Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Peptides ; 171: 171118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012983

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition characterized by widespread inflammation and pulmonary edema. Adrenomedullin (AM), a bioactive peptide with various functions, is expected to be applied in treating ARDS. Its functions are regulated primarily by two receptor activity-modifying proteins, RAMP2 and RAMP3, which bind to the AM receptor calcitonin receptor-like receptor (CLR). However, the roles of RAMP2 and RAMP3 in ARDS remain unclear. We generated a mouse model of ARDS via intratracheal administration of lipopolysaccharide (LPS), and analyzed the pathophysiological significance of RAMP2 and RAMP3. RAMP2 expression declined with LPS administration, whereas RAMP3 expression increased at low doses and decreased at high doses of LPS. After LPS administration, drug-inducible vascular endothelial cell-specific RAMP2 knockout mice (DI-E-RAMP2-/-) showed reduced survival, increased lung weight, and had more apoptotic cells in the lungs. DI-E-RAMP2-/- mice exhibited reduced expression of Epac1 (which regulates vascular endothelial cell barrier function), while RAMP3 was upregulated in compensation. In contrast, after LPS administration, RAMP3-/- mice showed no significant changes in survival, lung weight, or lung pathology, although they exhibited significant downregulation of iNOS, TNF-α, and NLRP3 during the later stages of inflammation. Based on transcriptomic analysis, RAMP2 contributed more to the circulation-regulating effects of AM, whereas RAMP3 contributed more to its inflammation-regulating effects. These findings indicate that, while both RAMP2 and RAMP3 participate in ARDS pathogenesis, their functions differ distinctly. Further elucidation of the pathophysiological significance and functional differences between RAMP2 and RAMP3 is critical for the future therapeutic application of AM in ARDS.


Assuntos
Adrenomedulina , Síndrome do Desconforto Respiratório , Animais , Camundongos , Adrenomedulina/genética , Adrenomedulina/metabolismo , Inflamação , Lipopolissacarídeos , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Proteínas Modificadoras da Atividade de Receptores/genética , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Síndrome do Desconforto Respiratório/genética
2.
J Pept Sci ; 29(12): e3530, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37423610

RESUMO

The peptide hormone adrenomedullin (ADM) consists of 52 amino acids with a disulfide bond and an amidated C-terminus. Due to the vasodilatory and cardioprotective effects, the agonistic activity of the peptide on the adrenomedullin 1 receptor (AM1 R) is of high pharmacological interest. However, the wild-type peptide shows low metabolic stability leading to rapid degradation in the cardiovascular system. Previous work by our group has identified proteolytic cleavage sites and demonstrated stabilization of ADM by lipidation, cyclization, and N-methylation. Nevertheless, these ADM analogs showed reduced activity and subtype selectivity toward the closely related calcitonin gene-related peptide receptor (CGRPR). Here, we report on the rational development of ADM derivatives with increased proteolytic stability and high receptor selectivity. Stabilizing motifs, including lactamization and lipidation, were evaluated regarding AM1 R and CGRPR activation. Furthermore, the central DKDK motif of the peptide was replaced by oligoethylene glycol linkers. The modified peptides were synthesized by Fmoc/t-Bu solid-phase peptide synthesis and receptor activation of AM1 R and CGRPR was measured by cAMP reporter gene assay. Peptide stability was tested in human blood plasma and porcine liver homogenate and analyzed by RP-HPLC and MALDI-ToF mass spectrometry. Combination of the favorable lactam, lipidation, ethylene glycol linker, and previously described disulfide mimetic resulted in highly stabilized analogs with a plasma half-life of more than 144 h. The compounds display excellent AM1 R activity and wild-type-like selectivity toward CGRPR. Additionally, dose-dependent vasodilatory effects of the ADM derivatives lasted for several hours in rodents. Thus, we successfully developed an ADM analog with long-term in vivo activity.


Assuntos
Adrenomedulina , Dissulfetos , Humanos , Animais , Suínos , Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo
3.
J Biol Chem ; 299(6): 104785, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37146967

RESUMO

Adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and calcitonin gene-related peptide (CGRP) have functions in the cardiovascular, lymphatic, and nervous systems by activating three heterodimeric receptors comprising the class B GPCR CLR and a RAMP1, -2, or -3 modulatory subunit. CGRP and AM prefer the RAMP1 and RAMP2/3 complexes, respectively, whereas AM2/IMD is thought to be relatively nonselective. Accordingly, AM2/IMD exhibits overlapping actions with CGRP and AM, so the rationale for this third agonist for the CLR-RAMP complexes is unclear. Here, we report that AM2/IMD is kinetically selective for CLR-RAMP3, known as the AM2R, and we define the structural basis for its distinct kinetics. In live cell biosensor assays, AM2/IMD-AM2R elicited longer-duration cAMP signaling than the other peptide-receptor combinations. AM2/IMD and AM bound the AM2R with similar equilibrium affinities, but AM2/IMD had a slower off-rate and longer receptor residence time, thus explaining its prolonged signaling capacity. Peptide and receptor chimeras and mutagenesis were used to map the regions responsible for the distinct binding and signaling kinetics to the AM2/IMD mid-region and the RAMP3 extracellular domain (ECD). Molecular dynamics simulations revealed how the former forms stable interactions at the CLR ECD-transmembrane domain interface and how the latter augments the CLR ECD binding pocket to anchor the AM2/IMD C terminus. These strong binding components only combine in the AM2R. Our findings uncover AM2/IMD-AM2R as a cognate pair with unique temporal features, reveal how AM2/IMD and RAMP3 collaborate to shape CLR signaling, and have significant implications for AM2/IMD biology.


