Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719753

RESUMO

We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation. Mutant progenitors also displayed increased histone deacetylase 6 (Hdac6) and ciliary adenylate cyclase 3 (Adcy3) transcript levels. Consistently, microtubule acetylation, endogenous sonic hedgehog (SHH) activation and ciliary ADCY3 were all affected in this group. Application of exogenous GDF15 or pharmacological antagonists of either HDAC6 or ADCY3 similarly normalized ciliary morphology, proliferation and SHH signalling. Notably, Gdf15 ablation affected Hdac6 expression and cilia length only in the mutant periventricular niche, in concomitance with ciliary localization of GFRAL. In contrast, in the hippocampus, where GFRAL was not expressed in the cilium, progenitors displayed altered Adcy3 expression and SHH signalling, but Hdac6 expression, cilia morphology and ciliary ADCY3 levels remained unchanged. Thus, ciliary signalling underlies the effect of GDF15 on primary cilia elongation and proliferation in apical progenitors.


Assuntos
Adenilil Ciclases , Proliferação de Células , Cílios , Proteínas Hedgehog , Desacetilase 6 de Histona , Transdução de Sinais , Animais , Camundongos , Acetilação , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Proliferação de Células/genética , Cílios/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Camundongos Knockout , Células-Tronco/metabolismo , Células-Tronco/citologia
2.
Nutrients ; 16(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474863

RESUMO

In 2017, four independent publications described the glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as receptor for the growth differentiation factor 15 (GDF15, also MIC-1, NAG-1) with an expression exclusively in the mice brainstem area postrema (AP) and nucleus tractus solitarii (NTS) where it mediates effects of GDF15 on reduction of food intake and body weight. GDF15 is a cell stress cytokine with a widespread expression and pleiotropic effects, which both seem to be in contrast to the reported highly specialized localization of its receptor. This discrepancy prompts us to re-evaluate the expression pattern of GFRAL in the brain and peripheral tissues of mice. In this detailed immunohistochemical study, we provide evidence for a more widespread distribution of this receptor. Apart from the AP/NTS region, GFRAL-immunoreactivity was found in the prefrontal cortex, hippocampus, nucleus arcuatus and peripheral tissues including liver, small intestine, fat, kidney and muscle tissues. This widespread receptor expression, not taken into consideration so far, may explain the multiple effects of GDF-15 that are not yet assigned to GFRAL. Furthermore, our results could be relevant for the development of novel pharmacological therapies for physical and mental disorders related to body image and food intake, such as eating disorders, cachexia and obesity.


Assuntos
Caquexia , Obesidade , Humanos , Camundongos , Animais , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Peso Corporal/fisiologia , Obesidade/metabolismo , Caquexia/metabolismo , Núcleo Solitário/metabolismo
3.
Cell Oncol (Dordr) ; 46(2): 315-330, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36808605

RESUMO

PURPOSE: Liver metastasis, a lethal malignancy of gastric cancer (GC) patients, execrably impairs their prognosis. As yet, however, few studies have been designed to identify the driving molecules during its formation, except screening evidence pausing before their functions or mechanisms. Here, we aimed to survey a key driving event within the invasive margin of liver metastases. METHODS: A metastatic GC tissue microarray was used for exploring malignant events during liver-metastasis formation, followed by assessing the expression patterns of glial cell-derived neurotrophic factor (GDNF) and GDNF family receptor alpha 1 (GFRA1). Their oncogenic functions were determined by both loss- and gain-of-function studies in vitro and in vivo, and validated by rescue experiments. Multiple cell biological studies were performed to identify the underlying mechanisms. RESULTS: In the invasive margin, GFRA1 was identified as a pivotal molecule involved in cellular survival during liver metastasis formation, and we found that its oncogenic role depends on tumor associated macrophage (TAM)-derived GDNF. In addition, we found that the GDNF-GFRA1 axis protects tumor cells from apoptosis under metabolic stress via regulating lysosomal functions and autophagy flux, and participates in the regulation of cytosolic calcium ion signalling in a RET-independent and non-canonical way. CONCLUSION: From our data we conclude that TAMs, homing around metastatic nests, induce the autophagy flux of GC cells and promote the development of liver metastasis via GDNF-GFRA1 signalling. This is expected to improve the comprehension of metastatic pathogenesis and to provide a novel direction of research and translational strategies for the treatment of metastatic GC patients.


