Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Bioanalysis ; 13(6): 415-463, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33533276

RESUMO

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by LCMS were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity). Part 1 (Innovation in Small Molecules, Hybrid LBA/LCMS & Regulated Bioanalysis), Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation) and Part 2B (Regulatory Input) are published in volume 13 of Bioanalysis, issues 4 and 5 (2020), respectively.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Citometria de Fluxo , Terapia Genética , Reação em Cadeia da Polimerase em Tempo Real , Vacinas/análise , Humanos , Controle de Qualidade , Receptores de Antígenos Quiméricos/análise , Estados Unidos , United States Food and Drug Administration
3.
Curr Hematol Malig Rep ; 16(1): 112-116, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33449291

RESUMO

PURPOSE OF REVIEW: High-dimensional flow cytometry experiments have become a method of choice for high-throughput integration and characterization of cell populations. Here, we present a summary of state-of-the-art R-based pipelines used for differential analyses of cytometry data, largely based on chimeric antigen receptor (CAR) T cell therapies. These pipelines are based on publicly available R libraries, put together in a systematic and functional fashion, therefore free of cost. RECENT FINDINGS: In recent years, existing tools tailored to analyze complex high-dimensional data such as single-cell RNA sequencing (scRNAseq) have been successfully ported to cytometry studies due to the similar nature of flow cytometry and scRNAseq platforms. Existing environments like Cytobank (Kotecha et al., 2010), FlowJo (FlowJo™ Software) and FCS Express (https://denovosoftware.com) already offer a variety of these ported tools, but they either come at a premium or are fairly complicated to manage by an inexperienced user. To mitigate these limitations, experienced cytometrists and bioinformaticians usually incorporate these functions into an RShiny (https://shiny.rstudio.com) application that ultimately offers a user-friendly, intuitive environment that can be used to analyze flow cytometry data. Computational tools and Shiny-based tools are the perfect answer to the ever-growing dimensionality and complexity of flow cytometry data, by offering a dynamic, yet user-friendly exploratory space, tailored to bridge the space between the lab experimental world and the computational, machine learning space.


Assuntos
Citometria de Fluxo/métodos , Imunoterapia Adotiva/métodos , Monitorização Imunológica/métodos , Animais , Humanos , Receptores de Antígenos Quiméricos/análise , Software , Linfócitos T/citologia
4.
Cytometry B Clin Cytom ; 100(2): 218-224, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32841511

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy is considered as a major scientific breakthrough in cancer immunotherapy. The success of adoptive CAR T-cell therapy for cancer has inspired researchers to expand indications into the area of solid tumors, autoimmune and infectious diseases. The most important factors influencing outcome and durability of the response after infusion of CAR T-cell are proliferation and persistence of this cell subset. It becomes therefore important to detect easily and monitor circulating CAR T-cells into blood samples. Approaches such as quantitative PCR (qPCR) or flow cytometry have been developed. The aim of this study was to set up and optimize a reachable flow cytometry technique using labeled CD19 protein for the measurement of CAR T-cells in infusion bag and patient's blood. METHODS: Patients receiving Yescarta in Cell Therapy Unit (Department of hematology, Lille university hospital, France) between April and October 2019 and healthy volunteers were included to set up the flow cytometry technique. RESULTS AND CONCLUSIONS: We assessed feasibility in clinic and suitability to routine workload of a flow cytometry technique to follow CAR T-cells in infusion bag and patient's blood. With only a few manual steps, the present protocol allows the technician to perform this technique among other routine tasks, meaning a time to results of <2 hr after sample reception. We were also able to assess CAR T-cell heterogenity in terms of CD4+ and CD8+ T lymphocytes within the subset. Moreover, this technique allows monitoring of both authority approved CD19 CAR T-cell.


Assuntos
Citometria de Fluxo , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/análise , Linfócitos T/citologia , Adulto , Idoso , Antígenos CD19/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
Cytometry B Clin Cytom ; 100(1): 79-91, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373096

RESUMO

Chimeric Antigen Receptor (CAR) T cells are recognized as efficacious therapies with demonstrated ability to produce durable responses in blood cancer patients. Regulatory approvals and acceptance of these unique therapies by patients and reimbursement agencies have led to a significant increase in the number of next generation CAR T clinical trials. Flow cytometry is a powerful tool for comprehensive profiling of individual CAR T cells at multiple stages of clinical development, from product characterization during manufacturing to longitudinal evaluation of the infused product in patients. There are unique challenges with regard to the development and validation of flow cytometric methods for CAR T cells; moreover, the assay requirements for manufacturing and clinical monitoring differ. Based on the collective experience of the authors, this recommendation paper aims to review these challenges and present approaches to address them. The discussion focuses on describing key considerations for the design, optimization, validation and implementation of flow cytometric methods during the clinical development of CAR T cell therapies.


Assuntos
Citometria de Fluxo , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/análise , Linfócitos T/citologia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia
6.
J Immunol Methods ; 492: 112955, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33383062

RESUMO

Identifying engineered T cells in situ is important to understand the location, persistence, and phenotype of these cells in patients after adoptive T cell therapy. While engineered cells are routinely characterized in fresh tissue or blood from patients by flow cytometry, it is difficult to distinguish them from endogenous cells in formalin-fixed, paraffin-embedded (FFPE) tissue biopsies. To overcome this limitation, we have developed a method for characterizing engineered T cells in fixed tissue using in situ hybridization (ISH) to the woodchuck hepatitis post-transcriptional regulatory element (WPRE) common in many lentiviral vectors used to transduce chimeric antigen receptor T (CAR-T) and T cell receptor T (TCR-T) cells, coupled with alternative permeabilization conditions that allows subsequent multiplex immunohistochemical (mIHC) staining within the same image. This new method provides the ability to mark the cells by ISH, and simultaneously stain for cell-associated proteins to immunophenotype CAR/TCR modified T cells within tumors, as well as assess potential roles of these cells in on-target/off-tumor toxicity in other tissue.


