Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
Sci Rep ; 11(1): 14532, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267258

RESUMO

Agonistic profiles of AMPA receptor (AMPA-R) potentiators may be associated with seizure risk and bell-shaped dose-response effects. Here, we report the pharmacological characteristics of a novel AMPA-R potentiator, TAK-653, which exhibits minimal agonistic properties. TAK-653 bound to the ligand binding domain of recombinant AMPA-R in a glutamate-dependent manner. TAK-653 strictly potentiated a glutamate-induced Ca2+ influx in hGluA1i-expressing CHO cells through structural interference at Ser743 in GluA1. In primary neurons, TAK-653 augmented AMPA-induced Ca2+ influx and AMPA-elicited currents via physiological AMPA-R with little agonistic effects. Interestingly, TAK-653 enhanced electrically evoked AMPA-R-mediated EPSPs more potently than AMPA (agonist) or LY451646 (AMPA-R potentiator with a prominent agonistic effect) in brain slices. Moreover, TAK-653 improved cognition for both working memory and recognition memory, while LY451646 did so only for recognition memory, and AMPA did not improve either. These data suggest that the facilitation of phasic AMPA-R activation by physiologically-released glutamate is the key to enhancing synaptic and cognitive functions, and nonselective activation of resting AMPA-Rs may negatively affect this process. Importantly, TAK-653 had a wide safety margin against convulsion; TAK-653 showed a 419-fold (plasma Cmax) and 1017-fold (AUC plasma) margin in rats. These findings provide insight into a therapeutically important aspect of AMPA-R potentiation.


Assuntos
Cognição/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de AMPA/agonistas , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células CHO , Cálcio/metabolismo , Cognição/fisiologia , Cricetulus , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sulfonamidas/farmacologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
2.
J Cell Mol Med ; 25(15): 7342-7353, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34213839

RESUMO

Diabetes-related depression (DD) is a major complication of diabetes mellitus. Our previous studies indicated that glutamate (Glu) and hippocampal neuron apoptosis are key signal and direct factor leading to diabetes-related depression, respectively. However, the accurate pathogenesis remains to be unclear. We hypothesized that diabetes-related depression might be associated with the mitophagy-mediated hippocampal neuron apoptosis, triggered by aberrant Glu-glutamate receptor2 (GluR2)-Parkin pathway. To testify this hypothesis, here the rat model of DD in vivo and in vitro were both established so as to uncover the potential mechanism of DD based on mitophagy and apoptosis. We found that DD rats exhibit an elevated glutamate levels followed by monoamine neurotransmitter deficiency and depressive-like behaviour, and DD modelling promoted autophagosome formation and caused mitochondrial impairment, eventually leading to hippocampal neuron apoptosis via aberrant Glu-GluR2-Parkin pathway. Further, in vitro study demonstrated that the simulated DD conditions resulted in an abnormal glutamate and monoamine neurotransmitter levels followed by autophagic flux increment, mitochondrial membrane potential reduction and mitochondrial reactive oxygen species and lactic dehydrogenase elevation. Interestingly, both GluR2 and mammalian target of rapamycin (mTOR) receptor blocker aggravated mitophagy-induced hippocampal neuron apoptosis and abnormal expression of apoptotic protein. In contrast, both GluR2 and mTOR receptor agonist ameliorated those apoptosis in simulated DD conditions. Our findings revealed that mitophagy-mediated hippocampal neuron apoptosis, triggered by aberrant Glu-GluR2-Parkin pathway, is responsible for depressive-like behaviour and monoamine neurotransmitter deficiency in DD rats. This work provides promising molecular targets and strategy for the treatment of DD.


Assuntos
Apoptose , Depressão/metabolismo , Diabetes Mellitus Experimental/complicações , Hipocampo/metabolismo , Mitofagia , Neurotransmissores/metabolismo , Animais , Células Cultivadas , Depressão/etiologia , Diabetes Mellitus Experimental/psicologia , Hipocampo/citologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/agonistas , Receptores de AMPA/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Purinergic Signal ; 17(2): 285-301, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33712981