Assuntos
Neoplasias Hepáticas , Neoplasias Gástricas , Humanos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Macrófagos Associados a Tumor/metabolismo , Autofagia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768269

RESUMO

The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.


Assuntos
Criopreservação , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteína com Dedos de Zinco da Leucemia Promielocítica , Espermatogônias , Células-Tronco , Humanos , Masculino , Biomarcadores/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Testículo/metabolismo , Dedos de Zinco
5.
Brain Behav Immun ; 108: 45-54, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427806

RESUMO

Cancer-related fatigue is defined as a distressing persistent subjective sense of physical, emotional, and/or cognitive tiredness or exhaustion related to cancer or cancer treatment that is not proportional to recent activity and that interferes with usual functioning. This form of fatigue is highly prevalent during cancer treatment and in some patients, it can persist for years after treatment has ended. An understanding of the mechanisms that drive cancer-related fatigue is still lacking, which hampers the identification of effective treatment options. Various chemotherapeutic agents including cisplatin are known to induce mitochondrial dysfunction and this effect is known to mediate chemotherapy-induced peripheral neuropathy and cognitive dysfunction. Mitochondrial dysfunction results in the release of mitokines that act locally and at distance to promote metabolic and behavioral adjustments to this form of cellular stress. One of these mitokines, growth differentiation factor 15 (GDF15) and its receptor, glial cell line-derived neurotrophic factor family receptor α-like (GFRAL), have received special attention in oncology as activation of GFRAL mediates the anorexic response that is responsible for cancer anorexia. The present study was initiated to determine whether GDF15 and GFRAL are involved in cisplatin-induced fatigue. We first tested the ability of cisplatin to increase circulating GDF15 in mice before assessing whether GDF15 can induce behavioral fatigue measured by decreased wheel running in healthy mice and increase behavioral fatigue induced by cisplatin. Mice administered a long acting form of GDF15, mGDF15-fc, decreased their voluntary wheel running activity. When the same treatment was administered to mice receiving cisplatin, it increased the amplitude and duration of cisplatin-induced decrease in wheel running. To determine whether endogenous GDF15 mediates the behavioral fatigue induced by cisplatin, we then administered a neutralizing monoclonal antibody to GFRAL to mice injected with cisplatin. The GFRAL neutralizing antibody mostly prevented cisplatin-induced decrease in wheel running and accelerated recovery. Taken together these findings demonstrate for the first time the role of the GDF15/GFRAL axis in cisplatin-induced behaviors and indicate that this axis could be a promising therapeutic target for the treatment of cancer-related fatigue.


Assuntos
Antineoplásicos , Fadiga , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fator 15 de Diferenciação de Crescimento , Animais , Camundongos , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Fator 15 de Diferenciação de Crescimento/metabolismo , Atividade Motora , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fadiga/induzido quimicamente
6.
Biomolecules ; 14(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38254638

