LPAR2 and LPAR3 expression levels in MG-63 cells were significantly elevated in a dose-dependent manner, but no change of LPAR1 expression level was observed. The cell growth activities of MG-63 cells irradiated with X-rays (2, 4 and 8 Gy) were reduced by LPA. Conversely, LPA3 agonist (2 S)-OMPT enhanced the cell growth activities of X-ray irradiated MG-63 cells. The cell movement of MG-63 cells exposed to X-ray irradiation (8 Gy) was inhibited by (2 S)OMPT. In cell survival assay, (2 S)-OMPT suppressed the cell survival to cisplatin (CDDP) of MG-63 cells irradiated with X-rays (8 Gy). The cell survival to CDDP of X-ray irradiated cells was elevated by LPA3 knockdown. Moreover, we evaluated the effects of LPA2 on the cell survival to CDDP of MG-63 cells exposed to X-ray irradiation (8 Gy). The cell survival to CDDP of X-ray irradiated cells was increased by LPA2 agonist GRI-977143 and reduced by LPA2 knockdown. These results suggest that LPA receptor-signaling participates in the modulation of cellular functions induced by X-ray irradiation in osteosarcoma cells.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Receptores de Ácidos Lisofosfatídicos , Humanos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/radioterapia , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Raios X , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo
5.
Pharmacol Res ; 203: 107172, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583685

RESUMO

Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1ß⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.


Assuntos
Aquaporinas , Doença de Crohn , Lisofosfolipídeos , Macrófagos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Animais , Humanos , Aquaporinas/metabolismo , Aquaporinas/genética , Aquaporinas/antagonistas & inibidores , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Camundongos , Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Inibidores do Fator de Necrose Tumoral/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Citocinas/metabolismo
6.
BMC Cancer ; 24(1): 325, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459434

RESUMO

INTRODUCTION: T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease with poor prognosis and inferior outcome. Although multiple studies have been perform on genomics of T-ALL, data from Indian sub-continent is scarce. METHODS: In the current study we aimed to identify the genetic variability of T-ALL in an Indian cohort of pediatric (age ≤ 12 years) T-ALL patients (n = 25) by whole transcriptome sequencing along with whole exome sequencing and correlated the findings with clinical characteristics and disease outcome. RESULTS: The median age was 7 years (range 3 -12 years). RNA sequencing revealed a definitive fusion event in 14 cases (56%) (including a novel fusions) with STIL::TAL1 in 4 (16%), followed by NUP21::ABL1, TCF7::SPI1, ETV6::HDAC8, LMO1::RIC3, DIAPH1::JAK2, SETD2::CCDC12 and RCBTB2::LPAR6 in 1 (4%) case each. Significant aberrant expression was noted in RAG1 (64%), RAG2 (80%), MYCN (52%), NKX3-1 (52%), NKX3-2 (32%), TLX3 (28%), LMO1 (20%) and MYB (16%) genes. WES data showed frequent mutations in NOTCH1 (35%) followed by WT1 (23%), FBXW7 (12%), KRAS (12%), PHF6 (12%) and JAK3 (12%). Nearly 88.2% of cases showed a deletion of CDKN2A/CDKN2B/MTAP genes. Clinically significant association of a better EFS and OS (p=0.01) was noted with RAG2 over-expression at a median follow up of 22 months, while a poor EFS (p=0.041) and high relapse rate (p=0.045) was observed with MYB over-expression. CONCLUSION: Overall, the present study demonstrates the frequencies of transcriptomic and genetic alterations from Indian cohort of pediatric T-ALL and is a salient addition to current genomics data sets available in T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Humanos , Pré-Escolar , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transcriptoma , Centros de Atenção Terciária , Fatores de Transcrição/genética , Mutação , Linfócitos T , Prognóstico , Forminas/genética , Histona Desacetilases , Proteínas Repressoras/genética , Receptores de Ácidos Lisofosfatídicos/genética
7.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396744