RESUMO

Guanosine is a purine nucleoside that has been shown to exhibit antidepressant effects, but the mechanisms underlying its effect are not well established. We investigated if the antidepressant-like effect induced by guanosine in the tail suspension test (TST) in mice involves the modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, voltage-dependent calcium channel (VDCC), and brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) pathway. We also evaluated if the antidepressant-like effect of guanosine is accompanied by an acute increase in hippocampal and prefrontocortical BDNF levels. Additionally, we investigated if the ability of guanosine to elicit a fast behavioral response in the novelty suppressed feeding (NSF) test is associated with morphological changes related to hippocampal synaptogenesis. The antidepressant-like effect of guanosine (0.05 mg/kg, p.o.) in the TST was prevented by DNQX (AMPA receptor antagonist), verapamil (VDCC blocker), K-252a (TrkBantagonist), or BDNF antibody. Increased P70S6K phosphorylation and higher synapsin I immunocontent in the hippocampus, but not in the prefrontal cortex, were observed 1 h after guanosine administration. Guanosine exerted an antidepressant-like effect 1, 6, and 24 h after its administration, an effect accompanied by increased hippocampal BDNF level. In the prefrontal cortex, BDNF level was increased only 1 h after guanosine treatment. Finally, guanosine was effective in the NSF test (after 1 h) but caused no alterations in dendritic spine density and remodeling in the ventral dentate gyrus (DG). Altogether, the results indicate that guanosine modulates targets known to be implicated in fast antidepressant behavioral responses (AMPA receptor, VDCC, and TrkB/BDNF pathway).


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Guanosina/farmacologia , Glicoproteínas de Membrana/efeitos dos fármacos , Proteínas Tirosina Quinases/efeitos dos fármacos , Receptores de AMPA/agonistas , Transdução de Sinais/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Canais de Cálcio/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Elevação dos Membros Posteriores , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Glicoproteínas de Membrana/biossíntese , Camundongos , Neurogênese/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Tirosina Quinases/biossíntese , Sinapses/efeitos dos fármacos
4.
Cereb Cortex ; 31(7): 3266-3284, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33626129

RESUMO

Top-down attention, controlled by frontal cortical areas, is a key component of cognitive operations. How different neurotransmitters and neuromodulators flexibly change the cellular and network interactions with attention demands remains poorly understood. While acetylcholine and dopamine are critically involved, glutamatergic receptors have been proposed to play important roles. To understand their contribution to attentional signals, we investigated how ionotropic glutamatergic receptors in the frontal eye field (FEF) of male macaques contribute to neuronal excitability and attentional control signals in different cell types. Broad-spiking and narrow-spiking cells both required N-methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation for normal excitability, thereby affecting ongoing or stimulus-driven activity. However, attentional control signals were not dependent on either glutamatergic receptor type in broad- or narrow-spiking cells. A further subdivision of cell types into different functional types using cluster-analysis based on spike waveforms and spiking characteristics did not change the conclusions. This can be explained by a model where local blockade of specific ionotropic receptors is compensated by cell embedding in large-scale networks. It sets the glutamatergic system apart from the cholinergic system in FEF and demonstrates that a reduction in excitability is not sufficient to induce a reduction in attentional control signals.


Assuntos
Atenção/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Lobo Frontal/fisiologia , Estimulação Luminosa/métodos , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Atenção/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Macaca mulatta , Masculino , N-Metilaspartato/farmacologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores de AMPA/agonistas , Receptores de N-Metil-D-Aspartato/agonistas , Movimentos Sacádicos/efeitos dos fármacos , Movimentos Sacádicos/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
5.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495318

RESUMO

Clinical studies have reported that the psychedelic lysergic acid diethylamide (LSD) enhances empathy and social behavior (SB) in humans, but its mechanism of action remains elusive. Using a multidisciplinary approach including in vivo electrophysiology, optogenetics, behavioral paradigms, and molecular biology, the effects of LSD on SB and glutamatergic neurotransmission in the medial prefrontal cortex (mPFC) were studied in male mice. Acute LSD (30 µg/kg) injection failed to increase SB. However, repeated LSD (30 µg/kg, once a day, for 7 days) administration promotes SB, without eliciting antidepressant/anxiolytic-like effects. Optogenetic inhibition of mPFC excitatory neurons dramatically inhibits social interaction and nullifies the prosocial effect of LSD. LSD potentiates the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and 5-HT2A, but not N-methyl-D-aspartate (NMDA) and 5-HT1A, synaptic responses in the mPFC and increases the phosphorylation of the serine-threonine protein kinases Akt and mTOR. In conditional knockout mice lacking Raptor (one of the structural components of the mTORC1 complex) in excitatory glutamatergic neurons (Raptorf/f:Camk2alpha-Cre), the prosocial effects of LSD and the potentiation of 5-HT2A/AMPA synaptic responses were nullified, demonstrating that LSD requires the integrity of mTORC1 in excitatory neurons to promote SB. Conversely, in knockout mice lacking Raptor in GABAergic neurons of the mPFC (Raptorf/f:Gad2-Cre), LSD promotes SB. These results indicate that LSD selectively enhances SB by potentiating mPFC excitatory transmission through 5-HT2A/AMPA receptors and mTOR signaling. The activation of 5-HT2A/AMPA/mTORC1 in the mPFC by psychedelic drugs should be explored for the treatment of mental diseases with SB impairments such as autism spectrum disorder and social anxiety disorder.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dietilamida do Ácido Lisérgico/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Comportamento Social , Transmissão Sináptica/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Optogenética , Fosforilação/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Receptores de AMPA/agonistas , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Serotonina/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Neurotoxicology ; 83: 69-76, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33400970