Assuntos
Adrenomedulina , Peptídeo Relacionado com Gene de Calcitonina , Proteínas Modificadoras da Atividade de Receptores , Receptores de Adrenomedulina , Receptores Acoplados a Proteínas G , Animais , Humanos , Adrenomedulina/química , Adrenomedulina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Chlorocebus aethiops , Células COS , AMP Cíclico/metabolismo , Células HEK293 , Modelos Moleculares , Simulação de Dinâmica Molecular , Estabilidade Proteica , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/genética , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
4.
Biomolecules ; 12(9)2022 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-36139120

RESUMO

Plasma adrenomedullin concentrations are reportedly elevated in patients with renal failure; however, the underlying mechanism is unclear. In this study, we investigated the plasma clearance of synthetic human adrenomedullin (AM) in two models of rats with renal dysfunction; one was induced by subcutaneous injection of mercury chloride (RD-Ag) and the other by completely blocking bilateral renal blood flow (RD-Bl). Sixty minutes after starting intravenous AM infusion, AM levels in RD-Ag, RD-Bl, and rats with normal renal function (NF) were still increased slightly; however, plasma AM levels in RD-Ag rats were approximately three times as high as in RD-Bl and NF rats. Plasma AM disappearance after the end of treatment was similar among the three groups. Pharmacokinetic analysis revealed that elevated plasma AM in RD-Ag rats may be caused by a reduced volume of distribution. The adrenomedullin functional receptor is composed of heterodimers, including GPCR, CLR (calcitonin receptor-like receptor, CALCRL), and the single transmembrane proteins, RAMP2 or RAMP3 (receptor activity modifying protein). Calcrl expression was downregulated in the lungs and kidneys of RD-Ag rats. Furthermore, the plasma concentration of exogenous AM was elevated in mice deficient in vascular endothelium-specific Ramp2. These results suggest that decreased plasma AM clearance in RD-Ag is not due to impaired renal excretion but to a decreased volume of distribution caused by a reduction in adrenomedullin receptors.


Assuntos
Injúria Renal Aguda , Adrenomedulina , Injúria Renal Aguda/metabolismo , Adrenomedulina/farmacocinética , Animais , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Cloretos , Humanos , Mercúrio , Camundongos , Ratos , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/metabolismo
5.
PLoS One ; 17(3): e0265890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35324977

RESUMO

Gestational diabetes mellitus (GDM) is associated with defective pancreatic ß-cell adaptation in pregnancy, but the underlying mechanism remains obscure. Our previous studies demonstrated that GDM women display increased plasma adrenomedullin (ADM) levels, and non-obese GDM mice show decreased serum concentrations of insulin and the number of ß-cells in pancreas islets. The aims of this study is to examine if ADM and its receptors are expressed in female mouse pancreas, and if so, whether insulin secretion is regulated by ADM in mouse ß-cell line, NIT-1 cells and isolated mouse pancreatic islets. Present study shows that ADM and its receptor components CRLR, RAMPs are present in mouse pancreatic islets and co-localized with insulin. The expressions of ADM, CRLR and RAMP2 in islets from pregnant mice are reduced compared to that of non-pregnant mice. NIT-1-ß cells express ADM and its receptor mRNA, and glucose dose-dependently stimulates expressions. Furthermore, ADM inhibits NIT-1-ß cell growth, and this inhibition is reversed by ADM antagonist, ADM22-52. The glucose-induced insulin secretion was suppressed by ADM in NIT-1-ß cells and isolated pancreatic islets from pregnant mice. These inhibitory effects are accompanied by upregulation of endoplasmic reticulum (ER) stress biomarker genes in NIT-1-ß cells. This study unveils that reduced ADM and its receptors may play a role in ß-cell adaptation during pregnancy, while increased plasma ADM in GDM may contribute to the ß-cells dysfunction, and blockade of ADM may reverse ß-cell insulin production.