RESUMO

Cysteine-rich angiogenic factor 61 (CCN1/Cyr61) is a matricellular protein that is induced and secreted in response to growth factors. Our previous work showed that 18:1-lysophosphatidic acid (LPA), which activates the G protein-coupled receptor LPAR1, induces CCN1 between 2-4 h in PC-3 human prostate cancer cells in a manner than enhances cell-substrate adhesion. While the time course of induction suggests that CCN1 contributes to intermediate events in LPA action, the roles of CCN1 in LPA-mediated signal transduction have not been fully elucidated. This study utilized a comprehensive global proteomics approach to identify proteins up- or down-regulated in response to treatment of PC-3 cells with LPA for three hours, during the time of peak CCN1 levels. In addition, the effects of siRNA-mediated CCN1 knockdown on LPA responses were analyzed. The results show that, in addition to CCN1, LPA increased the levels of multiple proteins. Proteins up-regulated by LPA included metastasis-associated in colon cancer protein 1 (MACC1) and thrombospondin-1 (TSP1/THBS1); both MACC1 and TSP1 regulated cancer cell adhesion and motility. LPA down-regulated thioredoxin interacting protein (TXNIP). CCN1 knockdown suppressed the LPA-induced up-regulation of 30 proteins; these included MACC1 and TSP1, as confirmed by immunoblotting. Gene ontology and STRING analyses revealed multiple pathways impacted by LPA and CCN1. These results indicate that CCN1 contributes to LPA signaling cascades that occur during the intermediate phase after the initial stimulus. The study provides a rationale for the development of interventions to disrupt the LPA-CCN1 axis.


Assuntos
Proteína Rica em Cisteína 61 , Neoplasias da Próstata , Proteômica , Humanos , Masculino , Lisofosfolipídeos/metabolismo , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo
8.
Pathol Res Pract ; 255: 155192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367602

RESUMO

BACKGROUND: In the tumor environment, malignant characteristics of cancer cells are promoted by stromal cells under hypoxia. It is unknown whether lysophosphatidic acid (LPA) receptor-mediated signaling is involved in the regulation of cellular functions by endothelial cells in pancreatic cancer cells under hypoxic conditions. METHODS: Pancreatic cancer (PANC-1) cells were co-cultured with endothelial (F2) cells and F2 cell supernatants at 21% and 1% O2. The Cell Culture Insert was used to assess the cell motile activity. The cell growth and viability to cisplatin (CDDP) were measured, using the Cell Counting Kit-8. RESULTS: LPA receptor expression levels were changed in PANC-1 cells co-cultured with F2 cells at 21% and 1% O2. The cell motile activities of PANC-1 cells co-cultured with F2 cells at 21% and 1% O2 were markedly elevated, compared with PANC-1 cells alone. The cell viabilities to CDDP of PANC-1 cells co-cultured with F2 cell supernatants at 21% and 1% O2 were regulated by the activation of LPA receptors. CONCLUSION: These results suggest that LPA receptor-mediated signaling plays an important role in the modulation of pancreatic cancer cell functions by endothelial cells under hypoxic conditions.


Assuntos
Células Endoteliais , Lisofosfolipídeos , Neoplasias Pancreáticas , Humanos , Células Endoteliais/patologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Movimento Celular , Cisplatino/farmacologia , Neoplasias Pancreáticas/patologia , Hipóxia/metabolismo
9.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397002

RESUMO

Ferroptosis, a unique form of programmed cell death trigged by lipid peroxidation and iron accumulation, has been implicated in embryonic erythropoiesis and aging. Our previous research demonstrated that lysophosphatidic acid receptor 3 (LPA3) activation mitigated oxidative stress in progeria cells and accelerated the recovery of acute anemia in mice. Given that both processes involve iron metabolism, we hypothesized that LPA3 activation might mediate cellular ferroptosis. In this study, we used an LPA3 agonist, 1-Oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT), to activate LPA3 and examine its effects on the ferroptosis process. OMPT treatment elevated anti-ferroptosis gene protein expression, including solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), heme oxygenase-1 (HO-1), and ferritin heavy chain (FTH1), in erastin-induced cells. Furthermore, OMPT reduced lipid peroxidation and intracellular ferrous iron accumulation, as evidenced by C11 BODIPY™ 581/591 Lipid Peroxidation Sensor and FerroOrange staining. These observations were validated by applying LPAR3 siRNA in the experiments mentioned above. In addition, the protein expression level of nuclear factor erythroid 2-related factor (NRF2), a key regulator of oxidative stress, was also enhanced in OMPT-treated cells. Lastly, we verified that LPA3 plays a critical role in erastin-induced ferroptotic human erythroleukemia K562 cells. OMPT rescued the erythropoiesis defect caused by erastin in K562 cells based on a Gly A promoter luciferase assay. Taken together, our findings suggest that LPA3 activation inhibits cell ferroptosis by suppressing lipid oxidation and iron accumulation, indicating that ferroptosis could potentially serve as a link among LPA3, erythropoiesis, and aging.