RESUMO

On the basis of the evidence that extracellular Zn2+ influx induced with AMPA causes Parkinson's syndrome in rats that apomorphine-induced movement disorder emerges, here we used a low dose of AMPA, which does not increase intracellular Zn2+ level in the substantia nigra pars compacta (SNpc) of young adult rats, and tested whether intracellular Zn2+ dysregulation induced with AMPA is accelerated in the SNpc of aged rats, resulting in age-related vulnerability to Parkinson's syndrome. When AMPA (1 mM) was injected at the rate of 0.05 µl/min for 20 min into the SNpc, intracellular Zn2+ level was increased in the SNpc of aged rats followed by increase in turning behavior in response to apomorphine and nigral dopaminergic degeneration. In contrast, young adult rats do not show movement disorder and nigral dopaminergic degeneration, in addition to no increase in intracellular Zn2+. In aged rats, movement disorder and nigral dopaminergic degeneration were rescued by co-injection of either extracellular (CaEDTA) or intracellular (ZnAF-2DA) Zn2+ chelators. 1-Naphthyl acetyl spermine (NASPM), a selective blocker of Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptors blocked increase in intracellular Zn2+ in the SNpc of aged rats followed by rescuing nigral dopaminergic degeneration. The present study indicates that intracellular Zn2+ dysregulation is accelerated by Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptor activation in the SNpc of aged rats, resulting in age-related vulnerability to Parkinson's syndrome.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Degeneração Neural , Doença de Parkinson Secundária/induzido quimicamente , Parte Compacta da Substância Negra/efeitos dos fármacos , Receptores de AMPA/agonistas , Zinco/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Atividade Motora/efeitos dos fármacos , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Doença de Parkinson Secundária/fisiopatologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Parte Compacta da Substância Negra/fisiopatologia , Ratos Wistar , Receptores de AMPA/metabolismo
7.
Neurosci Lett ; 739: 135411, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086093

RESUMO

Motor behavior alterations are a shared hallmark of neurodegenerative diseases affecting motor circuits, such as amyotrophic lateral sclerosis (ALS), Parkinson's, and Huntington's diseases. In patients and transgenic animal models of amyotrophic lateral sclerosis fine movements controlled by distal muscles are the first to be affected, but its study and knowledge remain poorly understood, mainly because most of the tests used for describing the motor alterations are focused on the function of proximal muscles and gross movements. In this study we demonstrate that alterations of phalangeal fine movements can be quantitatively evaluated using a novel procedure designed by us, phalangeal tension recording test, which showed high sensitivity to detect such alterations. The evaluation was carried out during the motor neuron (MN) degenerative process induced by the acute and chronic overactivation of AMPA receptors in the lumbar rat spinal cord, using previously described models. The new method allowed the quantification of significant alterations of the fine movements of the hindpaws phalanges when AMPA was infused in the lumbar segment controlling the distal muscles, but not when a more rostral spinal segment was infused, and these alterations were not detected by the rotarod or the stride tests. These changes occurred before the paralysis of the hindlimbs. Studying the early distal motor alterations before the total paralysis at late stages is essential for understanding the initial consequences of MN degeneration and therefore for designing new strategies for the control, treatment and prevention of MN diseases.


