Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.796
Filtrar
1.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583435

RESUMO

Endothelins and renal dopamine contribute to control of renal function and arterial pressure in health and various forms of experimental hypertension, the action is mediated by tonic activity of specific receptors. We determined the action mediated by endothelin type B and by dopamine D3 receptors (ETB-R, D3-R) in anaesthetized spontaneously hypertensive (SHR) and in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. In rats of both hypertension models infused during 60 min into the interstitium of in situ kidney were either ETB-R antagonist, BQ788 (0.67 mg kg-1 BW h-1) or D3-R antagonist, GR103691 (0.2 mg kg-1 BW h-1). Arterial pressure (MAP), renal artery blood flow (RBF, transonic probe) and renal medullary blood flow (MBF, laser-Doppler) were measured along with sodium, water and total solute excretion (UNaV, V, UosmV). Experiments with ETB-R blockade confirmed their tonic vasodilator action in the whole kidney (RBF) and medulla (MBF) in both hypertension models. In SHR only, the first evidence was provided that ETB-R specifically increases transtubular backflux of non-electrolyte solutes. In DOCA-salt rats ETB-R blockade caused an early decrease in water and salt transport whereas an increase was often reported from many previous studies. The most striking effect of D3-R blockade in SHR was a selective increase in MBF, which strongly suggested tonic vasoconstrictor action of these receptors in the renal medulla; this speaks against prevailing opinion that D3 receptors are virtually inactive in SHR. In our model variant of DOCA-salt rats of D3-R blockade clearly caused a rapid major increase in MAP in parallel with depression of renal haemodynamics.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Ratos , Animais , Receptores de Dopamina D3 , Acetato de Desoxicorticosterona/farmacologia , Antagonistas dos Receptores de Endotelina/farmacologia , Ratos Endogâmicos SHR , Hipertensão/induzido quimicamente , Endotelinas/farmacologia , Água , Acetatos/farmacologia , Pressão Sanguínea , Endotelina-1
2.
Neurosci Lett ; 825: 137706, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38431040

RESUMO

INTRODUCTION: Levodopa-induced dyskinesia (LID) is a debilitating motor feature in a subset of patients with Parkinson's disease (PD) after prolonged therapeutic administration of levodopa. Preliminary animal and human studies are suggestive of a key role of dopamine type 3 (D3) receptor polymorphism (Ser9Gly; rs6280) in LID. Its contribution to development of LID among Indian PD patients has remained relatively unexplored and merits further investigation. METHODS AND MATERIALS: 200 well-characterised PD patients (100 without LID and 100 with LID) and 100 age-matched healthy controls were recruited from the outpatient department of Institute of Neurosciences Kolkata. MDS-UPDRS (Unified Parkinson's Disease Rating Scale from International Movement Disorder Society) Part III and AIMS (abnormal involuntary movement scale) were performed for estimation of severity of motor features and LID respectively in the ON state of the disease. Participants were analysed for the presence of Ser9Gly single nucleotide variant (SNV) (rs6280) by polymerase chain reaction followed by restriction fragment length polymorphism techniques. RESULTS: The frequency of AA genotype (serine type) was more frequently present in PD patients with LID compared to PD patients without LID (50 % vs 28 %; P = 0.002; OR = 2.57, 95 % CI: 1.43 - 4.62). The abnormal involuntary movement scale score was significantly higher in PD patients with AA genotype compared to carriers of glycine allele (AG + GG) (4.08 ± 3.35; P = 0.002). CONCLUSION: We observed a significant association of serine type SNV (rs6280) in D3 receptor gene in a cohort of PD patients with LID from India. More severe motor severity was found in patients with glycine substitution of the same SNV. The current study emphasised the role of D3 receptor in the pathogenesis of LID.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Humanos , Antiparkinsonianos/uso terapêutico , Discinesia Induzida por Medicamentos/genética , Discinesia Induzida por Medicamentos/tratamento farmacológico , Glicina , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Receptores de Dopamina D3/genética , Serina/genética
3.
J Chem Inf Model ; 64(6): 1778-1793, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38454785