Assuntos
Diabetes Gestacional , Células Secretoras de Insulina , Adrenomedulina/genética , Adrenomedulina/metabolismo , Animais , Diabetes Gestacional/metabolismo , Feminino , Glucose/metabolismo , Humanos , Insulina/metabolismo , Insulina Regular Humana/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Gravidez , Receptores de Adrenomedulina/metabolismo
6.
Peptides ; 150: 170735, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35007660

RESUMO

Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are peptide hormones and their receptors play a critical role in migraine progression and blood pressure control, respectively. CGRP and AM receptors are structurally related since they are the complex of the calcitonin receptor-like receptor (CLR) with the different types of receptor activity-modifying protein (RAMP). Several crystal structures of the CGRP and AM receptor extracellular domain (ECD) used maltose-binding protein (MBP) as a tag protein to facilitate crystallization. Unexpectedly, the recent crystal structures of CGRP receptor ECD showed that the N-terminal tag MBP located in proximity of bound/mutated peptide ligands. This study provided evidence that MBP N-terminally tagged to the CGRP receptor ECD formed chemical interaction with the mutated peptide ligands. Interestingly, N-glycosylation of the CGRP receptor ECD was predicted to prevent MBP docking to the mutated peptide ligands. I found that the N-glycosylation of CLR ECD N123 was the most critical for inhibiting MBP interaction with the mutated peptide ligands. The MBP tag protein interaction was also dependent on the sequence of the peptide ligands. In contrast to the CGRP receptor, the MBP tag was not involved in peptide ligand binding at AM receptor ECD. Here, I provided evidence that N-glycosylation of the CGRP receptor ECD inhibited the tag protein interaction suggesting an additional function of N-glycosylation in the MBP-fused CGRP receptor ECD. This study reveals the importance of using tag protein-free versions of the CGRP receptor for the accurate assessment of peptide binding affinity.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Proteína 1 Modificadora da Atividade de Receptores/química , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Adrenomedulina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Glicosilação , Humanos , Ligantes , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/química , Receptores de Adrenomedulina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
7.
Lab Invest ; 101(11): 1449-1457, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611305

RESUMO

Adrenomedullin (ADM), a member of the calcitonin family of peptides, is a potent vasodilator and was shown to have the ability to modulate bone metabolism. We have previously found a unique cell surface antigen (Kat1 antigen) expressed in rat osteoclasts, which is involved in the functional regulation of the calcitonin receptor (CTR). Cross-linking of cell surface Kat1 antigen with anti-Kat1 antigen monoclonal antibody (mAbKat1) stimulated osteoclast formation only under conditions suppressed by calcitonin. Here, we found that ADM provoked a significant stimulation in osteoclastogenesis only in the presence of calcitonin; a similar biological effect was seen with mAbKat1 in the bone marrow culture system. This stimulatory effect on osteoclastogenesis mediated by ADM was abolished by the addition of mAbKat1. 125I-labeled rat ADM (125I-ADM)-binding experiments involving micro-autoradiographic studies demonstrated that mononuclear precursors of osteoclasts abundantly expressed ADM receptors, and the specific binding of 125I-ADM was markedly inhibited by the addition of mAbKat1, suggesting a close relationship between the Kat1 antigen and the functional ADM receptors expressed on cells in the osteoclast lineage. ADM receptors were also detected in the osteoclast progenitor cells in the late mitotic phase, in which only one daughter cell of the dividing cell express ADM receptors, suggesting the semiconservative cell division of the osteoclast progenitors in the initiation of osteoclastogenesis. Messenger RNAs for the receptor activity-modifying-protein 1 (RAMP1) and calcitonin receptor-like receptor (CRLR) were expressed in cells in the osteoclast lineage; however, the expression of RAMP2 or RAMP3 was not detected in these cells. It is suggested that the Kat1 antigen is involved in the functional ADM receptor distinct from the general ADM receptor, consisting of CRLR and RAMP2 or RAMP3. Modulation of osteoclastogenesis through functional ADM receptors abundantly expressed on mononuclear osteoclast precursors is supposed to be important in the fine regulation of osteoclast differentiation in a specific osteotrophic hormonal condition with a high level of calcitonin in blood.


Assuntos
Osso e Ossos/citologia , Calcitonina/metabolismo , Diferenciação Celular , Osteogênese , Receptores de Adrenomedulina/metabolismo , Animais , Animais Recém-Nascidos , Osso e Ossos/irrigação sanguínea , Ratos Sprague-Dawley
8.
J Biochem ; 170(4): 445-451, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33964134

RESUMO

Adrenomedullin is a biologically active peptide with multiple functions. Here, we have developed a novel human serum albumin-adrenomedullin (HSA-AM) conjugate, which was synthesized by the covalent attachment of a maleimide derivative of adrenomedullin to the 34th cysteine residue of HSA via a linker. Denaturing gel electrophoresis and western blotting for HSA-AM yielded a single band with adrenomedullin immunoreactivity at the position corresponding to a molecular weight (MW) of 73 kDa. Following gel-filtration chromatography, the purified HSA-AM showed a single main peak corresponding with an MW of 73 kDa, indicating that HSA-AM is a monomer. Both adrenomedullin and HSA-AM stimulated the intracellular accumulation of cyclic AMP (cAMP) in HEK-293 cells stably expressing the adrenomedullin 1 receptor. The pEC50 values for adrenomedullin and HSA-AM were 8.660 and 7.208 (equivalent to 2.19 and 61.9 nM as EC50), respectively. The bioavailability of HSA-AM compared with that of adrenomedullin was much improved after subcutaneous administration in the rat, which was probably due to the superior resistance of HSA-AM towards endogenous proteases and its reduced clearance from the blood. HSA-AM may be a promising drug candidate for clinical application.