Assuntos
Ferroptose , Receptores de Ácidos Lisofosfatídicos , Camundongos , Animais , Humanos , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Apoptose , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ferro/metabolismo
10.
Nutrition ; 120: 112356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354460

RESUMO

BACKGROUND: Cancer associated cachexia is characterized by the significant loss of adipose tissue, leading to devastating weight loss and muscle wasting in the majority of cancer patients. The effects and underlying mechanisms of degradation metabolites on adipocytes in cachectic patients remain poorly understood. To address this knowledge gap, we conducted a comprehensive study combining lipidomic analysis of subcutaneous and visceral adipose tissue with transcriptomics data from the database to investigate the mechanisms of lipid regulation in adipocytes. METHODS: We collected subcutaneous and visceral adipose tissue samples from cachectic and noncachectic cancer patients. Lipidomic analysis was performed to identify differentially expressed lipids in both types of adipose tissue. Additionally, transcriptomics data from the GEO database were analyzed to explore gene expression patterns in adipocytes. Bioinformatics analysis was employed to determine the enrichment of differentially expressed genes in specific pathways. Furthermore, molecular docking studies were conducted to predict potential protein targets of specific lipids, with a focus on the PI3K-Akt signaling pathway. Western blot analysis was used to validate protein levels of the identified target gene, lysophosphatidic acid receptor 6 (LPAR6), in subcutaneous and visceral adipose tissue from cachectic and noncachectic patients. RESULTS: Significant lipid differences in subcutaneous and visceral adipose tissue between cachectic and noncachectic patients were identified by multivariate statistical analysis. Cachectic patients exhibited elevated Ceramides levels and reduced CerG2GNAc1 levels (P < 0.05). A total of 10 shared lipids correlated with weight loss and IL-6 levels, enriched in Sphingolipid metabolism, GPI-anchor biosynthesis, and Glyceropholipid metabolism pathways. LPAR6 expression was significantly elevated in both adipose tissues of cachectic patients (P < 0.05). Molecular docking analysis indicated strong binding of Phosphatidylethanolamine (PE) (18:2e/18:2) to LPAR6. CONCLUSIONS: Our findings suggest that specific lipids, including PE(18:2e/18:2), may mitigate adipose tissue wasting in cachexia by modulating the expression of LPAR6 through the PI3K-Akt signaling pathway. The identification of these potential targets and mechanisms provides a foundation for future investigations and therapeutic strategies to combat cachexia. By understanding the underlying lipid regulation in adipocytes, we aim to develop targeted interventions to ameliorate the devastating impact of cachexia on patient outcomes and quality of life. Nevertheless, further studies and validation are warranted to fully elucidate the intricate mechanisms involved and translate these findings into effective clinical interventions.


Assuntos
Caquexia , Neoplasias , Humanos , Caquexia/etiologia , Caquexia/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fosfatidiletanolaminas/metabolismo , Qualidade de Vida , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipólise , Tecido Adiposo/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Redução de Peso
11.
Aging (Albany NY) ; 16(3): 2617-2637, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305809