RESUMO

Effective rational drug discovery hinges on understanding the functional states of the target protein and distinguishing it from homologues. However, for the G protein coupled receptors, both activation-related conformational changes (ACCs) and intrinsic divergence among receptors can be misled or obscured by ligand-specific conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics (MD) simulation results of the receptors bound with various ligands. In addition to the ACCs common to other aminergic receptors, we revealed unique ACCs for these two receptors, including the extracellular portion of TM5 (TM5e) and TM6e shifting away from TM2e and TM3e, with a subtle rotation of TM5e. In identifying intrinsic divergence, we found more outward tilting of TM6e in the D2R compared to the D3R in both the experimental structures and simulations bound with ligands in different scaffolds. However, this difference was drastically reduced in the simulations bound with nonselective agonist quinpirole, suggesting a misleading effect of LCCs. Further, in the quinpirole-bound simulations, TM1 showed a greater disparity between these receptors, indicating that LCCs may also obscure intrinsic divergence. Importantly, our MD simulations revealed divergence in the dynamics of these receptors. Specifically, the D2R exhibited heightened flexibility compared to the D3R in the extracellular loops and TMs 5e, 6e, and 7e, associated with its greater ligand binding site plasticity. Our results lay the groundwork for crafting ligands specifically targeting the D2R and D3R with more precise pharmacological profiles.


Assuntos
Dopamina , Receptores de Dopamina D2 , Ligantes , Quimpirol , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismo
4.
Brain Res ; 1834: 148893, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554797

RESUMO

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The dopamine D3 receptor (D3R) plays a significant role in the pathogenesis and treatment of PD. Activation of receptor tyrosine kinases (RTKs) inhibits signaling mediated by G protein-coupled receptor (GPCR). Epidermal growth factor receptors (EGFRs) and dopamine D3 receptors in the brain are directly associated with PD, both in terms of its development and potential treatment. Therefore, we investigated the impact of modulating the EGFR, a member of the RTKs family, and the dopamine D3R, a member of the GPCR family. In the present study, 100 mg/kg of lapatinib (LAP) was administered to rotenone-intoxicated rats for three weeks. Our findings indicate that LAP effectively alleviated motor impairment, improved histopathological abnormalities, and restored dopaminergic neurons in the substantia nigra. This restoration was achieved through the upregulation of dopamine D3R and increase of tyrosine hydroxylase (TH) expression, as well as boosting dopamine levels. Furthermore, LAP inhibited the activity of p-EGFR, GRK2, and SCR. Additionally, LAP exhibited antioxidant properties by inhibiting the 4-hydroxynonenal (4-HNE) and PLCγ/PKCßII pathway, while enhancing the antioxidant defense mechanism by increasing GSH-GPX4 pathway. The current study offers insights into the potential repositioning of LAP as a disease-modifying drug for PD. This could be achieved by modulating the dopaminergic system and curbing oxidative stress.


Assuntos
Neurônios Dopaminérgicos , Receptores ErbB , Lapatinib , Transtornos Parkinsonianos , Receptores de Dopamina D3 , Rotenona , Animais , Masculino , Ratos , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Lapatinib/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
5.
J Parkinsons Dis ; 14(2): 313-324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363619