Assuntos
Adrenomedulina/análogos & derivados , Adrenomedulina/química , Albumina Sérica Humana/química , Adrenomedulina/farmacocinética , Animais , Disponibilidade Biológica , Cromatografia em Gel/métodos , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Masculino , Maleimidas/metabolismo , Peso Molecular , Ratos , Ratos Wistar , Receptores de Adrenomedulina/metabolismo , Albumina Sérica Humana/farmacocinética
9.
J Med Chem ; 64(6): 3299-3319, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33666424

RESUMO

Class B G-protein-coupled receptors (GPCRs) remain an underexploited target for drug development. The calcitonin receptor (CTR) family is particularly challenging, as its receptors are heteromers comprising two distinct components: the calcitonin receptor-like receptor (CLR) or calcitonin receptor (CTR) together with one of three accessory proteins known as receptor activity-modifying proteins (RAMPs). CLR/RAMP1 forms a CGRP receptor, CLR/RAMP2 forms an adrenomedullin-1 (AM1) receptor, and CLR/RAMP3 forms an adrenomedullin-2 (AM2) receptor. The CTR/RAMP complexes form three distinct amylin receptors. While the selective blockade of AM2 receptors would be therapeutically valuable, inhibition of AM1 receptors would cause clinically unacceptable increased blood pressure. We report here a systematic study of structure-activity relationships that has led to the development of first-in-class AM2 receptor antagonists. These compounds exhibit therapeutically valuable properties with 1000-fold selectivity over the AM1 receptor. These results highlight the therapeutic potential of AM2 antagonists.


Assuntos
Receptores de Adrenomedulina/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Descoberta de Drogas , Feminino , Humanos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Receptores de Adrenomedulina/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
10.
J Biol Chem ; 295(28): 9736-9751, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32487746

RESUMO

Calcitonin gene-related peptide (CGRP), adrenomedullin (AM), and adrenomedullin 2/intermedin (AM2/IMD) have overlapping and unique functions in the nervous and circulatory systems including vasodilation, cardioprotection, and pain transmission. Their actions are mediated by the class B calcitonin-like G protein-coupled receptor (CLR), which heterodimerizes with three receptor activity-modifying proteins (RAMP1-3) that determine its peptide ligand selectivity. How the three agonists and RAMPs modulate CLR binding to transducer proteins remains poorly understood. Here, we biochemically characterized agonist-promoted G protein coupling to each CLR·RAMP complex. We adapted a native PAGE method to assess the formation and thermostabilities of detergent-solubilized fluorescent protein-tagged CLR·RAMP complexes expressed in mammalian cells. Addition of agonist and the purified Gs protein surrogate mini-Gs (mGs) yielded a mobility-shifted agonist·CLR·RAMP·mGs quaternary complex gel band that was sensitive to antagonists. Measuring the apparent affinities of the agonists for the mGs-coupled receptors and of mGs for the agonist-occupied receptors revealed that both ligand and RAMP control mGs coupling and defined how agonist engagement of the CLR extracellular and transmembrane domains affects transducer recruitment. Using mini-Gsq and -Gsi chimeras, we observed a coupling rank order of mGs > mGsq > mGsi for each receptor. Last, we demonstrated the physiological relevance of the native gel assays by showing that they can predict the cAMP-signaling potencies of AM and AM2/IMD chimeras. These results highlight the power of the native PAGE assay for membrane protein biochemistry and provide a biochemical foundation for understanding the molecular basis of shared and distinct signaling properties of CGRP, AM, and AM2/IMD.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Eletroforese em Gel de Poliacrilamida Nativa , Receptores de Adrenomedulina , Animais , Células COS , Peptídeo Relacionado com Gene de Calcitonina/química , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Chlorocebus aethiops , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Domínios Proteicos , Receptores de Adrenomedulina/química , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Sistemas do Segundo Mensageiro
11.
Mucosal Immunol ; 13(5): 743-752, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32203061

RESUMO

Ectopic pregnancy is the major cause of maternal morbidity and mortality in the first trimester of pregnancy. Tubal ectopic pregnancy (TEP) accounts for nearly 98% of all ectopic pregnancies. TEP is usually associated with salpingitis but the underlying mechanism in salpingitis leading to TEP remains unclear. Adrenomedullin (ADM) is a peptide hormone abundantly expressed in the fallopian tube with potent anti-inflammatory activities. Its expression peaks at the early luteal phase when the developing embryo is being transported through the fallopian tube. In the present study, we demonstrated reduced expression of ADM in fallopian tubes of patients with salpingitis and TEP. Using macrophages isolated from the fallopian tubes of these women, our data revealed that the salpingistis-associated ADM reduction contributed to aggravated pro-inflammatory responses of the tubal macrophages resulting in production of pro-inflammatory and pro-implantation cytokines IL-6 and IL-8. These cytokines activated the expression of implantation-associated molecules and Wnt signaling pathway predisposing the tubal epithelium to an adhesive and receptive state for embryo implantation. In conclusion, this study provided evidence for the role of ADM in the pathogenesis of TEP through regulating the functions of tubal macrophages.


