Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Neurosci ; 41(42): 8710-8724, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34507952

RESUMO

We report that the neurotrophin receptor p75 contributes to sensory neuron survival through the regulation of cholesterol metabolism in Schwann cells. Selective deletion of p75 in mouse Schwann cells of either sex resulted in a 30% loss of dorsal root ganglia (DRG) neurons and diminished thermal sensitivity. P75 regulates Schwann cell cholesterol biosynthesis in response to BDNF, forming a co-receptor complex with ErbB2 and activating ErbB2-mediated stimulation of sterol regulatory element binding protein 2 (SREBP2), a master regulator of cholesterol synthesis. Schwann cells lacking p75 exhibited decreased activation of SREBP2 and a reduction in 7-dehydrocholesterol (7-DHC) reductase (DHCR7) expression, resulting in accumulation of the neurotoxic intermediate, 7-dehyrocholesterol in the sciatic nerve. Restoration of DHCR7 in p75 null Schwann cells in mice significantly attenuated DRG neuron loss. Together, these results reveal a mechanism by which the disruption of lipid metabolism in glial cells negatively influences sensory neuron survival, which has implications for a wide range of peripheral neuropathies.SIGNIFICANCE STATEMENT Although expressed in Schwann cells, the role of p75 in myelination has remained unresolved in part because of its dual expression in sensory neurons that Schwann cells myelinate. When p75 was deleted selectively among Schwann cells, myelination was minimally affected, while sensory neuron survival was reduced by 30%. The phenotype is mainly due to dysregulation of cholesterol biosynthesis in p75-deficient Schwann cells, leading to an accumulation of neurotoxic cholesterol precursor, 7-dehydrocholesterol (7-DHC). Mechanism-wise, we discovered that in response to BDNF, p75 recruits and activates ErbB2 independently of ErbB3, thereby stimulating the master regulator, sterol regulatory element binding protein 2 (SREBP2). These results together highlight a novel role of p75 in Schwann cells in regulating DRG neuron survival by orchestrating proper cholesterol metabolism.


Assuntos
Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Células de Schwann/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura
2.
Aging Cell ; 20(2): e13305, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448137

RESUMO

The plasticity mechanisms in the nervous system that are important for learning and memory are greatly impacted during aging. Notably, hippocampal-dependent long-term plasticity and its associative plasticity, such as synaptic tagging and capture (STC), show considerable age-related decline. The p75 neurotrophin receptor (p75NTR ) is a negative regulator of structural and functional plasticity in the brain and thus represents a potential candidate to mediate age-related alterations. However, the mechanisms by which p75NTR affects synaptic plasticity of aged neuronal networks and ultimately contribute to deficits in cognitive function have not been well characterized. Here, we report that mutant mice lacking the p75NTR were resistant to age-associated changes in long-term plasticity, associative plasticity, and associative memory. Our study shows that p75NTR is responsible for age-dependent disruption of hippocampal homeostatic plasticity by modulating several signaling pathways, including BDNF, MAPK, Arc, and RhoA-ROCK2-LIMK1-cofilin. p75NTR may thus represent an important therapeutic target for limiting the age-related memory and cognitive function deficits.


Assuntos
Envelhecimento , Hipocampo/metabolismo , Memória , Plasticidade Neuronal , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Fator de Crescimento Neural/deficiência
3.
J Neurosci Res ; 98(10): 1987-1998, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32585763

RESUMO

The p75 neurotrophin receptor (p75NTR ) is required for maintaining peripheral sensory neuron survival and function; however, the underlying cellular mechanism remains unclear. The general view is that expression of p75NTR by the neuron itself is required for maintaining sensory neuron survival and myelination in the peripheral nervous system (PNS). Adopting a neuronal-specific conditional knockout strategy, we demonstrate the partial depletion of p75NTR in neurons exerts little influence upon maintaining sensory neuron survival and peripheral nerve myelination in health and after demyelinating neuropathy. Our data show that the density and total number of dorsal root ganglion (DRG) neurons in 2-month-old mice is not affected following the deletion of p75NTR in large-diameter myelinating neurons, as assessed by stereology. Adopting experimental autoimmune neuritis induced in adult male mice, an animal model of demyelinating peripheral neuropathy, we identify that deleting p75NTR in myelinating neurons exerts no influence upon the disease progression, the total number of DRG neurons, and the extent of myelin damage in the sciatic nerve, indicating that the expression of neuronal p75NTR is not essential for maintaining peripheral neuron survival and myelination after a demyelinating insult in vivo. Together, results of this study suggest that the survival and myelination of peripheral sensory neurons is independent of p75NTR expressed by a subtype of neurons in vivo. Thus, our findings provide new insights into the mechanism underpinning p75NTR -mediated neuronal survival in the PNS.