RESUMO

Background: A possible genetic contribution of dopamine D3 receptor (DRD3) to cognitive impairment in Parkinson's disease (PD) has yet to be investigated. Objective: To explore the effects of rs6280 (Ser9Gly) genotype on PD patients' cognitive performance and to clarify possible interactions with psychopathology. Methods: Two hundred and fifty-three consecutive PD patients underwent neurological and neuropsychological evaluations, which included: Unified Parkinson's Disease Rating Scale (UPDRS), Hoehn & Yahr scale (H&Y), Dementia Rating Scale-2 (DRS-2), and Hospital Anxiety and Depression Scale (HADS). rs6280 polymorphism was genotyped for all PD patients and for 270 ethnically matched healthy volunteers (HC). Non-parametric group comparisons and logistic regressions were used for data analyses. Results: rs6280 genotype did not differ between PD and HC groups. PD patients with rs6280 CC genotype had more impaired cognitive performance (i.e., <1st percentile of demographically adjusted norms) on DRS-2 subscales Initiation/Perseveration and Construction than those with TT genotype. These associations remained statistically significant when other covariates (e.g., demographic features, disease duration, severity of motor symptoms in OFF and ON states, anti-parkinsonian medication, and psychopathology symptoms) were taken into consideration. PD patients with rs6280 TC had less anxiety (i.e., HADS Anxiety≥11) than those with TT (p = 0.012). This association was also independent of other covariates. Conclusions: Study findings suggest that rs6280 CC genotype predisposes to executive dysfunction and visuoconstructional deficits, whereas the heterozygous genotype protects from anxiety in PD. These effects do not appear to be dependent of one another. rs6280 is not a genotypic susceptibility factor for PD.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Receptores de Dopamina D3/genética , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , Disfunção Cognitiva/genética , Disfunção Cognitiva/complicações , Polimorfismo Genético , Ansiedade/genética
6.
Addict Biol ; 29(2): e13369, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380709

RESUMO

Here, we present recent studies suggesting that specific DRD3 single nucleotide polymorphisms (SNPs, e.g. rs324029 and rs2654754) might serve as prognostic biomarkers for opioid use disorder (OUD). Additionally, preclinical studies with novel dopamine 3 receptor (D3R) partial agonists and antagonists have been evaluated as candidate OUD therapeutics and have shown a reduced risk of cardiovascular toxicity compared with the original D3R antagonist. From these findings, we argue that DRD3 SNPs could serve as a diagnostic tool for assessing OUD risk and that more research is warranted examining the D3R as a safe and effective therapeutic target for treating OUD.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Receptores Dopaminérgicos , Humanos , Dopamina , Receptores de Dopamina D3/genética , Transtornos Relacionados ao Uso de Opioides/genética , Antagonistas de Dopamina , Agonistas de Dopamina , Analgésicos Opioides
7.
Expert Opin Investig Drugs ; 33(1): 51-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38054696

RESUMO

BACKGROUND: JX11502MA is a potent partial agonist of dopamine D2 and D3 receptors, with a preferential binding profile for D3 receptors in vitro, potentially for treating schizophrenia. METHODS: A first-in-human, randomized, double-blind, placebo-controlled, single ascending dose clinical trial was designed. The subjects were randomly assigned to receive JX11502MA and placebo capsules with seven ascending dose groups: 0.25 mg, 0.5 mg, 1 mg, 2 mg, 3 mg, 6 mg, and 8 mg. The PK profiles of JX11502MA and its metabolites were evaluated, along with a safety and tolerability assessment. RESULTS: Considering the safety of participants, the dose escalation was halted at 3 mg. Following single-dose administration, JX11502MA exhibited rapid absorption with a median Tmax ranging from 1 to 1.75 h. The terminal half-life of JX11502MA ranged from 73.62 to 276.85 h. The most common treatment-emergent adverse events (TEAEs) for subjects receiving JX11502MA were somnolence (56.3%), dizziness (18.8%), nausea (21.9%), vomiting (18.8%), and hiccups (18.8%). CONCLUSIONS: JX11502MA was generally well tolerated at a single dose of 0.25 to 3 mg. The PK profiles and safety characteristics in this study indicated that JX11502MA has the potential to be a favorable treatment option for patients with schizophrenia. TRIAL REGISTRATION: https://clinicaltrials.gov (identifier: NCT05233657).