Assuntos
Imuno-Histoquímica/métodos , Imunofenotipagem/métodos , Receptores de Antígenos Quiméricos/análise , Linfócitos T/imunologia , Animais , Biópsia , Engenharia Celular , Técnicas de Cocultura , Vetores Genéticos/genética , Vírus da Hepatite B da Marmota/genética , Humanos , Hibridização in Situ Fluorescente , Lentivirus/genética , Linfonodos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Inclusão em Parafina , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Pele/citologia , Pele/imunologia , Pele/patologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Fixação de Tecidos , Transdução Genética , Quimeras de Transplante
7.
Front Immunol ; 11: 1770, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849635

RESUMO

Chimeric antigen receptor-T (CAR-T) cell therapy is a promising frontier of immunoengineering and cancer immunotherapy. Methods that detect, quantify, track, and visualize the CAR, have catalyzed the rapid advancement of CAR-T cell therapy from preclinical models to clinical adoption. For instance, CAR-staining/labeling agents have enabled flow cytometry analysis, imaging applications, cell sorting, and high-dimensional clinical profiling. Molecular assays, such as quantitative polymerase chain reaction, integration site analysis, and RNA-sequencing, have characterized CAR transduction, expression, and in vivo CAR-T cell expansion kinetics. In vitro visualization methods, including confocal and total internal reflection fluorescence microscopy, have captured the molecular details underlying CAR immunological synapse formation, signaling, and cytotoxicity. In vivo tracking methods, including two-photon microscopy, bioluminescence imaging, and positron emission tomography scanning, have monitored CAR-T cell biodistribution across blood, tissue, and tumor. Here, we review the plethora of CAR detection methods, which can operate at the genomic, transcriptomic, proteomic, and organismal levels. For each method, we discuss: (1) what it measures; (2) how it works; (3) its scientific and clinical importance; (4) relevant examples of its use; (5) specific protocols for CAR detection; and (6) its strengths and weaknesses. Finally, we consider current scientific and clinical needs in order to provide future perspectives for improved CAR detection.


Assuntos
Técnicas Imunológicas/métodos , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/análise , Receptores de Antígenos Quiméricos/isolamento & purificação , Humanos
8.
Sci Rep ; 9(1): 1957, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760795

RESUMO

Chimeric Antigen Receptor-T (CAR-T) cell immunotherapy has produced dramatic responses in hematologic malignancies. One of the challenges in the field is the lack of a simple assay for the detection of CARs on the surface of immune effector cells. In this study, we describe a novel luciferase-based assay, termed Topanga Assay, for the detection of CAR expression. The assay utilizes a recombinant fusion protein, called Topanga reagent, generated by joining the extra-cellular domain of a CAR-target in frame with one of the marine luciferases or their engineered derivatives. The assay involves incubation of CAR expressing cells with the Topanga reagent, a few washes and measurement of luminescence. The assay can detect CARs comprising either immunoglobulin- or non-immunoglobulin-based antigen binding domains. We further demonstrate that addition of epitope tags to the Topanga reagent not only allows its convenient one step purification but also extends its use for detection of CAR cells using flow cytometry. However, crude supernatant containing the secreted Topanga reagent can be directly used in both luminescence and flow-cytometry based assays without prior protein purification. Our results demonstrate that the Topanga assay is a highly sensitive, specific, convenient, economical and versatile assay for the detection of CARs.


Assuntos
Imunoterapia Adotiva/métodos , Luciferases/metabolismo , Receptores de Antígenos Quiméricos/análise , Linhagem Celular , Citometria de Fluxo/métodos , Humanos , Linfócitos/metabolismo , Receptores de Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia
9.
Blood ; 132(18): 1899-1910, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209120

RESUMO

Adoptive transfer of patient-derived T cells modified to express chimeric antigen receptors (CARTs) has demonstrated dramatic success in relapsed/refractory pre-B-cell acute lymphoblastic leukemia (ALL), but response and durability of remission requires exponential CART expansion and persistence. Tumors are known to affect T-cell function, but this has not been well studied in ALL and in the context of chimeric antigen receptor (CAR) expression. Using TCF3/PBX1 and MLL-AF4-driven murine ALL models, we assessed the impact of progressive ALL on T-cell function in vivo. Vaccines protect against TCF3/PBX1.3 but were ineffective when administered after leukemia injection, suggesting immunosuppression induced early during ALL progression. T cells from leukemia-bearing mice exhibited increased expression of inhibitory receptors, including PD1, Tim3, and LAG3, and were dysfunctional following adoptive transfer in a model of T-cell receptor (TCR)-dependent leukemia clearance. Although expression of inhibitory receptors has been linked to TCR signaling, pre-B-cell ALL induced inhibitory receptor expression, at least in part, in a TCR-independent manner. Finally, introduction of a CAR into T cells generated from leukemia-bearing mice failed to fully reverse poor in vivo function.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Células Precursoras de Linfócitos B/patologia , Linfócitos T/patologia , Transferência Adotiva/métodos , Animais , Vacinas Anticâncer/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...