Assuntos
Neurônios Motores/patologia , Movimento/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/administração & dosagem , Animais , Modelos Animais de Doenças , Força da Mão , Masculino , Ratos Wistar , Receptores de AMPA/agonistas , Teste de Desempenho do Rota-Rod
8.
Neuropharmacology ; 178: 108269, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791085

RESUMO

Depression is a common mental disorder affecting more than 300 million people worldwide and is one of the leading causes of disability among all medical illnesses. The accumulation of preclinical data has fueled the revival of interest in targeting glutamatergic neurotransmission for the treatment of major depressive disorder. GLYX-13, a glutamatergic compound that acts as an N-methyl-d-aspartate (NMDA) modulator with glycine-site partial agonist properties, produces rapid and long-lasting antidepressant effects in both animal models and patients. However, the mechanisms underlying the antidepressant actions of GLYX-13 have not been fully characterized, especially in the midbrain ventrolateral periaqueductal gray (vlPAG), a brain stem area that controls stress-associated depression-like behavior. Here, we use a combination of electrophysiological recordings, behavioral tests, and pharmacological manipulations to study the antidepressant actions of GLYX-13 in the vlPAG. A single intravenous injection of a GLYX-13 rapidly mitigated footshock stress (FS)-induced depression-like behavior in rats. The FS-induced diminished glutamatergic transmission in the vlPAG was also reversed by a single GLYX-13 intravenous injection. Moreover, intra-vlPAG GLYX-13 microinjection produced a long-lasting antidepressant effect; however, this effect was prevented by the intra-vlPAG microinjection of tropomyosin-related kinase B (TrkB) receptor antagonist ANA-12, a selective mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin, and CNQX, an AMPA receptor antagonist. Additionally, a bath application of GLYX-13 enhanced glutamatergic transmission in vlPAG neurons; however, this enhancement effect was blocked by the co-application of ANA-12 and rapamycin. These results demonstrate that BDNF-TrkB-mTORC1 signaling in the vlPAG is required for the sustained antidepressant effects of GLYX-13.


Assuntos
Depressão/tratamento farmacológico , Agonismo Parcial de Drogas , Oligopeptídeos/administração & dosagem , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Receptores de AMPA/agonistas , Receptores de N-Metil-D-Aspartato/agonistas , Estresse Psicológico/tratamento farmacológico , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Doença Crônica , Depressão/metabolismo , Depressão/psicologia , Injeções Intravenosas , Masculino , Microinjeções/métodos , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia
9.
Curr Mol Pharmacol ; 13(3): 216-223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32124706

RESUMO

BACKGROUND: Currently, the most dynamic areas in the glutamate receptor system neurobiology are the identification and development of positive allosteric modulators (PAMs) of glutamate ionotropic receptors. PAM-based drugs are of great interest as promising candidates for the treatment of neurological diseases, such as epilepsy, Alzheimer's disease, schizophrenia, etc. Understanding the molecular mechanisms underlying the biological action of natural and synthetic PAMs is a key point for modifying the original chemical compounds as well as for new drug design. OBJECTIVE: We are trying to elaborate a system of molecular functional screening of ionotropic glutamate receptor probable PAMs. METHODS: The system will be based on the radioligand - receptor method of analysis and will allow rapid quantification of new AMPAR probable PAMs molecular activity. We plan to use a tritiumlabeled analogue of recently elaborated ionotropic GluR probable PAM ([3H]PAM-43) as the main radioligand. RESULTS: Here, we characterized the specific binding of the ligand and its ability to potentiate ionotropic GluR currents. The existence of at least two different sites of [3H]PAM-43 specific binding has been shown. One of the above sites is glutamate-dependent and is characterized by higher affinity. "Patchclamp" technique showed the ability of PAM-43 to potentiate ionotropic GluR currents in rat cerebellar Purkinje neurons in a concentration-dependent manner. CONCLUSION: The possibility of using PAM-43 as a model compound to study different allosteric effects of potential regulatory drugs (AMPAR allosteric regulators) was shown. [3H]PAM-43 based screening system will allow rapid selection of new AMPAR probable PAM structures and quantification of their molecular activity.


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , Células de Purkinje/efeitos dos fármacos , Receptores de AMPA/agonistas , Potenciais de Ação/efeitos dos fármacos , Regulação Alostérica , Sítio Alostérico , Animais , Animais não Endogâmicos , Sítios de Ligação , Agonistas de Aminoácidos Excitatórios/química , Humanos , Ligantes , Masculino , Estrutura Molecular , Técnicas de Patch-Clamp , Células de Purkinje/fisiologia , Ensaio Radioligante , Ratos
10.
Dokl Biochem Biophys ; 488(1): 304-306, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31768846

RESUMO

A new derivative of 3,7-diazabicyclo[3.3.1]nonane, which showed a high activity as a positive allosteric modulator of AMPA receptors of the CNS, was studied in electrophysiological experiments. At doses of 0.01 mg/kg, this compound significantly improved the memory of experimental animals disturbed by maximal electric shock. The results indicate that this compound is a promising candidate for preclinical trials and clinical studies as a drug for treatment of a number of psychoneurological diseases.