Assuntos
Gânglios Espinais/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Células Receptoras Sensoriais/metabolismo , Animais , Sobrevivência Celular/fisiologia , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos
4.
Am J Physiol Heart Circ Physiol ; 314(3): H415-H423, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101167

RESUMO

Cardiac sympathetic nerves stimulate heart rate and force of contraction. Myocardial infarction (MI) leads to the loss of sympathetic nerves within the heart, and clinical studies have indicated that sympathetic denervation is a risk factor for arrhythmias and cardiac arrest. Two distinct types of denervation have been identified in the mouse heart after MI caused by ischemia-reperfusion: transient denervation of peri-infarct myocardium and sustained denervation of the infarct. Sustained denervation is linked to increased arrhythmia risk, but it is not known whether acute nerve loss in peri-infarct myocardium also contributes to arrhythmia risk. Peri-infarct sympathetic denervation requires the p75 neurotrophin receptor (p75NTR), but removal of p75NTR alters the pattern of sympathetic innervation in the heart and increases spontaneous arrhythmias. Therefore, we targeted the p75NTR coreceptor sortilin and the p75NTR-induced protease tumor necrosis factor-α-converting enzyme/A disintegrin and metalloproteinase domain 17 (TACE/ADAM17) to selectively block peri-infarct denervation. Sympathetic nerve density was quantified using immunohistochemistry for tyrosine hydroxylase. Genetic deletion of sortilin had no effect on the timing or extent of axon degeneration, but inhibition of TACE/ADAM17 with the protease inhibitor marimastat prevented the loss of axons from viable myocardium. We then asked whether retention of nerves in peri-infarct myocardium had an impact on cardiac electrophysiology 3 days after MI using ex vivo optical mapping of transmembrane potential and intracellular Ca2+. Preventing acute denervation of viable myocardium after MI did not significantly alter cardiac electrophysiology or Ca2+ handling, suggesting that transient denervation at this early time point has minimal impact on arrhythmia risk. NEW & NOTEWORTHY Sympathetic denervation after myocardial infarction is a risk factor for arrhythmias. We asked whether transient loss of nerves in viable myocardium contributed to arrhythmia risk. We found that targeting protease activity could prevent acute peri-infarct denervation but that it did not significantly alter cardiac electrophysiology or Ca2+ handling 3 days after myocardial infarction.


Assuntos
Arritmias Cardíacas/etiologia , Coração/inervação , Infarto do Miocárdio/complicações , Miocárdio/patologia , Sistema Nervoso Simpático/fisiopatologia , Proteína ADAM17/metabolismo , Potenciais de Ação , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Modelos Animais de Doenças , Frequência Cardíaca , Preparação de Coração Isolado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Sistema Nervoso Simpático/metabolismo , Fatores de Tempo , Sobrevivência de Tecidos
5.
J Alzheimers Dis ; 59(3): 941-949, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28697556

RESUMO

BACKGROUND: Alzheimer's disease (AD) is pathologically known for the amyloid-ß (Aß) deposition, neurofibrillary tangles, and neuronal loss in the brain. The precursor of brain-derived neurotrophic factor (proBDNF) before proteolysis has opposing functions to its mature form in neuronal survival and neurite growth. However, the role of proBDNF in the pathogenesis of AD remains unclear. OBJECTIVE: To investigate the effects of proBDNF on neurons in vitro, and on learning and memory impairment and brain Aß production in a transgenic AD mouse model (APPswePS1dE9). METHODS: We here examined the effects of proBDNF on the viability (MTT assay) and neurite growth (morphologic measurement) of the primary neurons in vitro. After the intracerebroventricular injection of adeno-associated virus-proBDNF (AAV-proBDNF), we then investigated the learning and memory impairment (Morris water maze) and Aß deposition in the brains of the AD mice. RESULTS: The results showed that proBDNF could inhibit neuronal viability and neurite growth in vitro, enhance Aß levels, and accelerate its deposition in the brain, which was consistent with the learning and memory impairment of AD mice, likely dependent on the membrane receptor of p75NTR. CONCLUSIONS: Our findings suggest that proBDNF may exert a crucially negative effect during AD pathogenesis andprogression.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Deficiências da Aprendizagem/metabolismo , Transtornos da Memória/metabolismo , Precursores de Proteínas/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hipocampo/citologia , Injeções Intraventriculares , Deficiências da Aprendizagem/etiologia , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Camundongos , Camundongos Transgênicos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Presenilina-1/genética , Precursores de Proteínas/uso terapêutico , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Transdução Genética
6.
J Neurochem ; 141(3): 461-471, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28266720