Assuntos
Receptores de Dopamina D2 , Receptores de Dopamina D3 , Humanos , Área Sob a Curva , China , Relação Dose-Resposta a Droga , Método Duplo-Cego , Voluntários Saudáveis , População do Leste Asiático , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas
8.
Eur J Neurosci ; 59(7): 1441-1459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151481

RESUMO

Dopamine D2 receptor (D2R) is expressed in striatopallidal neurons and decreases forskolin-stimulated cyclic adenine monophosphate (cAMP) accumulation and gamma-aminobutyric acid (GABA) release. Dopamine D3 receptor (D3R) mRNA is expressed in a population of striatal D2R-expressing neurons. Also, D3R protein and binding have been reported in the neuropil of globus pallidus. We explore whether D2R and D3R colocalize in striatopallidal terminals and whether D3R modulates the D2R effect on forskolin-stimulated [3H]cAMP accumulation in pallidal synaptosomes and high K+ stimulated-[3H]GABA release in pallidal slices. Previous reports in heterologous systems indicate that calmodulin (CaM) and CaMKII modulate D2R and D3R functions; thus, we study whether this system regulates its functional interaction. D2R immunoprecipitates with CaM, and pretreatment with ophiobolin A or depolarization of synaptosomes with 15 mM of K+ decreases it. Both treatments increase the D2R inhibition of forskolin-stimulated [3H]cAMP accumulation when activated with quinpirole, indicating a negative modulation of CaM on D2R function. Quinpirole also activates D3R, potentiating D2R inhibition of cAMP accumulation in the ophiobolin A-treated synaptosomes. D2R and D3R immunoprecipitate in pallidal synaptosomes and decrease after the kainic acid striatal lesion, indicating the striatal origin of the presynaptic receptors. CaM-kinase II alfa (CaMKIIα) immunoprecipitates with D3R and increases after high K+ depolarization. In the presence of KN62, a CaMKIIα blocker, D3R potentiates D2R effects on cAMP accumulation in depolarized synaptosomes and GABA release in pallidal slices, indicating D3R function regulation by CaMKIIα. Our data indicate that D3R potentiates the D2R effect on cAMP accumulation and GABA release at pallidal terminals, an interaction regulated by the CaM-CaMKIIα system.


Assuntos
Calmodulina , Receptores de Dopamina D3 , Sesterterpenos , Receptores de Dopamina D3/metabolismo , Quimpirol/farmacologia , Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Colforsina , Receptores de Dopamina D2/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
Neuroimage ; 283: 120416, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866759

RESUMO

While all reversible receptor-targeting radioligands for positron emission tomography (PET) can be displaced by competition with an antagonist at the receptor, many radiotracers show limited occupancies using agonists even at high doses. [11C]Raclopride, a D2/D3 receptor radiotracer with rapid kinetics, can identify the direction of changes in the neurotransmitter dopamine, but quantitative interpretation of the relationship between dopamine levels and radiotracer binding has proven elusive. Agonist-induced receptor desensitization and internalization, a homeostatic mechanism to downregulate neurotransmitter-mediated function, can shift radioligand-receptor binding affinity and confound PET interpretations of receptor occupancy. In this study, we compared occupancies induced by amphetamine (AMP) in drug-naive wild-type (WT) and internalization-compromised ß-arrestin-2 knockout (KO) mice using a within-scan drug infusion to modulate the kinetics of [11C]raclopride. We additionally performed studies at 3 h following AMP pretreatment, with the hypothesis that receptor internalization should markedly attenuate occupancy on the second challenge, because dopamine cannot access internalized receptors. Without prior AMP treatment, WT mice exhibited somewhat larger binding potential than KO mice but similar AMP-induced occupancy. At 3 h after AMP treatment, WT mice exhibited binding potentials that were 15 % lower than KO mice. At this time point, occupancy was preserved in KO mice but suppressed by 60 % in WT animals, consistent with a model in which most receptors contributing to binding potential in WT animals were not functional. These results demonstrate that arrestin-mediated receptor desensitization and internalization produce large effects in PET [11C]raclopride occupancy studies using agonist challenges.