Assuntos
Adrenomedulina/metabolismo , Tubas Uterinas/imunologia , Tubas Uterinas/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Gravidez Ectópica/etiologia , Adrenomedulina/sangue , Adrenomedulina/deficiência , Adrenomedulina/genética , Adulto , Biomarcadores , Linhagem Celular , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Implantação do Embrião/genética , Implantação do Embrião/imunologia , Epitélio/metabolismo , Tubas Uterinas/patologia , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Gravidez , Gravidez Ectópica/metabolismo , Gravidez Ectópica/patologia , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Salpingite/complicações , Salpingite/etiologia , Salpingite/metabolismo , Salpingite/patologia , Transdução de Sinais
12.
J Diabetes Investig ; 11(4): 823-833, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31989791

RESUMO

AIMS/INTRODUCTION: Pancreatic ß-cells are sensitive to endoplasmic reticulum (ER) stress, which has a major role in the context of ß-cell death. Adrenomedullin (ADM) has been shown to exert a cytoprotective effect under various pathophysiological conditions. Several studies have suggested that thiazolidinediones have protective effects on ß-cells. During the course to elucidate the molecular mechanisms by which pioglitazone prevents ß-cell death, ADM emerged as a candidate. Here, we studied the regulation of ADM expression, including the effects of pioglitazone, and its role in pancreatic islets. MATERIALS AND METHODS: We analyzed ADM expression in islet cell lines treated with pioglitazone. The effects of ER stress on ADM and ADM receptor expressions were investigated by analyzing thapsigargin-treated MIN6 cells and islets isolated from Wfs1-/- and db/db mice. To study the anti-apoptotic effect of ADM, ER stress-exposed MIN6 cells were treated with ADM peptides or transfected with ADM expression plasmid. RESULTS: Pioglitazone increased the production and secretion of ADM in islets through peroxisome-proliferator activated receptor-γ-dependent mechanisms. Thapsigargin treatment increased expressions of both ADM and ADM receptor, composed of Ramp2, Ramp3 and Crlr, in MIN6 cells. ADM and ADM receptor expressions were also increased in isolated islets from Wfs1-/- and db/db mice. ADM peptides and ADM overexpression protected MIN6 cells from thapsigargin-induced apoptosis. CONCLUSIONS: ER stress stimulates ADM production and secretion in islets. ADM signaling might protect ß-cells from ER stress-induced apoptosis, and might be one of the self-protective mechanisms. ß-Cell protection by pioglitazone is partly through induction of ADM. ADM-based therapy could be a novel strategy for treating diabetes.


Assuntos
Adrenomedulina/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Substâncias Protetoras/metabolismo , Animais , Apoptose/efeitos dos fármacos , Comunicação Autócrina/efeitos dos fármacos , Linhagem Celular , Humanos , Camundongos , PPAR gama/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Pioglitazona/farmacologia , Receptores de Adrenomedulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/farmacologia
13.
J Clin Endocrinol Metab ; 105(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642491

RESUMO

CONTEXT: Adrenomedullin 2 (AM2) plays protective roles in the renal and cardiovascular systems. Recent studies in experimental animals demonstrated that AM2 is an adipokine with beneficial effects on energy metabolism. However, there is little information regarding AM2 expression in human adipose tissue. OBJECTIVE: To investigate the pattern and regulation of the expression of AM2 and its receptor component in human adipose tissue, in the context of obesity and type 2 diabetes. METHODS: We measured metabolic parameters, serum AM2, and expression of ADM2 and its receptor component genes in abdominal subcutaneous and visceral adipose tissue in obese (with or without type 2 diabetes) and normal-weight women. Serum AM2 was assessed before and 6 to 9 months after bariatric surgery. Expression/secretion of AM2 and its receptor were assessed in human adipocytes. RESULTS: ADM2 mRNA in both fat depots was higher in obese patients, whether diabetic or not. Although serum AM2 was significantly lower in obese patients, it was not changed after bariatric surgery. AM2 and its receptor complex were predominantly expressed by adipocytes, and the expression of CALCRL, encoding a component of the AM2 receptor complex, was lower in both fat depots of obese patients. Incubating adipocytes with substances mimicking the microenvironment of obese adipose tissue increased ADM2 mRNA but reduced both AM2 secretion into culture media and CALCRL mRNA expression. CONCLUSIONS: Our data indicate that AM2 signaling is suppressed in adipose tissue in obesity, involving lower receptor expression and ligand availability, likely contributing to insulin resistance and other aspects of the pathophysiology associated with obesity.