RESUMO

Pancreatic adenocarcinoma (PAAD) is a frequent malignant tumor in the pancreas. The incomplete understanding of cancer etiology and pathogenesis, as well as the limitations in early detection and diagnostic methods, have created an urgent need for the discovery of new therapeutic targets and drugs to control this disease. As a result, the current therapeutic options are limited. In this study, the weighted gene co-expression network analysis (WGCNA) method was employed to identify key genes associated with the progression and prognosis of pancreatic adenocarcinoma (PAAD) patients in the Gene Expression Profiling Interactive Analysis (GEPIA) database. To identify small molecule drugs with potential in the treatment of pancreatic adenocarcinoma (PAAD), we compared key genes to the reference dataset in the CMAP database. First, we analyzed the antitumor properties of small molecule drugs using cell counting kit-8 (CCK-8), AO/EB and Transwell assays. Subsequently, we integrated network pharmacology with molecular docking to explore the potential mechanisms of the identified molecules' anti-tumor effects. Our findings indicated that the progression and prognosis of PAAD patients in pancreatic cancer were associated with 11 genes, namely, DKK1, S100A2, CDA, KRT6A, ITGA3, GPR87, IL20RB, ZBED2, PMEPA1, CST6, and MUC16. These genes were filtered based on their therapeutic potential through comparing them with the reference dataset in the CMAP database. Taxifolin, a natural small molecule drug with the potential for treating PAAD, was screened by comparing it with the reference dataset in the CMAP database. Cell-based experiments have validated the potential of Taxifolin to facilitate apoptosis in pancreatic cancer cells while restraining their invasion and metastasis. This outcome is believed to be achieved via the HIF-1 signaling pathway. In conclusion, this study provided a theoretical basis for screening genes related to the progression of pancreatic cancer and discovered potentially active small molecule drugs. The experimental results confirm that Taxifolin has the ability to promote apoptosis in pancreatic cancer cells.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Quercetina/análogos & derivados , Humanos , Detecção Precoce de Câncer , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Simulação de Acoplamento Molecular , Pâncreas , Perfilação da Expressão Gênica , Apoptose/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana , Receptores de Ácidos Lisofosfatídicos
12.
Reprod Biol ; 24(1): 100849, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306852

RESUMO

Lysophosphatidic acid (LPA), a well-studied member of the lysophospholipid family, is known to exert an important bio-effect on oocyte maturation and ovulation in mammals. We attempted to determine how follicle maturation in the rat ovary affects the levels of LPA and its precursor lysophospholipids, as well as mRNA levels of LPA-producing and -degrading enzymes and LPA receptors in rats that received gonadotropin-hyper-stimulation. Tissue levels of lysophospholipids were quantified by LC-MS/MS, and relative mRNA expression levels of LPA-producing and -degrading enzymes, and LPA receptors were measured by RT-PCR. Tissue levels of n-6 polyunsaturated LPAs and LPCs were higher in the ovaries of rats after receiving human chorionic gonadotropin, unlike the distinct profiles of n-3 polyunsaturated LPAs, which had lower levels, and LPCs which had higher levels, after the gonadotropin treatment. The effects of different levels of other polyunsaturated lysophospholipids were variable: decreased levels of lysophosphatidylglycerol, and unaltered levels of lysophosphatidylethanolamine, lysophosphatidylinositol, and lysophosphatidylserine. The results indicate that expression of mRNA levels of autotaxin and acylglycerol kinase were reduced and expression of lipid phosphate phosphatase 3 was elevated, whereas expressions of two membrane phosphatidic acid phosphatases (A1α and A1ß) and lipid phosphate phosphatase 1 were essentially unaltered in rat ovary at several stages after ovary hyperstimulation. After the gonadotropin treatment, the expression levels of all LPA receptors except LPA3 were decreased at various times. These results are discussed with respect to the physiological processes of the ovarian environment and development in rats.


Assuntos
Receptores de Ácidos Lisofosfatídicos , Espectrometria de Massas em Tandem , Feminino , Ratos , Humanos , Animais , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Cromatografia Líquida , Lisofosfolipídeos/metabolismo , Gonadotropinas , RNA Mensageiro , Mamíferos/genética , Mamíferos/metabolismo
13.
Anticancer Res ; 44(2): 555-559, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307566

RESUMO

BACKGROUND/AIM: End-stage renal disease (ESRD) and acquired cystic renal disease (ACRD) are characterized by progressive inflammation, structural remodeling and by development of unique cancer types. Eosinophilic-vacuolated and chromophobe-like renal cell carcinoma develop exclusively in ACRD kidney. The aim of the study was to investigate the molecular mechanism of ESRD/ACRD carcinogenesis. MATERIALS AND METHODS: Our previous Affymetrix array analysis detected GPR87 as one of the highly and specifically expressed genes in ESRD/ACRD kidneys. In this study we analyzed normal and ESRD/ACRD kidneys and related tumors for GPR87 expression by PCR, RT-PCR, and immunohistochemistry. RESULTS: Immunohistochemistry revealed a strong GPR87 expression in proliferating epithelial cells in ESRD/ACRD kidneys and in cells of eosinophilic-vacuolated and chromophobe-like renal cell carcinoma. CONCLUSION: GPR87 signaling plays an important role in the structural remodeling of ESRD/ACRD kidney and development of ACRD-associated tumors with unique histology.