Assuntos
Hipocampo/metabolismo , Transtornos Mentais , Doenças do Sistema Nervoso , Nootrópicos , Receptores de AMPA , Regulação Alostérica , Animais , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Nootrópicos/química , Nootrópicos/farmacologia , Ratos , Receptores de AMPA/agonistas , Receptores de AMPA/química , Receptores de AMPA/metabolismo
11.
Structure ; 27(11): 1698-1709.e5, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31585769

RESUMO

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors produce postsynaptic current by transmitting an agonist-induced structural change in the ligand-binding domain (LBD) to the transmembrane channel. Receptors carrying T686S/A substitutions in their LBDs produce weaker glutamate-evoked currents than wild-type (WT) receptors. However, the substitutions induce little differences in the crystal structures of their LBDs. To understand the structural mechanism underlying reduced activities of these AMPAR variants, we analyzed the structural dynamics of WT, T686S, and T686A variants of LBD using nuclear magnetic resonance. The HD exchange studies of the LBDs showed that the kinetic step where the ligand-binding cleft closes was changed by the substitutions, and the substitution-induced population shift from cleft-closed to cleft-open structures is responsible for the reduced activities of the variants. The chemical shift analyses revealed another structural equilibrium between cleft-locked and cleft-partially-open conformations. The substitution-induced population shift in this equilibrium may be related to slower desensitization observed for these variants.


Assuntos
Substituição de Aminoácidos , Receptores de AMPA/química , Sítios de Ligação , Agonistas de Aminoácidos Excitatórios/química , Agonistas de Aminoácidos Excitatórios/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores de AMPA/agonistas , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
12.
Cell Rep ; 28(1): 11-20.e9, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269433

RESUMO

Myosin VI is an actin-based cytoskeletal motor implicated in various steps of membrane trafficking. Here, we investigated whether this myosin is crucial for synaptic function and plasticity in neurons. We find that myosin VI localizes at cerebellar parallel fiber to Purkinje cell synapses and that the myosin is indispensable for long-term depression of AMPA-receptor-mediated synaptic signal transmission at this synapse. Moreover, direct visualization of GluA2-containing AMPA receptors in Purkinje cells reveals that the myosin drives removal of AMPA receptors from the surface of dendritic spines in an activity-dependent manner. Co-immunoprecipitation and super-resolution microscopy indicate that specifically the interaction of myosin VI with the clathrin adaptor component α-adaptin is important during long-term depression. Together, these data suggest that myosin VI directly promotes clathrin-mediated endocytosis of AMPA receptors in Purkinje cells to mediate cerebellar long-term depression. Our results provide insights into myosin VI function and the molecular mechanisms underlying synaptic plasticity.


Assuntos
Cerebelo/metabolismo , Depressão Sináptica de Longo Prazo , Cadeias Pesadas de Miosina/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Células Cultivadas , Cerebelo/citologia , Cerebelo/fisiologia , Clatrina/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Endocitose/genética , Endocitose/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cadeias Pesadas de Miosina/antagonistas & inibidores , Cadeias Pesadas de Miosina/genética , Células de Purkinje/metabolismo , Receptores de AMPA/agonistas , Receptores de AMPA/química , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
13.
Nat Neurosci ; 22(8): 1223-1234, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332372

RESUMO

Social deficit is a core clinical feature of autism spectrum disorder (ASD) but the underlying neural mechanisms remain largely unclear. We demonstrate that structural and functional impairments occur in glutamatergic synapses in the pyramidal neurons of the anterior cingulate cortex (ACC) in mice with a mutation in Shank3, a high-confidence candidate ASD gene. Conditional knockout of Shank3 in the ACC was sufficient to generate excitatory synaptic dysfunction and social interaction deficits, whereas selective enhancement of ACC activity, restoration of SHANK3 expression in the ACC, or systemic administration of an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-positive modulator improved social behavior in Shank3 mutant mice. Our findings provide direct evidence for the notion that the ACC has a role in the regulation of social behavior in mice and indicate that ACC dysfunction may be involved in social impairments in ASD.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Giro do Cíngulo/patologia , Proteínas do Tecido Nervoso/genética , Comportamento Social , Animais , Dioxóis/farmacologia , Modelos Animais de Doenças , Ácido Glutâmico , Asseio Animal , Giro do Cíngulo/fisiopatologia , Relações Interpessoais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Mutação/genética , Optogenética , Piperidinas/farmacologia , Células Piramidais/patologia , Receptores de AMPA/agonistas , Sinapses/patologia
14.
Pharmacol Biochem Behav ; 183: 80-86, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31202810