RESUMO

The p75 neurotrophin receptor (p75NTR) is a low-affinity receptor that is capable of binding neurotrophins. Two different p75NTR knockout mouse lines are available either with a deletion in Exon III (p75NTRExIII-/- ) or in Exon IV (p75NTRExIV-/- ). In p75NTRExIII knockout mice, only the full-length p75NTR is deleted, whereas in p75NTRExIV knockout mice, the full-length as well as the truncated isoform of the receptor is deleted. Deletion of p75NTR has been shown to affect, among others, the septohippocampal cholinergic innervation pattern and neuronal plasticity within the hippocampus. We hypothesize that deletion of p75NTR also alters the morphology and physiology of a further key structure of the limbic system, the amygdala. Our results indicate that deletion of p75NTR also increases cholinergic innervation in the basolateral amygdala in adult as well as aged p75NTRExIII-/- and p75NTRExIV-/- mice. The p75NTRExIV-/- mice did not display altered long-term potentiation (LTP) in the basolateral amygdala as compared to age-matched control littermates. However, p75NTRExIII-/- mice display stronger LTP in the basolateral amygdala compared to age-matched controls. Bath-application of K252a (a trk antagonist) did not inhibit the induction of LTP in the basolateral amygdala, but reduced the level of LTP in p75NTRExIII-/- mice to levels seen in respective controls. Moreover, p75NTRExIII-/- mice display altered behavior in the dark/light box. Thus, deletion of p75NTR in mice leads to physiological and morphological changes in the amygdala and altered behavior that is linked to the limbic system.


Assuntos
Tonsila do Cerebelo , Ansiedade/psicologia , Sistema Nervoso Parassimpático , Receptores de Fator de Crescimento Neural/deficiência , Tonsila do Cerebelo/química , Animais , Comportamento Animal , Química Encefálica/genética , Fibras Colinérgicas , Condicionamento Psicológico , Fenômenos Eletrofisiológicos , Éxons , Medo , Imuno-Histoquímica , Potenciação de Longa Duração , Camundongos , Camundongos Knockout , Sistema Nervoso Parassimpático/química , Receptores de Fator de Crescimento Neural/genética
7.
PLoS One ; 11(10): e0165586, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27792755

RESUMO

Perineural invasion (PNI) is thought to be one of the factors responsible for the high rate of tumor recurrence after surgery and the pain generation associated with pancreatic cancer. Signaling via the nerve growth factor (NGF) pathway between pancreatic cancer cells and the surrounding nerves has been implicated in PNI, and increased levels of these proteins have been correlated to poor prognosis. In this study, we examine the molecular mechanism of the NGF signaling pathway in PNI in pancreatic cancer. We show that knocking down NGF or its receptors, TRKA and p75NTR, or treatment with GW441756, a TRKA kinase inhibitor, reduces the proliferation and migration of pancreatic cancer cells in vitro. Furthermore, pancreatic cancer cells migrate towards dorsal root ganglia (DRG) in a co-culture assay, indicating a paracrine NGF signaling between the DRGs and pancreatic cancer cells. Knocking down the expression of NGF pathway proteins or inhibiting the activity of TRKA by GW441756 reduced the migratory ability of Mia PaCa2 towards the DRGs. Finally, blocking NGF signaling by NGF neutralizing antibodies or GW441756 inhibited the neurite formation in PC-12 cells in response to conditioned media from pancreatic cancer cells, indicating a reciprocal signaling pathway between the pancreatic cancer cells and nerves. Our results indicate that NGF signaling pathway provides a potential target for developing molecularly targeted therapies to decrease PNI and reduce pain generation. Since there are several TRKA antagonists currently in early clinical trials they could now be tested in the clinical situation of pancreatic cancer induced pain.


Assuntos
Fator de Crescimento Neural/metabolismo , Sistema Nervoso/patologia , Neoplasias Pancreáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Gânglios Espinais/patologia , Técnicas de Inativação de Genes , Humanos , Indóis/farmacologia , Invasividade Neoplásica , Fator de Crescimento Neural/deficiência , Fator de Crescimento Neural/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Receptor trkA/antagonistas & inibidores , Receptor trkA/deficiência , Receptor trkA/genética , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética
8.
J Biol Chem ; 291(20): 10747-58, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26984409

RESUMO

Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes with NGF or pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-κB (NF-κB) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38 MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF.


Assuntos
Hepatócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Caspase 3/deficiência , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Fígado Gorduroso/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Fator de Crescimento Neural/metabolismo , Receptores de LDL/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Vis Neurosci ; 33: E012, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359346

RESUMO

The cholinergic system is involved in cortical plasticity, attention, and learning. Within the visual cortex the cholinergic system seems to play a role in visual perception. The cholinergic neurons which project into the visual cortex are located in the basal forebrain. It has been shown that mice deficient for the low-affinity neurotrophin receptor p75NTR display increased numbers of cholinergic neurons in the basal forebrain and a denser cholinergic innervation of the hippocampus. This prompted us to analyze whether the cholinergic system is altered in adult p75NTR deficient mice. By analyzing the densities of cholinergic fibers within layer IV as well as within layer V of the visual cortex, we found that adult p75NTR deficient mice display increased cholinergic fiber densities. However, this increase was not accompanied by an increase in the density of local cholinergic neurons within the visual cortex. This indicates that the enhanced cholinergic innervation of the visual cortex is due to alteration of the cholinergic neurons located in the basal forebrain, projecting to the visual cortex. The increased cholinergic innervation of the visual cortex makes the p75NTR deficient mice an attractive model to study the necessity of the cholinergic system for the visual cortex.