Assuntos
Carcinoma de Células Renais , Falência Renal Crônica , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Rim/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Receptores Acoplados a Proteínas G/genética , Receptores de Ácidos Lisofosfatídicos
14.
J Med Chem ; 67(4): 2379-2396, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349223

RESUMO

Lysophosphatidic acid receptor 1 (LPAR1) antagonists show promise as potentially novel antifibrotic treatments. In a human LPAR1 ß-arrestin recruitment-based high-throughput screening campaign, we identified urea 19 as a hit with a LPAR1 IC50 value of 5.0 µM. Hit-to-lead activities revealed that one of the urea nitrogen atoms can be replaced by carbon and establish the corresponding phenylacetic amide as a lead structure for further optimization. Medicinal chemistry efforts led to the discovery of piperidine 18 as a potent and selective LPAR1 antagonist with oral activity in a mouse model of LPA-induced skin vascular leakage. The molecular scaffold of 18 shares no obvious structural similarity with any other LPAR1 antagonist disclosed so far.


Assuntos
Amidas , Receptores de Ácidos Lisofosfatídicos , Camundongos , Animais , Humanos , Modelos Animais de Doenças , Ureia
15.
J Med Chem ; 67(4): 2397-2424, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349250

RESUMO

Piperidine 3 is a potent and selective lysophosphatidic acid receptor subtype 1 receptor (LPAR1) antagonist that has shown efficacy in a skin vascular leakage target engagement model in mice. However, compound 3 has very high human plasma protein binding and high clearance in rats, which could significantly hamper its clinical development. Continued lead optimization led to the potent, less protein bound, metabolically stable, and orally active azetidine 17. Rat pharmacokinetics (PK) studies revealed that 17 accumulated in the liver. In vitro studies indicated that 17 is an organic anion co-transporting polypeptide 1B1 (OATP1B1) substrate. Although analogue 24 was no longer a substrate of OATP1B1, PK studies suggested that the compound undergoes enterohepatic recirculation. Replacing the carboxylic acidic side chain by a non-acidic sulfamide moiety and further fine-tuning of the scaffold yielded the potent, orally active LPAR1 antagonist 49, which was selected for preclinical development for the treatment of fibrotic diseases.


Assuntos
Transportadores de Ânions Orgânicos , Receptores de Ácidos Lisofosfatídicos , Humanos , Ratos , Camundongos , Animais , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fígado/metabolismo
16.
Sci Rep ; 14(1): 4328, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383841

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 virus has greatly affected global health. Emerging evidence suggests a complex interplay between Alzheimer's disease (AD), diabetes (DM), and COVID-19. Given COVID-19's involvement in the increased risk of other diseases, there is an urgent need to identify novel targets and drugs to combat these interconnected health challenges. Lysophosphatidic acid receptors (LPARs), belonging to the G protein-coupled receptor family, have been implicated in various pathological conditions, including inflammation. In this regard, the study aimed to investigate the involvement of LPARs (specifically LPAR1, 3, 6) in the tri-directional relationship between AD, DM, and COVID-19 through network analysis, as well as explore the therapeutic potential of selected anti-AD, anti-DM drugs as LPAR, SPIKE antagonists. We used the Coremine Medical database to identify genes related to DM, AD, and COVID-19. Furthermore, STRING analysis was used to identify the interacting partners of LPAR1, LPAR3, and LPAR6. Additionally, a literature search revealed 78 drugs on the market or in clinical studies that were used for treating either AD or DM. We carried out docking analysis of these drugs against the LPAR1, LPAR3, and LPAR6. Furthermore, we modeled the LPAR1, LPAR3, and LPAR6 in a complex with the COVID-19 spike protein and performed a docking study of selected drugs with the LPAR-Spike complex. The analysis revealed 177 common genes implicated in AD, DM, and COVID-19. Protein-protein docking analysis demonstrated that LPAR (1,3 & 6) efficiently binds with the viral SPIKE protein, suggesting them as targets for viral infection. Furthermore, docking analysis of the anti-AD and anti-DM drugs against LPARs, SPIKE protein, and the LPARs-SPIKE complex revealed promising candidates, including lupron, neflamapimod, and nilotinib, stating the importance of drug repurposing in the drug discovery process. These drugs exhibited the ability to bind and inhibit the LPAR receptor activity and the SPIKE protein and interfere with LPAR-SPIKE protein interaction. Through a combined network and targeted-based therapeutic intervention approach, this study has identified several drugs that could be repurposed for treating COVID-19 due to their expected interference with LPAR(1, 3, and 6) and spike protein complexes. In addition, it can also be hypothesized that the co-administration of these identified drugs during COVID-19 infection may not only help mitigate the impact of the virus but also potentially contribute to the prevention or management of post-COVID complications related to AD and DM.