RESUMO

Ketamine produces a rapid-onset antidepressant effect in patients with treatment-resistant depression (TRD), although it concurrently causes undesirable psychotomimetic side effects. Accumulating evidence suggests that ketamine produces antidepressant effects via activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-R), with consequent activation of the mammalian target of rapamycin (mTOR) pathway and up-regulation of brain-derived neurotrophic factor (BDNF). We previously reported that TAK-137, an AMPA-R potentiator with little agonistic effect, had potent procognitive effects with lower risks of bell-shaped dose-response and seizure induction. In this study, we characterized the potential of TAK-137 as a novel antidepressant in rats. In rat primary cortical neurons, TAK-137 increased the phosphorylated form of Akt, extracellular signal-regulated kinase, mTOR, and p70S6 kinase, and dose-dependently increased the expression level of BDNF protein. The antidepressant-like effects of ketamine and TAK-137 were assessed on the day after final administration using the novelty-suppressed feeding test in rats. A single intraperitoneal administration of ketamine shortened the latency to feed. Under these conditions, oral administration of TAK-137 for 3 days shortened the feeding latency. Ketamine induced hyperlocomotion and reduced prepulse inhibition, which may be associated with psychotomimetic effects, while TAK-137 did not. TAK-137 may be a safer and rapid-onset therapeutic drug for the treatment of major depressive disorder, including TRD.


Assuntos
Antidepressivos/farmacologia , Alucinógenos/farmacologia , Piridinas/química , Piridinas/farmacologia , Receptores de AMPA/agonistas , Tiadiazinas/química , Tiadiazinas/farmacologia , Animais , Antidepressivos/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebelar/citologia , Córtex Cerebelar/metabolismo , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Alucinógenos/administração & dosagem , Ketamina/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Inibição Pré-Pulso/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/administração & dosagem , Ratos , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tiadiazinas/administração & dosagem
15.
Neuropharmacology ; 157: 107687, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251995

RESUMO

At present, role of the lateral habenula (LHb) calcium-permeable AMPA receptors (CP-AMPARs) in depression is not understood, particularly in Parkinson's disease-related depression. Here we found that lesions of the substantia nigra pars compacta (SNc) in rats induced depressive-like behaviors, and intra-LHb injection of CP-AMPAR antagonist Naspm produced antidepressant-like effects in SNc sham-lesioned and SNc-lesioned rats, however, the doses inducing these effects in SNc-lesioned rats were lower than that of SNc sham-lesioned rats. Blockade of LHb CP-AMPARs decreased the firing rate of the neurons and increased release of dopamine and serotonin in the medial prefrontal cortex (mPFC) in both groups, but the duration of Naspm action on the firing rate and release of the transmitters were prolonged in SNc-lesioned rats. These changes in SNc-lesioned rats were involved in increased expression of ßCaMKII and p-GluR1-S831 in the LHb. Intra-LHb injection of Naspm inhibited dopaminergic neurons in the anterior ventral tegmental area and serotonergic neurons in the dorsal raphe nucleus and excited dopaminergic neurons in the posterior ventral tegmental area (pVTA) and serotonergic neurons in the median raphe nucleus (MRN), and lesioning the GABAergic rostromedial tegmental nucleus (RMTg) decreased the percentages of excited pVTA dopaminergic neurons and MRN serotonergic neurons. Our findings indicate that blockade of LHb CP-AMPARs produces antidepressant-like effects, which attribute to decreased firing activity of LHb neurons and increased levels of dopamine and serotonin in the mPFC, and provide further evidence that LHb CP-AMPARs regulate the firing activity of pVTA dopaminergic neurons and MRN serotonergic neurons indirectly via the RMTg.