Assuntos
Dopamina , Receptores de Dopamina D3 , Camundongos , Animais , Receptores de Dopamina D3/metabolismo , Racloprida/farmacologia , Racloprida/metabolismo , Dopamina/metabolismo , Antagonistas de Dopamina , Arrestina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Agonistas de Dopamina/farmacologia , Anfetaminas , Anfetamina/farmacologia
10.
Expert Opin Pharmacother ; 24(18): 1985-1992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817489

RESUMO

INTRODUCTION: Comorbidity of substance use disorder (SUD) with schizophrenia, referred to as dual disorder (DD), significantly increases morbidity and mortality compared to schizophrenia alone. A dopaminergic dysregulation seems to be a common pathophysiological basis of the comorbidity. AREAS COVERED: This article reports the current evidence on the role of dopamine dysregulations in DD, the pharmacological profile of cariprazine, a partial agonist of D3 and D2 dopamine receptors, and first clinical observations that may support its usefulness in the therapy of DD. PubMed/MEDLINE was searched for the keywords 'cariprazine,' 'schizophrenia,' 'dual disorder,' 'dopamine,' and 'dopamine receptor.' Preclinical and clinical studies, and reviews published in English were retrieved. EXPERT OPINION: Although the management of DD remains challenging, and the evidence for pharmacologic treatments is still unsatisfactory, cariprazine may be a candidate medication in DD due to its unique mechanism of action. Preliminary clinical experiences suggest that cariprazine has both antipsychotic and anticraving properties and should be considered early in patients with DD.


Assuntos
Esquizofrenia , Transtornos Relacionados ao Uso de Substâncias , Humanos , Esquizofrenia/tratamento farmacológico , Dopamina/uso terapêutico , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/uso terapêutico , Receptores de Dopamina D2/agonistas , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
12.
Eur J Med Chem ; 261: 115751, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37688938

RESUMO

The difference in the secondary binding site (SBS) between the dopamine 2 receptor (D2R) and dopamine 3 receptor (D3R) has been used in the design of compounds displaying selectivity for the D3R versus D2R. In the current study, a series of bitopic ligands based on Fallypride were prepared with various secondary binding fragments (SBFs) as a means of improving the selectivity of this benzamide analog for D3R versus D2R. We observed that compounds having a small alkyl group with a heteroatom led to an improvement in D3R versus D2R selectivity. Increasing the steric bulk in the SBF increase the distance between the pyrrolidine N and Asp110, thereby reducing D3R affinity. The best-in-series compound was (2S,4R)-trans-27 which had a modest selectivity for D3R versus D2R and a high potency in the ß-arrestin competition assay which provides a measure of the ability of the compound to compete with endogenous dopamine for binding to the D3R. The results of this study identified factors one should consider when designing bitopic ligands based on Fallypride displaying an improved affinity for D3R versus D2R.


Assuntos
Dopamina , Receptores de Dopamina D3 , Receptores de Dopamina D3/química , Benzamidas/farmacologia , Ligantes
13.
Eur J Nucl Med Mol Imaging ; 50(13): 3928-3936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581725

RESUMO

PURPOSE: The topological distribution of dopamine-related proteins is determined by gene transcription and subsequent regulations. Recent research strategies integrating positron emission tomography with a transcriptome atlas have opened new opportunities to understand the influence of regulation after transcription on protein distribution. Previous studies have reported that messenger (m)-RNA expression levels spatially correlate with the density maps of serotonin receptors but not with those of transporters. This discrepancy may be due to differences in regulation after transcription between presynaptic and postsynaptic proteins, which have not been studied in the dopaminergic system. Here, we focused on dopamine D1 and D2/D3 receptors and dopamine transporters and investigated their region-wise relationship between mRNA expression and protein distribution. METHODS: We examined the region-wise correlation between regional binding potentials of the target region relative to that of non-displaceable tissue (BPND) values of 11C-SCH-23390 and mRNA expression levels of dopamine D1 receptors (D1R); regional BPND values of 11C-FLB-457 and mRNA expression levels of dopamine D2/D3 receptors (D2/D3R); and regional total distribution volume (VT) values of 18F-FE-PE2I and mRNA expression levels of dopamine transporters (DAT) using Spearman's rank correlation. RESULTS: We found significant positive correlations between regional BPND values of 11C-SCH-23390 and the mRNA expression levels of D1R (r = 0.769, p = 0.0021). Similar to D1R, regional BPND values of 11C-FLB-457 positively correlated with the mRNA expression levels of D2R (r = 0.809, p = 0.0151) but not with those of D3R (r = 0.413, p = 0.3095). In contrast to D1R and D2R, no significant correlation between VT values of 18F-FE-PE2I and mRNA expression levels of DAT was observed (r = -0.5934, p = 0.140). CONCLUSION: We found a region-wise correlation between the mRNA expression levels of dopamine D1 and D2 receptors and their respective protein distributions. However, we found no region-wise correlation between the mRNA expression levels of dopamine transporters and their protein distributions, indicating different regulatory mechanisms for the localization of pre- and postsynaptic proteins. These results provide a broader understanding of the application of the transcriptome atlas to neuroimaging studies of the dopaminergic nervous system.