Assuntos
Tecido Adiposo/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Obesidade/genética , Hormônios Peptídicos/genética , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/patologia , Adulto , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Feminino , Humanos , Resistência à Insulina/genética , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/patologia , Hormônios Peptídicos/metabolismo , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Transdução de Sinais/genética , Adulto Jovem
14.
J Pept Sci ; 25(3): e3147, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30680847

RESUMO

Adrenomedullin (ADM) is a vasoactive peptide hormone of 52 amino acids and belongs to the calcitonin peptide superfamily. Its vasodilative effects are mediated by the interaction with the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor (GPCR), associated with the receptor activity modifying protein 2 (RAMP2) and functionally described as AM-1 receptor (AM1 R). A disulfide-bonded ring structure consisting of six amino acids between Cys16 and Cys21 has been shown to be a key motif for receptor activation. However, the specific structural requirements remain to be elucidated. To investigate the influence of ring size and position of additional functional groups that replace the native disulfide bond, we generated ADM analogs containing thioether, thioacetal, alkane, and lactam bonds between amino acids 16 and 21 by Fmoc/t-Bu solid phase peptide synthesis. Activity studies of the ADM disulfide bond mimetics (DSBM) revealed a strong impact of structural parameters. Interestingly, an increased ring size was tolerated but the activity of lactam-based mimetics depended on its position within the bridging structure. Furthermore, we found the thioacetal as well as the thioether-based mimetics to be well accepted with full AM1 R activity. While a reduced selectivity over the calcitonin gene-related peptide receptor (CGRPR) was observed for the thioethers, the thioacetal was able to retain a wild-type-like selectivity profile. The carbon analog in contrast displayed weak antagonistic properties. These results provide insight into the structural requirements for AM1 R activation as well as new possibilities for the development of metabolically stabilized analogs for therapeutic applications of ADM.


Assuntos
Adrenomedulina/química , Adrenomedulina/farmacologia , Dissulfetos/química , Receptores de Adrenomedulina/agonistas , Receptores de Adrenomedulina/metabolismo , Adrenomedulina/síntese química , Dissulfetos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
15.
J Clin Endocrinol Metab ; 104(3): 697-706, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383252

RESUMO

Context: Defective pancreatic ß-cell adaptation in pregnancy plays an important role in the pathophysiology of gestational diabetes mellitus (GDM), but the molecular basis remains unclear. Objectives of this study were to determine if circulating levels of adrenomedullin (ADM) in women with GDM are elevated and to assess the effects of ADM on insulin synthesis and secretion by human pancreatic ß-cells. Design: A stable gene product of ADM precursor, midregional pro-adrenomedullin (MR-proADM), was measured in plasma of pregnant women with normal glucose tolerance (NGT, n = 10) or GDM (n = 11). The ß-Lox5 cell line, derived from human pancreatic ß-cells, was transduced with homeodomain transcription factor pancreatic-duodenal homeobox (PDX) factor 1 (PDX1) encoding lentiviral vector and treated with different doses of ADM. mRNA for insulin, ADM, and its receptor components in ß-Lox5 cells and insulin in media were measured. Results: Plasma MR-proADM levels were significantly higher in GDM compared with patients with NGT. Pancreatic ß-Lox5 cells express mRNA for insulin, ADM, and its receptor components. PDX1 transduction and cell-cell contact synergistically promote ß-Lox5 cells insulin mRNA and secretion. Furthermore, ADM dose-dependently inhibited mRNA and secretion of insulin in ß-Lox5 cell aggregates. These inhibitory effects were blocked by ADM antagonist ADM22-52, cAMP-dependent protein kinase A inhibitor KT5720, and Erk inhibitor PD98059, but not by PI-3K the inhibitor wortmannin. Conclusions: Circulating ADM concentrations were elevated in pregnant women with GDM. ADM suppresses insulin synthesis and secretion by pancreatic ß-cells in vitro. Thus, increased circulating ADM may contribute to the defective adaptation of ß-cells in diabetic pregnancies, and blockade of ADM actions with its antagonists may improve ß-cell functions.