Assuntos
Antidepressivos/farmacologia , Núcleo Dorsal da Rafe/fisiologia , Habenula/fisiologia , Oxidopamina/farmacologia , Parte Compacta da Substância Negra/fisiologia , Receptores de AMPA/antagonistas & inibidores , Espermina/análogos & derivados , Potenciais de Ação/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/biossíntese , Dopamina/metabolismo , Neurônios Dopaminérgicos , Habenula/metabolismo , Ácido Ibotênico/farmacologia , Masculino , Inibição Neural/efeitos dos fármacos , Parte Compacta da Substância Negra/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Receptores de AMPA/agonistas , Receptores de AMPA/metabolismo , Neurônios Serotoninérgicos , Serotonina/metabolismo , Espermina/farmacologia , Tegmento Mesencefálico/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
16.
Glia ; 67(7): 1344-1358, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883902

RESUMO

Astrocytic calcium signaling plays pivotal roles in the maintenance of neural functions and neurovascular coupling in the brain. Vascular endothelial growth factor (VEGF), an original biological substance of vessels, regulates the movement of calcium and potassium ions across neuronal membrane. In this study, we investigated whether and how VEGF regulates glutamate-induced calcium influx in astrocytes. We used cultured astrocytes combined with living cell imaging to detect the calcium influx induced by glutamate. We found that VEGF quickly inhibited the glutamate/hypoxia-induced calcium influx, which was blocked by an AMPA receptor antagonist CNQX, but not D-AP5 or UBP310, NMDA and kainate receptor antagonist, respectively. VEGF increased phosphorylation of PKCα and AMPA receptor subunit GluA2 in astrocytes, and these effects were diminished by SU1498 or calphostin C, a PKC inhibitor. With the pHluorin assay, we observed that VEGF significantly increased membrane insertion and expression of GluA2, but not GluA1, in astrocytes. Moreover, siRNA-produced knockdown of GluA2 expression in astrocytes reversed the inhibitory effect of VEGF on glutamate-induced calcium influx. Together, our results suggest that VEGF reduces glutamate-induced calcium influx in astrocytes via enhancing PKCα-mediated GluA2 phosphorylation, which in turn promotes the membrane insertion and expression of GluA2 and causes AMPA receptors to switch from calcium-permeable to calcium-impermeable receptors, thereby inhibiting astrocytic calcium influx. The present study reveals that excitatory neurotransmitter glutamate-mediated astrocytic calcium influx can be regulated by vascular biological factor via activation of AMPA receptor GluA2 subunit and uncovers a novel coupling mechanism between astrocytes and endothelial cells within the neurovascular unit.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Proteína Quinase C/metabolismo , Receptores de AMPA/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/agonistas , Receptores de AMPA/antagonistas & inibidores
17.
Neuropharmacology ; 148: 169-177, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30629989

RESUMO

Transmembrane AMPA receptor (AMPAR) regulatory proteins (TARP) increase neuronal excitability. However, it is unknown how TARP affect rhythmic neural network activity. Here we studied TARP effects on local field potential (LFP) bursting, membrane potential and cytosolic Ca2+ (Cai) in locus coeruleus neurons of newborn rat brain slices. LFP bursting was not affected by the unselective competitive ionotropic glutamate receptor antagonist kynurenic acid (2.5 mM). TARP-AMPAR complex activation with 25 µM CNQX accelerated LFP rhythm 2.2-fold and decreased its irregularity score from 63 to 9. Neuronal spiking was correspondingly 2.3-fold accelerated in association with a 2-5 mV depolarization and a modest Cai rise whereas Cai was unchanged in neighboring astrocytes. After blocking rhythmic activities with tetrodotoxin (1 µM), CNQX caused a 5-8 mV depolarization and also the Cai rise persisted. In tetrodotoxin, both responses were abolished by the non-competitive AMPAR antagonist GYKI 53655 (25 µM) which also reversed stimulatory CNQX effects in control solution. The CNQX-evoked Cai rise was blocked by the L-type voltage-activated Ca2+ channel inhibitor nifedipine (100 µM). The findings show that ionotropic glutamate receptor-independent neonatal locus coeruleus network bursting is accelerated and becomes more regular by activating a TARP-AMPAR complex. The associated depolarization-evoked L-type Ca2+ channel-mediated neuronal Cai rise may be pivotal to regulate locus coeruleus activity in cooperation with SK-type K+ channels. In summary, this is the first demonstration of TARP-mediated stimulation of neural network bursting. We hypothesize that TARP-AMPAR stimulation of rhythmic locus coeruleus output serves to fine-tune its control of multiple brain functions thus comprising a target for drug discovery.