RESUMO

Growth differentiation factor-15 (GDF-15) is proposed to be strongly associated with several cardiovascular diseases, such as heart failure and atherosclerosis. Moreover, some recent studies have reported an association between GDF-15 and platelet activation. In this study, we isolated peripheral blood platelets from healthy volunteers and evaluated the effect of GDF-15 on adenosine diphosphate (ADP)-induced platelet activation using the platelet aggregation assay. Subsequently, we detected the expression of GDF-15-related receptors on platelets, including the epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 3 (HER3), transforming growth factor-beta receptor I (TGF-ßRI), transforming growth factor-beta receptor II (TGF-ßRII), glial-cell-line-derived neurotrophic factor family receptor α-like (GFRAL), and those rearranged during transfection (RET). Then, we screened for GDF-15 receptors using the GDF-15-related receptor microarray comprising these recombinant proteins. We also performed the immunoprecipitation assay to investigate the interaction between GDF-15 and the receptors on platelets. For the further exploration of signaling pathways, we investigated the effects of GDF-15 on the extracellular signal-regulated kinase (ERK), protein kinase B (AKT), and Janus kinase 2 (JAK2) pathways. We also investigated the effects of GDF-15 on the ERK and AKT pathways and platelet aggregation in the presence or absence of RET agonists or inhibition. Our study revealed that GDF-15 can dose-independently inhibit ADP-induced human platelet aggregation and that the binding partner of GDF-15 on platelets is GFRAL. We also found that GDF-15 inhibits ADP-induced AKT and ERK activation in platelets. Meanwhile, our results revealed that the inhibitory effects of GDF-15 can be mediated by the GFRAL/RET complex. These findings reveal the novel inhibitory mechanism of ADP-induced platelet activation by GDF-15.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fator 15 de Diferenciação de Crescimento , Agregação Plaquetária , Proteínas Proto-Oncogênicas c-ret , Humanos , Difosfato de Adenosina/farmacologia , Receptores ErbB , MAP Quinases Reguladas por Sinal Extracelular , Fator 15 de Diferenciação de Crescimento/farmacologia , Agregação Plaquetária/genética , Proteínas Proto-Oncogênicas c-akt , Fatores de Crescimento Transformadores , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo
7.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361981

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) has been shown to counteract seizures when overexpressed or delivered into the brain in various animal models of epileptogenesis or chronic epilepsy. The mechanisms underlying this effect have not been investigated. We here demonstrate for the first time that GDNF enhances GABAergic inhibitory drive onto mouse pyramidal neurons by modulating postsynaptic GABAA receptors, particularly in perisomatic inhibitory synapses, by GFRα1 mediated activation of the Ret receptor pathway. Other GDNF receptors, such as NCAM or Syndecan3, are not contributing to this effect. We observed similar alterations by GDNF in human hippocampal slices resected from epilepsy patients. These data indicate that GDNF may exert its seizure-suppressant action by enhancing GABAergic inhibitory transmission in the hippocampal network, thus counteracting the increased excitability of the epileptic brain. This new knowledge can contribute to the development of novel, more precise treatment strategies based on a GDNF gene therapy approach.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Hipocampo , Proteínas Proto-Oncogênicas c-ret , Células Piramidais , Animais , Humanos , Camundongos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Sinapses/metabolismo , Células Piramidais/metabolismo
8.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271504

RESUMO

Growth differentiation factor 15 (GDF15) is a mitochondrial stress-induced cytokine that modulates energy balance in an endocrine manner. However, the importance of its brainstem-restricted receptor GDNF family receptor alpha-like (GFRAL) to mediate endocrine GDF15 signaling to the brain upon mitochondrial dysfunction is still unknown. Using a mouse model with muscle-specific mitochondrial dysfunction, we here show that GFRAL is required for activation of systemic energy metabolism via daytime-restricted anorexia but not responsible for muscle wasting. We further find that muscle mitochondrial stress response involves a GFRAL-dependent induction of hypothalamic corticotropin-releasing hormone, without elevated corticosterone levels. Finally, we identify that GFRAL signaling governs an anxiety-like behavior in male mice with muscle mitochondrial dysfunction, with females showing a less robust GFRAL-dependent anxiety-like phenotype. Together, we here provide novel evidence of a mitochondrial stress-induced muscle-brain crosstalk via the GDF15-GFRAL axis to modulate food intake and anxiogenic behavior.