Assuntos
Adrenomedulina/sangue , Diabetes Gestacional/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/biossíntese , Adrenomedulina/antagonistas & inibidores , Adrenomedulina/metabolismo , Adulto , Glicemia/análise , Linhagem Celular , Diabetes Gestacional/sangue , Feminino , Teste de Tolerância a Glucose , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Gravidez , Receptores de Adrenomedulina/metabolismo , Transativadores/genética , Transativadores/metabolismo
16.
Neurosci Bull ; 35(1): 34-46, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30276527

RESUMO

Intermedin/adrenomedullin-2 (IMD/AM2), a member of the calcitonin gene-related peptide/AM family, plays an important role in protecting the cardiovascular system. However, its role in the enhanced sympathoexcitation in obesity-related hypertension is unknown. In this study, we investigated the effects of IMD in the paraventricular nucleus (PVN) of the hypothalamus on sympathetic nerve activity (SNA), and lipopolysaccharide (LPS)-induced sympathetic activation in obesity-related hypertensive (OH) rats induced by a high-fat diet for 12 weeks. Acute experiments were performed under anesthesia. The dynamic alterations of sympathetic outflow were evaluated as changes in renal SNA and mean arterial pressure (MAP) in response to specific drugs. Male rats were fed a control diet (12% kcal as fat) or a high-fat diet (42% kcal as fat) for 12 weeks to induce OH. The results showed that IMD protein in the PVN was downregulated, but Toll-like receptor 4 (TLR4) and plasma norepinephrine (NE, indicating sympathetic hyperactivity) levels, and systolic blood pressure were increased in OH rats. LPS (0.5 µg/50 nL)-induced enhancement of renal SNA and MAP was greater in OH rats than in obese or control rats. Bilateral PVN microinjection of IMD (50 pmol) caused greater decreases in renal SNA and MAP in OH rats than in control rats, and inhibited LPS-induced sympathetic activation, and these were effectively prevented in OH rats by pretreatment with the AM receptor antagonist AM22-52. The mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) inhibitor U0126 in the PVN partially reversed the LPS-induced enhancement of SNA. However, IMD in the PVN decreased the LPS-induced ERK activation, which was also effectively prevented by AM22-52. Chronic IMD administration resulted in significant reductions in the plasma NE level and blood pressure in OH rats. Moreover, IMD lowered the TLR4 protein expression and ERK activation in the PVN, and decreased the LPS-induced sympathetic overactivity. These results indicate that IMD in the PVN attenuates SNA and hypertension, and decreases the ERK activation implicated in the LPS-induced enhancement of SNA in OH rats, and this is mediated by AM receptors.


Assuntos
Adrenomedulina/metabolismo , Hipertensão/etiologia , Neuropeptídeos/metabolismo , Receptores de Adrenomedulina/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Lipopolissacarídeos/farmacologia , Masculino , Obesidade/complicações , Ratos Sprague-Dawley , Receptores de Adrenomedulina/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo
17.
J Biol Chem ; 293(41): 15840-15854, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30139742

RESUMO

The cardioprotective vasodilator peptide adrenomedullin 2/intermedin (AM2/IMD) and the related adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) signal through three heterodimeric receptors comprising the calcitonin receptor-like class B G protein-coupled receptor (CLR) and a variable receptor activity-modifying protein (RAMP1, -2, or -3) that determines ligand selectivity. The CGRP receptor (RAMP1:CLR) favors CGRP binding, whereas the AM1 (RAMP2:CLR) and AM2 (RAMP3:CLR) receptors favor AM binding. How AM2/IMD binds the receptors and how RAMPs modulate its binding is unknown. Here, we show that AM2/IMD binds the three purified RAMP-CLR extracellular domain (ECD) complexes with a selectivity profile that is distinct from those of CGRP and AM. AM2/IMD bound all three ECD complexes but preferred the CGRP and AM2 receptor complexes. A 2.05 Å resolution crystal structure of an AM2/IMD antagonist fragment-bound RAMP1-CLR ECD complex revealed that AM2/IMD binds the complex through a unique triple ß-turn conformation that was confirmed by peptide and receptor mutagenesis. Comparisons of the receptor-bound conformations of AM2/IMD, AM, and a high-affinity CGRP analog revealed differences that may have implications for biased signaling. Guided by the structure, enhanced-affinity AM2/IMD antagonist variants were developed, including one that discriminates the AM1 and AM2 receptors with ∼40-fold difference in affinities and one stabilized by an intramolecular disulfide bond. These results reveal differences in how the three peptides engage the receptors, inform development of AM2/IMD-based pharmacological tools and therapeutics, and provide insights into RAMP modulation of receptor pharmacology.


Assuntos
Adrenomedulina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Hormônios Peptídicos/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/metabolismo , Adrenomedulina/isolamento & purificação , Peptídeo Relacionado com Gene de Calcitonina/isolamento & purificação , Proteína Semelhante a Receptor de Calcitonina/isolamento & purificação , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Mutagênese Sítio-Dirigida , Hormônios Peptídicos/antagonistas & inibidores , Hormônios Peptídicos/genética , Hormônios Peptídicos/isolamento & purificação , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Proteína 1 Modificadora da Atividade de Receptores/isolamento & purificação , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/isolamento & purificação , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/isolamento & purificação , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Proteínas Modificadoras da Atividade de Receptores/isolamento & purificação , Receptores de Adrenomedulina/isolamento & purificação
18.
Biochemistry ; 57(8): 1410-1422, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29388762