Assuntos
Locus Cerúleo/fisiologia , Receptores de AMPA/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/antagonistas & inibidores , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Benzodiazepinas/farmacologia , Cálcio/metabolismo , Ácido Cinurênico/farmacologia , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Ratos , Receptores de AMPA/agonistas , Receptores de AMPA/antagonistas & inibidores , Tetrodotoxina/farmacologia
18.
Structure ; 27(2): 241-252.e3, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30528594

RESUMO

Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission in the brain. Their dysfunction is implicated in many neurological disorders, rendering iGluRs potential drug targets. Here, we performed a systematic analysis of the druggability of two major iGluR subfamilies, using molecular dynamics simulations in the presence of drug-like molecules. We demonstrate the applicability of druggability simulations by faithfully identifying known agonist and modulator sites on AMPA receptors (AMPARs) and NMDA receptors. Simulations produced the expected allosteric changes of the AMPAR ligand-binding domain in response to agonist. We also identified a novel ligand-binding site specific to the GluA3 AMPAR N-terminal domain (NTD), resulting from its unique conformational flexibility that we explored further with crystal structures trapped in vastly different states. In addition to providing an in-depth analysis into iGluR NTD dynamics, our approach identifies druggable sites and permits the determination of pharmacophoric features toward novel iGluR modulators.


Assuntos
Receptores de AMPA/química , Receptores de AMPA/metabolismo , Sítio Alostérico , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Receptores de AMPA/agonistas
19.
Neuropharmacology ; 148: 107-116, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30590060

RESUMO

The impairment of social behaviors induced by social defeat stress exposure as juveniles is resistant to some antidepressants and an antipsychotic, although the underlying mechanisms and/or therapeutic target are not yet clear. In this study, we investigated the involvement of the glutamatergic neuronal system in the impairment of social behaviors in this model, as this system is known to be involved in many central pathologies. Acute administration of ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist and subsequent stimulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, attenuated the expression of impairment of social behaviors. Lack of the NMDA receptor GluN2A subunit or acute administration of ifenprodil, an NMDA receptor GluN2B subunit antagonist, did not cause an effect. There were no significant changes in NMDA function, as determined by the ratios of phosphorylated NMDA receptor subunits in the prefrontal cortex and hippocampus. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione, a selective AMPA receptor antagonist, prevented the effect of ketamine on the expression of impairment of social behaviors. On the contrary, the ratio of phosphorylated AMPA receptor GluA1 subunit in the hippocampus was significantly increased in the non-tested, defeated group. Ketamine increased the level of total protein, but not the ratio of phosphorylated GluA1 in the hippocampus of the non-tested, defeated group. In conclusion, exposure to social defeat stress as juveniles may induce the expression of impairment of social behaviors in adolescents via functional changes in GluA1. Activators of AMPA receptor signaling, such as ketamine, may constitute a novel treatment strategy for stress-related psychiatric disorders in adolescents with adverse juvenile experiences.


Assuntos
Ketamina/farmacologia , Receptores de AMPA/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Social , Fatores Etários , Animais , Hipocampo/metabolismo , Ketamina/antagonistas & inibidores , Masculino , Camundongos , Piperidinas/farmacologia , Córtex Pré-Frontal/metabolismo , Quinoxalinas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Estresse Psicológico/psicologia
20.
Biophys J ; 116(1): 57-68, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30573176

RESUMO

α-amino-3-hydroxy-5-methyl-4-isoaxazolepropionic acid (AMPA) ionotropic glutamate receptors mediate fast excitatory neurotransmission in the central nervous system, and their dysfunction is associated with neurological diseases. Glutamate binding to ligand-binding domains (LBDs) of AMPA receptors induces channel opening in the transmembrane domains of the receptors. The T686A mutation reduces glutamate efficacy so that the glutamate behaves as a partial agonist. The crystal structures of wild-type and mutant LBDs are very similar and cannot account for the observed behavior. To elucidate the molecular mechanism inducing partial agonism of the T686A mutant, we computed the free-energy landscapes governing GluA2 LBD closure using replica-exchange umbrella sampling simulations. A semiclosed state, not observed in crystal structures, appears in the mutant during simulation. In this state, the LBD cleft opens slightly because of breaking of interlobe hydrogen bonds, reducing the efficiency of channel opening. The energy difference between the LBD closed and semiclosed states is small, and transitions between the two states would occur by thermal fluctuations. Evidently, glutamate binding to the T686A mutant induces a population shift from a closed to a semiclosed state, explaining the partial agonism in the AMPA receptor.


Assuntos
Simulação de Acoplamento Molecular , Receptores de AMPA/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Agonistas de Aminoácidos Excitatórios/química , Agonistas de Aminoácidos Excitatórios/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Humanos , Ligação de Hidrogênio , Ligação Proteica , Receptores de AMPA/agonistas , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...