Assuntos
Fator 15 de Diferenciação de Crescimento , Obesidade , Feminino , Masculino , Humanos , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Obesidade/metabolismo , Hormônio Liberador da Corticotropina , Corticosterona , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ingestão de Alimentos/genética , Ansiedade
9.
Cell Rep ; 40(8): 111258, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001956

RESUMO

Metformin is a blood-glucose-lowering medication with physiological effects that extend beyond its anti-diabetic indication. Recently, it was reported that metformin lowers body weight via induction of growth differentiation factor 15 (GDF15), which suppresses food intake by binding to the GDNF family receptor α-like (GFRAL) in the hindbrain. Here, we corroborate that metformin increases circulating GDF15 in mice and humans, but we fail to confirm previous reports that the GDF15-GFRAL pathway is necessary for the weight-lowering effects of metformin. Instead, our studies in wild-type, GDF15 knockout, and GFRAL knockout mice suggest that the GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance. The data presented here question whether metformin is a sufficiently strong stimulator of GDF15 to drive anorexia and weight loss and emphasize that additional work is needed to untangle the relationship among metformin, GDF15, and energy balance.


Assuntos
Fator 15 de Diferenciação de Crescimento , Metformina , Animais , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Obesidade/metabolismo , Redução de Peso
10.
Mol Neurobiol ; 59(10): 6321-6340, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35925441

RESUMO

Glial cell-line derived neurotrophic factor (GDNF) is a powerful astroglioma (AG) proliferation and migration factor that is highly expressed in AG cells derived from astrocytes. However, it is still unclear whether high levels of GDNF promote AG occurrence or if they are secondary to AG formation. We previously reported that high concentrations of GDNF (200 and 500 ng/mL) can inhibit DNA damage-induced rat primary astrocytes (RA) apoptosis, suggesting that high concentrations of GDNF may be involved in the malignant transformation of astrocytes to AG cells. Here we show that 200 ng/mL GDNF significantly increased the proliferation and migration ability of RA cells and human primary astrocytes (HA). This treatment also induced RA cells to highly express Pgf, Itgb2, Ibsp, Loxl2, Lif, Cxcl10, Serpine1, and other genes that enhance AG proliferation and migration. LOXL2 is an important AG occurrence and development promotion factor and was highly expressed in AG tissues and cells. High concentrations of GDNF promote LOXL2 expression and secretion in RA cells through GDNF family receptor alpha-1(GFRα1)/rearranged during transfection proto-oncogene (RET)/mitogen-activated protein kinase (MAPK)/phosphorylated cyclic AMP response element binding protein (pCREB) signaling. GDNF-induced LOXL2 significantly promotes RA and HA cell proliferation and migration, and increases the expression of Ccl2, Gbp5, MMP11, TNN, and other genes that regulate the extracellular microenvironment in RA cells. Our results demonstrate that high concentrations of GDNF activate LOXL2 expression and secretion via the GFRα1/RET/MAPK/pCREB signal axis, which leads to remodeling of the astrocyte extracellular microenvironment through molecules such as Ccl2, Gbp5, MMP11, TNN. This ultimately results in abnormal astrocyte proliferation and migration. Collectively, these findings suggest that high GDNF concentrations may promote the malignant transformation of astrocytes to AG cells.


Assuntos
Astrócitos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Aminoácido Oxirredutases , Animais , Astrócitos/metabolismo , Proliferação de Células , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Metaloproteinase 11 da Matriz , Proteínas Quinases Ativadas por Mitógeno , Proteínas Proto-Oncogênicas c-ret , Ratos
11.
J Immunol Res ; 2022: 7375879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832649