Assuntos
Encéfalo , Dopamina , Humanos , Dopamina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica
14.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446391

RESUMO

Stress triggers relapses in cocaine use that engage the activity of memory-related nuclei, such as the basolateral amygdala (BLA) and dentate gyrus (DG). Preclinical research suggests that D3 receptor (D3R) antagonists may be a promising means to attenuate cocaine reward and relapse. As D3R regulates the activity of the Akt/mTOR and MEK/ERK1/2 pathways, we assessed the effects of SB-277011-A, a D3R antagonist, on the activity of these kinases during the reinstatement of cocaine-induced conditioned place preference (CPP) induced by psychological (restraint) and physiological (tail pinch) stress. Both stimuli reactivated an extinguished cocaine-CPP, but only restrained animals decreased their locomotor activity during reinstatement. Cocaine-seeking behavior reactivation was correlated with decreased p-Akt, p-mTOR, and p-ERK1/2 activation in both nuclei of restrained animals. While a D3R blockade prevented stress-induced CPP reinstatement and plasma corticosterone enhancement, SB-277011-A distinctly modulated Akt, mTOR, and ERK1/2 activation depending on the stressor and the dose used. Our data support the involvement of corticosterone in the SB-277011-A effects in restrained animals. Additionally, the ratios p-mTOR/mTOR and/or p-ERK1/2 /ERK1/2 in the BLA during stress-induced relapse seem to be related to the locomotor activity of animals receiving 48 mg/kg of the antagonist. Hence, our study indicates the D3R antagonist's efficacy to prevent stress-induced relapses in drug use through distinct modulation of Akt/mTOR and MEK/ERK1/2 pathways in memory-processing nuclei.


Assuntos
Cocaína , Animais , Cocaína/farmacologia , Receptores de Dopamina D3 , Proteínas Proto-Oncogênicas c-akt , Condicionamento Operante , Extinção Psicológica/fisiologia , Corticosterona/farmacologia , Estresse Fisiológico , Recidiva , Quinases de Proteína Quinase Ativadas por Mitógeno , Estresse Psicológico/psicologia
15.
J Med Chem ; 66(14): 10060-10079, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37421373

RESUMO

We evaluated C-3 alkoxylated and C-3/C-9 dialkoxylated (-)-stepholidine analogues to probe the tolerance at the C-3 and C-9 positions of the tetrahydroprotoberberine (THPB) template toward affinity for dopamine receptors. A C-9 ethoxyl substituent appears optimal for D1R affinity since high D1R affinities were observed for compounds that contain an ethyl group at C-9, with larger C-9 substituents tending to decrease D1R affinity. A number of novel ligands were identified, such as compounds 12a and 12b, with nanomolar affinities for D1R and no affinity for either D2R or D3R, with compound 12a being identified as a D1R antagonist for both G-protein- and ß-arrestin-based signaling. Compound 23b was identified as the most potent and selective D3R ligand containing a THPB template to date and functions as an antagonist for both G-protein- and ß-arrestin-based signaling. Molecular docking and molecular dynamics studies validated the D1R and D3R affinity and selectivity of 12a, 12b, and 23b.