Assuntos
Doença de Alzheimer , COVID-19 , Diabetes Mellitus , Humanos , SARS-CoV-2/metabolismo , Reposicionamento de Medicamentos , Glicoproteína da Espícula de Coronavírus , Doença de Alzheimer/tratamento farmacológico , Pandemias , Diabetes Mellitus/tratamento farmacológico , Simulação de Acoplamento Molecular , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
17.
Acta Pharmacol Sin ; 45(2): 339-353, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816857

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipid mediator that has been found to ameliorate nonsteroidal anti-inflammatory drug (NSAID)-induced gastric injury by acting on lysophosphatidic acid type 2 receptor (LPAR2). In this study, we investigated whether LPAR2 signaling was implicated in the development of NSAID-induced small intestinal injury (enteropathy), another major complication of NSAID use. Wild-type (WT) and Lpar2 deficient (Lpar2-/-) mice were treated with a single, large dose (20 or 30 mg/kg, i.g.) of indomethacin (IND). The mice were euthanized at 6 or 24 h after IND treatment. We showed that IND-induced mucosal enteropathy and neutrophil recruitment occurred much earlier (at 6 h after IND treatment) in Lpar2-/- mice compared to WT mice, but the tissue levels of inflammatory mediators (IL-1ß, TNF-α, inducible COX-2, CAMP) remained at much lower levels. Administration of a selective LPAR2 agonist DBIBB (1, 10 mg/kg, i.g., twice at 24 h and 30 min before IND treatment) dose-dependently reduced mucosal injury and neutrophil activation in enteropathy, but it also enhanced IND-induced elevation of several proinflammatory chemokines and cytokines. By assessing caspase-3 activation, we found significantly increased intestinal apoptosis in IND-treated Lpar2-/- mice, but it was attenuated after DBIBB administration, especially in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Finally, we showed that IND treatment reduced the plasma activity and expression of autotaxin (ATX), the main LPA-producing enzyme, and also reduced the intestinal expression of Lpar2 mRNA, which preceded the development of mucosal damage. We conclude that LPAR2 has a dual role in NSAID enteropathy, as it contributes to the maintenance of mucosal integrity after NSAID exposure, but also orchestrates the inflammatory responses associated with ulceration. Our study suggests that IND-induced inhibition of the ATX-LPAR2 axis is an early event in the pathogenesis of enteropathy.


Assuntos
Diabetes Mellitus Tipo 2 , Enteropatias , Lisofosfolipídeos , Camundongos , Animais , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Anti-Inflamatórios não Esteroides , Indometacina/efeitos adversos , Enteropatias/induzido quimicamente
18.
Thorac Cancer ; 15(4): 316-326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38124403