RESUMO

Prostate cancer (PCa) is the most common cancer affecting men, with increasing global mortality and morbidity rates. Despite the progress in the diagnosis and treatment of PCa, patient outcomes remain poor, and novel therapeutic targets for PCa are urgently needed. Recently, circular RNAs (circRNAs) have been studied in-depth as potential biomarkers for many diseases. In this study, circRNA microarrays using four pairs of PCa tissues were utilized to show that circGFRA1 was upregulated in PCa tumor tissues. CircGFRA1 is suggested to play an oncogene role in PCa progression as the silencing of circGFRA1 inhibited the proliferation, migration, and immune escape activity of PCa cells. Furthermore, by utilizing bioinformatics analysis, RIP, RNA pull-down, and luciferase reporter assays, our results showed that LMX1B could bind to the GFRA1 promoter and regulate circGFRA1 expression in PCa cells and circGFRA1 upregulated HECTD1 expression through sponging miR-3064-5p. This novel LMX1B/circGFRA1/miR-3064-5p/HECTD1 axis identified in PCa provides new insights for developing novel therapeutic strategies for PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Circular , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Proteínas com Homeodomínio LIM , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Circular/genética , RNA Circular/metabolismo , Fatores de Transcrição , Evasão Tumoral
12.
Cells ; 11(8)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35455974

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GDNF Family Receptor α1-GFRα1) are well known to mediate spermatogonial stem cell (SSC) proliferation and survival in mammalian testes. In nonmammalian species, Gdnf and Gfrα1 orthologs have been found but their functions remain poorly investigated in the testes. Considering this background, this study aimed to understand the roles of the Gdnf-Gfrα1 signaling pathway in zebrafish testes by combining in vivo, in silico and ex vivo approaches. Our analysis showed that zebrafish exhibit two paralogs for Gndf (gdnfa and gdnfb) and its receptor, Gfrα1 (gfrα1a and gfrα1b), in accordance with a teleost-specific third round of whole genome duplication. Expression analysis further revealed that both ligands and receptors were expressed in zebrafish adult testes. Subsequently, we demonstrated that gdnfa is expressed in the germ cells, while Gfrα1a/Gfrα1b was detected in early spermatogonia (mainly in types Aund and Adiff) and Sertoli cells. Functional ex vivo analysis showed that Gdnf promoted the creation of new available niches by stimulating the proliferation of both type Aund spermatogonia and their surrounding Sertoli cells but without changing pou5f3 mRNA levels. Strikingly, Gdnf also inhibited late spermatogonial differentiation, as shown by the decrease in type B spermatogonia and down-regulation of dazl in a co-treatment with Fsh. Altogether, our data revealed that a germ cell-derived factor is involved in maintaining germ cell stemness through the creation of new available niches, supporting the development of spermatogonial cysts and inhibiting late spermatogonial differentiation in autocrine- and paracrine-dependent manners.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Peixe-Zebra , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Mamíferos/metabolismo , Espermatogônias/metabolismo , Nicho de Células-Tronco , Peixe-Zebra/metabolismo
13.
Nat Metab ; 4(2): 203-212, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35177851

RESUMO

GDNF-family receptor a-like (GFRAL) has been identified as the cognate receptor of growth/differentiation factor 15 (GDF15/MIC-1), considered a key signaling axis in energy homeostasis and body weight regulation. Currently, little is known about the physiological regulation of the GDF15-GFRAL signaling pathway. Here we show that membrane-bound matrix metalloproteinase 14 (MT1-MMP/MMP14) is an endogenous negative regulator of GFRAL in the context of obesity. Overnutrition-induced obesity increased MT1-MMP activation, which proteolytically inactivated GFRAL to suppress GDF15-GFRAL signaling, thus modulating the anorectic effects of the GDF15-GFRAL axis in vivo. Genetic ablation of MT1-MMP specifically in GFRAL+ neurons restored GFRAL expression, resulting in reduced weight gain, along with decreased food intake in obese mice. Conversely, depletion of GFRAL abolished the anti-obesity effects of MT1-MMP inhibition. MT1-MMP inhibition also potentiated GDF15 activity specifically in obese phenotypes. Our findings identify a negative regulator of GFRAL for the control of non-homeostatic body weight regulation, provide mechanistic insights into the regulation of GDF15 sensitivity, highlight negative regulators of the GDF15-GFRAL pathway as a therapeutic avenue against obesity and identify MT1-MMP as a promising target.