Assuntos
Proteínas de Ligação ao GTP , Receptores de Dopamina D1 , Ligantes , Receptores de Dopamina D1/metabolismo , Simulação de Acoplamento Molecular , beta-Arrestinas , Proteínas de Ligação ao GTP/metabolismo , Receptores de Dopamina D3/metabolismo
16.
Nat Commun ; 14(1): 4049, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422466

RESUMO

The ability to learn about other people is crucial for human social functioning. Dopamine has been proposed to regulate the precision of beliefs, but direct behavioural evidence of this is lacking. In this study, we investigate how a high dose of the D2/D3 dopamine receptor antagonist sulpiride impacts learning about other people's prosocial attitudes in a repeated Trust game. Using a Bayesian model of belief updating, we show that in a sample of 76 male participants sulpiride increases the volatility of beliefs, which leads to higher precision weights on prediction errors. This effect is driven by participants with genetically conferred higher dopamine availability (Taq1a polymorphism) and remains even after controlling for working memory performance. Higher precision weights are reflected in higher reciprocal behaviour in the repeated Trust game but not in single-round Trust games. Our data provide evidence that the D2 receptors are pivotal in regulating prediction error-driven belief updating in a social context.


Assuntos
Antagonistas de Dopamina , Sulpirida , Humanos , Masculino , Dopamina , Confiança , Teorema de Bayes , Receptores de Dopamina D3/genética , Receptores de Dopamina D2
17.
Future Med Chem ; 15(11): 923-935, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37466055

RESUMO

Dopamine receptor D3 (D3R) has gained attention as a promising therapeutic target for neurological disorders. In this study, an innovative in silico click reaction strategy was employed to identify potential D3R binders. The ligand template, 1-phenyl-4-[4-(1H-1,2,3-triazol-5-yl)butyl]piperazine, with substitution at the 1,2,3-triazole ring, served as the starting point. Generated compounds underwent filtration based on their brain-to-blood concentration ratio (logBB), leading to the identification of 1-{4-[1-(decahydronaphthalen-1-yl)-1H-1,2,3-triazol-5-yl]butyl}-4-phenylpiperazine as the most promising candidate, displaying superior D3R affinity and blood-brain barrier (BBB) permeability compared to the reference ligand, eticlopride. Molecular dynamics simulations further supported these findings. This study presents a novel hit for designing D3R ligands and establishes a workflow utilizing in silico click chemistry to screen compounds with BBB permeability. The proposed click reaction-based algorithm holds significant potential as a valuable tool in the development of effective antipsychotic compounds.


Assuntos
Antipsicóticos , Barreira Hematoencefálica , Ligantes , Barreira Hematoencefálica/metabolismo , Química Click , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismo
18.
J Med Chem ; 66(15): 10304-10341, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467430

RESUMO

A new generation of dual-target µ opioid receptor (MOR) agonist/dopamine D3 receptor (D3R) antagonist/partial agonists with optimized physicochemical properties was designed and synthesized. Combining in vitro cell-based on-target/off-target affinity screening, in silico computer-aided drug design, and BRET functional assays, we identified new structural scaffolds that achieved high affinity and agonist/antagonist potencies for MOR and D3R, respectively, improving the dopamine receptor subtype selectivity (e.g., D3R over D2R) and significantly enhancing central nervous system multiparameter optimization scores for predicted blood-brain barrier permeability. We identified the substituted trans-(2S,4R)-pyrrolidine and trans-phenylcyclopropyl amine as key dopaminergic moieties and tethered these to different opioid scaffolds, derived from the MOR agonists TRV130 (3) or loperamide (6). The lead compounds 46, 84, 114, and 121 have the potential of producing analgesic effects through MOR partial agonism with reduced opioid-misuse liability via D3R antagonism. Moreover, the peripherally limited derivatives could have therapeutic indications for inflammation and neuropathic pain.


Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Humanos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/química , Dopamina , Ligantes , Analgésicos/farmacologia , Receptores de Dopamina D3/agonistas , Receptores Opioides mu/agonistas
19.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298250

RESUMO

D3 receptors, a key component of the dopamine system, have emerged as a potential target of therapies to improve motor symptoms across neurodegenerative and neuropsychiatric conditions. In the present work, we evaluated the effect of D3 receptor activation on the involuntary head twitches induced by 2,5-dimethoxy-4-iodoamphetamine (DOI) at behavioral and electrophysiological levels. Mice received an intraperitoneal injection of either a full D3 agonist, WC 44 [4-(2-fluoroethyl)-N-[4-[4-(2-methoxyphenyl)piperazin 1-yl]butyl]benzamide] or a partial D3 agonist, WW-III-55 [N-(4-(4-(4-methoxyphenyl)piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamide] five minutes before the intraperitoneal administration of DOI. Compared to the control group, both D3 agonists delayed the onset of the DOI-induced head-twitch response and reduced the total number and frequency of the head twitches. Moreover, the simultaneous recording of neuronal activity in the motor cortex (M1) and dorsal striatum (DS) indicated that D3 activation led to slight changes in a single unit activity, mainly in DS, and increased its correlated firing in DS or between presumed cortical pyramidal neurons (CPNs) and striatal medium spiny neurons (MSNs). Our results confirm the role of D3 receptor activation in controlling DOI-induced involuntary movements and suggest that this effect involves, at least in part, an increase in correlated corticostriatal activity. A further understanding of the underlying mechanisms may provide a suitable target for treating neuropathologies in which involuntary movements occur.


Assuntos
Discinesias , Receptores de Dopamina D3 , Camundongos , Animais , Receptores de Dopamina D2/agonistas , Benzamidas/farmacologia , Receptores de Dopamina D1
20.
Neuropsychopharmacology ; 48(10): 1436-1445, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37349473

RESUMO

Brain imaging studies using positron emission tomography (PET) have shown that long-term cocaine use is associated with lower levels of dopamine (DA) D2/D3 receptors (D2/D3R); less consistent are the effects on DA transporter (DAT) availability. However, most studies have been conducted in male subjects (humans, monkeys, rodents). In this study, we used PET imaging in nine drug-naïve female cynomolgus monkeys to determine if baseline measures of DAT, with [18F]FECNT, and D2/D3R availability, with [11C]raclopride, in the caudate nucleus, putamen and ventral striatum were associated with rates of cocaine self-administration and if these measures changed during long-term (~13 months) cocaine self-administration and following time-off (3-9 months) from cocaine. Cocaine (0.2 mg/kg/injection) and 1.0 g food pellets were available under a multiple fixed-interval (FI) 3-min schedule of reinforcement. In contrast to what has been observed in male monkeys, baseline D2/D3R availability was positively correlated with rates of cocaine self-administration only during the first week of exposure; DAT availability did not correlate with cocaine self-administration. D2/D3R availability decreased ~20% following cumulative intakes of 100 and 1000 mg/kg cocaine; DAT availability did not significantly change. These reductions in D2/D3R availability did not recover over 9 months of time-off from cocaine. To determine if these reductions were reversible, three monkeys were implanted with osmotic pumps that delivered raclopride for 30 days. We found that chronic treatment with the D2/D3R antagonist raclopride increased D2/D3R availability in the ventral striatum but not in the other regions when compared to baseline levels. Over 13 months of self-administration, tolerance did not develop to the rate-decreasing effects of self-administered cocaine on food-reinforced responding, but number of injections and cocaine intake significantly increased over the 13 months. These data extend previous findings to female monkeys and suggest sex differences in the relationship between D2/D3R availability related to vulnerability and long-term cocaine use.


Assuntos
Cocaína , Tomografia por Emissão de Pósitrons , Haplorrinos , Animais , Feminino , Tomografia por Emissão de Pósitrons/métodos , Proteínas da Membrana Plasmática de Transporte de Dopamina , Receptores de Dopamina D3 , Cocaína/administração & dosagem , Cocaína/efeitos adversos , Autoadministração , Racloprida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...