RESUMO

BACKGROUND: Lysophosphatidic acids (LPAs) belong to a class of bioactive lysophospholipids with multiple functions including immunomodulatory roles in tumor microenvironment (TME). LPA exerts its biological effects via its receptors that are highly expressed in fibroblasts among other cell types. As cancer-associated fibroblasts (CAFs) are a key component of the TME, it is important to understand LPA signaling and regulation of receptors in fibroblasts or CAFs and associated regulatory roles on immunomodulation-related molecules. METHODS: Cluster analysis, immunoblotting, real-time quantitative-PCR, CRISPR-Cas9 gene editing system, immunohistochemical staining, coculture model, and in vivo xenograft model were used to investigate the effects of LPA-LPAR1 on B7-H3 in tumor promotion of CAFs. RESULTS: In this study, we found that LPAR1 and CD276 (B7-H3) were generally highly expressed in fibroblasts with good expression correlation. LPA induced B7-H3 up-expression through LPAR1, and stimulated fibroblasts proliferation that could be inhibited by silencing LPAR1 or B7-H3 as well as small molecule LPAR1 antagonist (Ki16425). Using engineered fibroblasts and non-small cell lung carcinoma (NSCLC) cell lines, subsequent investigations demonstrated that CAFs promoted the proliferation of NSCLC in vitro and in vivo, and such effect could be inhibited by knocking out LPAR1 or B7-H3. CONCLUSION: The present study provided new insights for roles of LPA in CAFs, which could lead to the development of innovative therapies targeting CAFs in the TME. It is also reasonable to postulate a combinatory approach to treat malignant fibrous tumors (such as NSCLC) with LPAR1 antagonists and B7-H3 targeting therapies.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Transdução de Sinais , Proliferação de Células , Fibroblastos Associados a Câncer/metabolismo , Fatores de Transcrição , Microambiente Tumoral , Antígenos B7/genética , Antígenos B7/farmacologia , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
19.
Hepatol Commun ; 7(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994050

RESUMO

BACKGROUND: NASH causes a tremendous health care burden in the United States. A glucagon-like peptide-1 agonist, semaglutide (Sema), treatment resulted in hepatic steatosis reduction in clinical trials of NASH. Lysophosphatidic acid receptor 1 antagonists are known to have antifibrotic effects in several organs. We tested Sema and a novel lysophosphatidic acid receptor 1 antagonist, EPGN2154, individually and in combination to evaluate their efficacy for NASH remission in preclinical models. METHODS: In the present study, we used (1) C57Bl6/J wild-type mice fed on a high-fat, high-carbohydrate (HFHC) diet for 16 weeks and (2) leptin-deficient mice (ob/ob) fed on an Amylin liver NASH diet for 16 weeks. After 16 weeks, the mice were randomly distributed in equal numbers in (1) no-drug, (2) EPGN2154, (3) Sema, and (4) EPGN2154+Sema treatment groups for 8 additional weeks at a dosage of 10 mg/kg body weight for EPGN2154 (oral gavage, 5 days a week) and 6.17 µg/kg body weight of Sema (subcutaneous injection every alternate day, 3 days a week). RESULTS: In the wild-type-high-fat, high-carbohydrate model, we observed the most body weight loss in the EPGN2154+Sema combination group compared to the other treatment groups. All groups led to a significant reduction in alanine transaminase levels when compared to high-fat, high-carbohydrate-fed wild type. However, no significant difference in alanine transaminase levels was observed among the treatment groups. In the ob/ob mice study, Sema did not cause body weight loss. Moreover, the EPGN2154 and the combination groups had a lower NAFLD Activity Score and incidence of advanced-stage hepatic fibrosis than the Sema group. CONCLUSIONS: EPGN2154 demonstrated a hepato-protective effect independent of body weight loss in preclinical NASH models.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Receptores de Ácidos Lisofosfatídicos/uso terapêutico , Alanina Transaminase , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Carboidratos/uso terapêutico , Redução de Peso
20.
J Vet Med Sci ; 85(11): 1165-1171, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779089

RESUMO

Though lysophosphatidic acid (LPA) shows a variety of regulatory roles in reproduction, its action mechanisms in the gestational organs are still largely unknown. We here characterized cellular distribution of its six kinds of specific receptors (LPA1-6) in rat uteri by immunohistochemistry and quantitatively analyzed changes in Lpar1-6 mRNAs expression throughout pregnancy. Among LPA1-6, evident expression of LPA3, LPA4, and LPA6 was immunologically detected and less expression of immunoreactive LPA1 and LPA2 was also found. Luminal and glandular epithelial cells, stromal cells, and myometrial cells are sites of positive immunoreactions, and they are all likely to express three or more subtypes. All of Lpar1-6 mRNAs were expressed, and their alterations were variable depending on subtypes and gestational age. The present information suggests that diverse actions of LPA in the uterus involve varied expression of LPA receptors dependent on tissue/cell types, receptor subtype(s), and organ reproductive states and helps to understand uterine biology of LPA.


Assuntos
Receptores de Ácidos Lisofosfatídicos , Útero , Gravidez , Feminino , Animais , Ratos , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...