Assuntos
Metaloproteinase 14 da Matriz , Obesidade , Animais , Anorexia/metabolismo , Peso Corporal , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Metaloproteinase 14 da Matriz/uso terapêutico , Camundongos , Obesidade/metabolismo
14.
PLoS Biol ; 20(2): e3001517, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35202387

RESUMO

Elevated circulating levels of growth differentiation factor 15 (GDF15) have been shown to reduce food intake and lower body weight through activation of hindbrain receptor glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) in rodents and nonhuman primates, thus endogenous induction of this peptide holds promise for obesity treatment. Here, through in silico drug-screening methods, we found that small molecule Camptothecin (CPT), a previously identified drug with potential antitumor activity, is a GDF15 inducer. Oral CPT administration increases circulating GDF15 levels in diet-induced obese (DIO) mice and genetic ob/ob mice, with elevated Gdf15 expression predominantly in the liver through activation of integrated stress response. In line with GDF15's anorectic effect, CPT suppresses food intake, thereby reducing body weight, blood glucose, and hepatic fat content in obese mice. Conversely, CPT loses these beneficial effects when Gdf15 is inhibited by a neutralizing antibody or AAV8-mediated liver-specific knockdown. Similarly, CPT failed to reduce food intake and body weight in GDF15's specific receptor GFRAL-deficient mice despite high levels of GDF15. Together, these results indicate that CPT is a promising anti-obesity agent through activation of GDF15-GFRAL pathway.


Assuntos
Camptotecina/farmacologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator 15 de Diferenciação de Crescimento/genética , Obesidade/prevenção & controle , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Camptotecina/farmacocinética , Linhagem Celular , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Células HEK293 , Células HL-60 , Humanos , Células MCF-7 , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/genética , Células PC-3
15.
Cells ; 11(2)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053395

RESUMO

Many nervous proteins are expressed in cancer cells. In this report, we asked whether the synaptic protein neuroligin 1 (NLGN1) was expressed by prostatic and pancreatic carcinomas; in addition, given the tendency of these tumors to interact with nerves, we asked whether NLGN1 played a role in this process. Through immunohistochemistry on human tissue microarrays, we showed that NLGN1 is expressed by prostatic and pancreatic cancer tissues in discrete stages and tumor districts. Next, we performed in vitro and in vivo assays, demonstrating that NLGN1 promotes cancer cell invasion and migration along nerves. Because of the established role of the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) in tumor-nerve interactions, we assessed a potential NLGN1-GDNF cooperation. We found that blocking GDNF activity with a specific antibody completely inhibited NLGN1-induced in vitro cancer cell invasion of nerves. Finally, we demonstrated that, in the presence of NLGN1, GDNF markedly activates cofilin, a cytoskeletal regulatory protein, altering filopodia dynamics. In conclusion, our data further prove the existence of a molecular and functional cross-talk between the nervous system and cancer cells. NLGN1 was shown here to function along one of the most represented neurotrophic factors in the nerve microenvironment, possibly opening new therapeutic avenues.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neoplasias/metabolismo , Tecido Nervoso/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Neoplasias/patologia , Tecido Nervoso/patologia , Ligação Proteica , Pseudópodes/metabolismo
16.
Mol Metab ; 56: 101422, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942400