RESUMO

The calcitonin receptor-like receptor (CLR) is a class B G protein-coupled receptor (GPCR) that forms the basis of three pharmacologically distinct receptors, the calcitonin gene-related peptide (CGRP) receptor, and two adrenomedullin (AM) receptors. These three receptors are created by CLR interacting with three receptor activity-modifying proteins (RAMPs). Class B GPCRs have an N-terminal extracellular domain (ECD) and transmembrane bundle that are both important for binding endogenous ligands. These two domains are joined together by a stretch of amino acids that is referred to as the "stalk". Studies of other class B GPCRs suggest that the stalk may act as hinge, allowing the ECD to adopt multiple conformations. It is unclear what the role of the stalk is within CLR and whether RAMPs can influence its function. Therefore, this study investigated the role of this region using an alanine scan. Effects of mutations were measured with all three RAMPs through cell surface expression, cAMP production and, in select cases, radioligand binding and total cell expression assays. Most mutants did not affect expression or cAMP signaling. CLR C127A, N140A, F142A, and L144A impaired cell surface expression with all three RAMPs. T125A decreased the potency of all peptides at all receptors. N128A, V135A, and L139A showed ligand-dependent effects. While the stalk appears to play a role in CLR function, the effect of RAMPs on this region seems limited, in contrast to their effects on the structure of CLR in other receptor regions.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Proteína Semelhante a Receptor de Calcitonina/análise , Proteína Semelhante a Receptor de Calcitonina/genética , Chlorocebus aethiops , Humanos , Domínios Proteicos , Receptores de Adrenomedulina/metabolismo
19.
Sci Rep ; 7(1): 12389, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959041

RESUMO

Calcitonin receptor-like receptor (CLR) and the receptor activity-modifying protein 2 (RAMP2) comprise a receptor for adrenomedullin (AM). Although it is known that AM induces internalization of CLR•RAMP2, little is known about the molecular mechanisms that regulate the trafficking of CLR•RAMP2. Using HEK and HMEC-1 cells, we observed that AM-induced activation of CLR•RAMP2 promoted ubiquitination of CLR. A mutant (CLRΔ9KR), lacking all intracellular lysine residues was functional and trafficked similar to the wild-type receptor, but was not ubiquitinated. Degradation of CLR•RAMP2 and CLRΔ9KR•RAMP2 was not dependent on the duration of AM stimulation or ubiquitination and occurred via a mechanism that was partially prevented by peptidase inhibitors. Degradation of CLR•RAMP2 was sensitive to overexpression of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), but not to HRS knockdown, whereas CLRΔ9KR•RAMP2 degradation was unaffected. Overexpression, but not knockdown of HRS, promoted hyperubiquitination of CLR under basal conditions. Thus, we propose a role for ubiquitin and HRS in the regulation of AM-induced degradation of CLR•RAMP2.


Assuntos
Adrenomedulina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fosfoproteínas/metabolismo , Receptores de Adrenomedulina/metabolismo , Ubiquitinação/fisiologia , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Fosfoproteínas/genética , Transporte Proteico , Proteólise , RNA Interferente Pequeno/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Ubiquitina/metabolismo
20.
Biochem Pharmacol ; 142: 96-110, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28705698

RESUMO

Calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors are heteromers of the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor, and one of three receptor activity-modifying proteins (RAMPs). How CGRP and AM activate CLR and how this process is modulated by RAMPs is unclear. We have defined how CGRP and AM induce Gs-coupling in CLR-RAMP heteromers by measuring the effect of targeted mutagenesis in the CLR transmembrane domain on cAMP production, modeling the active state conformations of CGRP and AM receptors in complex with the Gs C-terminus and conducting molecular dynamics simulations in an explicitly hydrated lipidic bilayer. The largest effects on receptor signaling were seen with H295A5.40b, I298A5.43b, L302A5.47b, N305A5.50b, L345A6.49b and E348A6.52b, F349A6.53b and H374A7.47b (class B numbering in superscript). Many of these residues are likely to form part of a group in close proximity to the peptide binding site and link to a network of hydrophilic and hydrophobic residues, which undergo rearrangements to facilitate Gs binding. Residues closer to the extracellular loops displayed more pronounced RAMP or ligand-dependent effects. Mutation of H3747.47b to alanine increased AM potency 100-fold in the CGRP receptor. The molecular dynamics simulation showed that TM5 and TM6 pivoted around TM3. The data suggest that hydrophobic interactions are more important for CLR activation than other class B GPCRs, providing new insights into the mechanisms of activation of this class of receptor. Furthermore the data may aid in the understanding of how RAMPs modulate the signaling of other class B GPCRs.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/metabolismo , Animais , Células COS , Peptídeo Relacionado com Gene de Calcitonina/química , Peptídeo Relacionado com Gene de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/genética , Chlorocebus aethiops , AMP Cíclico/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Ensaio Radioligante , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/genética , Receptores de Adrenomedulina/química , Receptores de Adrenomedulina/genética , Proteínas Recombinantes de Fusão , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...