RESUMO

OBJECTIVE: Growth differentiation factor 15 (GDF15) is known to play a role in feeding, nausea, and body weight, with action through the GFRAL-RET receptor complex in the area postrema (AP) and nucleus tractus solitarius (NTS). To further elucidate the underlying cell type-specific molecular mechanisms downstream of GDF15 signaling, we used a single nuclei RNA sequencing (snRNAseq) approach to profile AP and NTS cellular subtype-specific transcriptomes after systemic GDF15 treatment. METHODS: AP and NTS micropunches were used for snRNAseq from Sprague Dawley rats 6 h following GDF15 or saline injection, and Seurat was used to identify cellular subtypes and cell type-specific alterations in gene expression that were due to the direct and secondary effects of systemic GDF15 treatment. RESULTS: Using the transcriptome profile of ∼35,000 individual AP/NTS nuclei, we identified 19 transcriptomically distinct cellular subtypes, including a single population Gfral and Ret positive excitatory neurons, representing the primary site of action for GDF15. A total of ∼600 cell type-specific differential expression events were identified in neurons and glia, including the identification of transcriptome alterations specific to the direct effects of GDF15 in the Gfral-Ret positive excitatory neurons and shared transcriptome alterations across neuronal and glial cell types. Downstream analyses identified shared and cell type-specific alterations in signaling pathways and upstream regulatory mechanisms of the observed transcriptome alterations. CONCLUSIONS: These data provide a considerable advance in our understanding of AP and NTS cell type-specific molecular mechanisms associated with GDF15 signaling. The identified cellular subtype-specific regulatory mechanism and signaling pathways likely represent important targets for future pharmacotherapies.


Assuntos
Área Postrema , Núcleo Solitário , Animais , Área Postrema/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Núcleo Solitário/metabolismo
17.
Cytokine Growth Factor Rev ; 64: 71-83, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34836750

RESUMO

Growth differentiation factor 15 or macrophage inhibitory cytokine-1 (GDF15/MIC-1) is a divergent member of the transforming growth factor ß superfamily and has a diverse pathophysiological roles in cancers, cardiometabolic disorders, and other diseases. GDF15 controls hematopoietic growth, energy homeostasis, adipose tissue metabolism, body growth, bone remodeling, and response to stress signals. The role of GDF15 in cancer development and progression is complicated and depends on the specific cancer type, stage, and tumor microenvironment. Recently, research on GDF15 and GDF15-associated signaling has accelerated due to the identification of the GDF15 receptor: glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL). Therapeutic interventions to target GDF15 and/or GFRAL revealed the mechanisms that drive its activity and might improve overall outcomes of patients with metabolic disorders and cancer. This review highlights the structure and functions of GDF15 and its receptor, emphasizing the pleiotropic role of GDF15 in obesity, tumorigenesis, metastasis, immunomodulation, and cachexia.


Assuntos
Fator 15 de Diferenciação de Crescimento , Neoplasias , Caquexia/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Humanos , Neoplasias/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Microambiente Tumoral
18.
Curr Eye Res ; 47(4): 597-605, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34738835

RESUMO

PURPOSE: The purpose of this study was to examine the expression of glial-derived neurotrophic factor (GDNF), the GDNF receptors GFRα1 and GFRα2, ciliary neurotrophic factor (CNTF), and the CNTF receptor CNTFRα in normal and glaucomatous human tissue. METHODS: Human retinas were collected from 8 donors that had been clinically diagnosed and treated for glaucoma, and also from 9 healthy control donors. Immunohistochemical analysis for each trophic factor and receptor was performed. The percent of each retinal section labeled with each antibody was quantified for the total retinal thickness, and separately for the retinal ganglion cell (RGC) complex + retinal nerve fiber layer (RNFL). The expression of each protein was correlated with measures of the subject's ocular histories. RESULTS: The percentage area immunopositive for GFRα2 was significantly decreased in the total retinal thickness containing all retinal layers and in the combined RGC complex + RNFL in glaucomatous eyes in both the peripapillary region and more peripheral retinal locations. We also observed a decrease in GFRα1 expression in the peripapillary RGC Complex + RNFL in glaucoma patients compared to healthy control patients. We also observed a relationship between GDNF and its receptors with several outcomes obtained from the medical record. No differences in CNTF or CNTFR labeling were observed. CONCLUSION: Decreases in GDNF receptor expression in glaucomatous tissue may limit the potential for neuroprotective therapy by supplementation with GDNF.


Assuntos
Glaucoma , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Retina , Fator Neurotrófico Ciliar/metabolismo , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Glaucoma/diagnóstico , Glaucoma/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
19.
Exp Neurol ; 347: 113867, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582837

RESUMO

Blood-brain barrier (BBB) disruption is one of the most important pathological manifestations of ischemic stroke. Reducing BBB collapse is effective in alleviating brain parenchymal injury and cognitive dysfunction. Our previous study reported that Sigma-1 receptor (Sig-1R) activation in cerebral microvascular endothelial cells (CMECs) ameliorated BBB impairment, but the detailed mechanism remains unclear. In this study, we investigated Sig-1R activation as a BBB integrity promoter via many post ischemic stroke pathways. Sig-1R activation in BBB-associated astrocytes can increase glia-derived neurotrophic factor (GDNF) secretion in bilateral common carotid artery occlusion (BCCAO) mice. Upregulated GDNF activates its receptors in CMECs to promote BBB integrity, and activated Sig-1R in CMECs facilitates this process. In vitro experiments have found that Sig-1R activation in CMECs promotes the interaction between the GDNF α1 receptor and transduction rearrangement gene, increasing PI3K-AKT-junction protein signaling pathway expression. Sig-1R activation could be an effective therapeutic method for preventing BBB damage in ischemic stroke and other neurological conditions.


Assuntos
Barreira Hematoencefálica/patologia , Receptores sigma/metabolismo , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/patologia , Animais , Barreira Hematoencefálica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Receptor Sigma-1
20.
PLoS Biol ; 19(11): e3001350, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748545

RESUMO

The medial habenula (mHb) is an understudied small brain nucleus linking forebrain and midbrain structures controlling anxiety and fear behaviors. The mechanisms that maintain the structural and functional integrity of mHb neurons and their synapses remain unknown. Using spatiotemporally controlled Cre-mediated recombination in adult mice, we found that the glial cell-derived neurotrophic factor receptor alpha 1 (GFRα1) is required in adult mHb neurons for synaptic stability and function. mHb neurons express some of the highest levels of GFRα1 in the mouse brain, and acute ablation of GFRα1 results in loss of septohabenular and habenulointerpeduncular glutamatergic synapses, with the remaining synapses displaying reduced numbers of presynaptic vesicles. Chemo- and optogenetic studies in mice lacking GFRα1 revealed impaired circuit connectivity, reduced AMPA receptor postsynaptic currents, and abnormally low rectification index (R.I.) of AMPARs, suggesting reduced Ca2+ permeability. Further biochemical and proximity ligation assay (PLA) studies defined the presence of GluA1/GluA2 (Ca2+ impermeable) as well as GluA1/GluA4 (Ca2+ permeable) AMPAR complexes in mHb neurons, as well as clear differences in the levels and association of AMPAR subunits with mHb neurons lacking GFRα1. Finally, acute loss of GFRα1 in adult mHb neurons reduced anxiety-like behavior and potentiated context-based fear responses, phenocopying the effects of lesions to septal projections to the mHb. These results uncover an unexpected function for GFRα1 in the maintenance and function of adult glutamatergic synapses and reveal a potential new mechanism for regulating synaptic plasticity in the septohabenulointerpeduncular pathway and attuning of anxiety and fear behaviors.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Habenula/metabolismo , Neurônios/metabolismo , Envelhecimento , Animais , Ansiedade/fisiopatologia , Comportamento Animal , Medo/fisiologia , Glutamatos/metabolismo , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiologia , Terminações Pré-Sinápticas , Receptores de AMPA/metabolismo , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...