Assuntos
Fibras Colinérgicas/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Receptores de Fator de Crescimento Neural/deficiência , Córtex Visual/fisiologia , Acetilcolina/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo
10.
Mol Psychiatry ; 20(11): 1301-10, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25917367

RESUMO

In Alzheimer's disease (AD), neurodegenerative signals such as amyloid-beta (Aß) and the precursors of neurotrophins, outbalance neurotrophic signals, causing synaptic dysfunction and neurodegeneration. The neurotrophin receptor p75 (p75NTR) is a receptor of Aß and mediates Aß-induced neurodegenerative signals. The shedding of its ectodomain from the cell surface is physiologically regulated; however, the function of the diffusible p75NTR ectodomain (p75ECD) after shedding remains largely not known. Here, we show that p75ECD levels in cerebrospinal fluid and in the brains of Alzheimer's patients and amyloid-beta precursor protein (APP)/PS1 transgenic mice were significantly reduced, due to inhibition of the sheddase-tumor necrosis factor-alpha-converting enzyme by Aß. Restoration of p75ECD to the normal level by brain delivery of the gene encoding human p75ECD before or after Aß deposition in the brain of APP/PS1 mice reversed the behavioral deficits and AD-type pathologies, such as Aß deposit, apoptotic events, neuroinflammation, Tau phosphorylation and loss of dendritic spine, neuronal structures and synaptic proteins. Furthermore, p75ECD can also reduce amyloidogenesis by suppressing ß-secretase expression and activities. Our data demonstrate that p75ECD is a physiologically neuroprotective molecule against Aß toxicity and would be a novel therapeutic target and biomarker for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Encéfalo/patologia , Proteínas do Tecido Nervoso/química , Estrutura Terciária de Proteína/fisiologia , Receptores de Fator de Crescimento Neural/química , Proteínas ADAM/metabolismo , Proteína ADAM17 , Fatores Etários , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Animais , Apoptose/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos de Casos e Controles , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/terapia , Modelos Animais de Doenças , Regulação para Baixo/genética , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Presenilina-1/genética , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Proteínas Recombinantes/uso terapêutico , Transdução Genética
11.
J Invest Dermatol ; 135(3): 786-795, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25330297

RESUMO

CD271 is the low-affinity neurotrophin (p75NTR) receptor that belongs to the tumor necrosis factor receptor superfamily. Because in human epidermis, CD271 is predominantly expressed in transit-amplifying (TA) cells, we evaluated the role of this receptor in keratinocyte differentiation and in the transition from keratinocyte stem cells (KSCs) to progeny. Calcium induced an upregulation of CD271 in subconfluent keratinocytes, which was prevented by CD271 small interfering RNA. Furthermore, CD271 overexpression provoked the switch of KSCs to TA cells, whereas silencing CD271 induced TA cells to revert to a KSC phenotype, as shown by the expression of ß1-integrin and by the increased clonogenic ability. CD271(+) keratinocytes sorted from freshly isolated TA cells expressed more survivin and keratin 15 (K15) compared with CD271(-) cells and displayed a higher proliferative capacity. Early differentiation markers and K15 were more expressed in the skin equivalent generated from CD271(+) TA than from those derived from CD271(-) TA cells. By contrast, late differentiation markers were more expressed in skin equivalents from CD271(-) than in reconstructs from CD271(+) TA cells. Finally, skin equivalents originated from CD271(-) TA cells displayed a psoriatic phenotype. These results indicate that CD271 is critical for keratinocyte differentiation and regulates the transition from KSCs to TA cells.


Assuntos
Diferenciação Celular/fisiologia , Células Epidérmicas , Queratinócitos/citologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Células-Tronco/citologia , Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Humanos , Técnicas In Vitro , Proteínas Inibidoras de Apoptose/metabolismo , Queratina-15/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fenótipo , Psoríase/patologia , RNA Interferente Pequeno/farmacologia , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Survivina
12.
Cancer Chemother Pharmacol ; 73(2): 271-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24253178

RESUMO

PURPOSE: Neuroblastoma is the most common extracranial solid tumor of childhood. The retinoic acid analogue, fenretinide (4-hydroxyphenyl retinamide; 4-HPR), induces apoptosis in neuroblastoma cells in vitro and is currently in clinical trials for children with refractory neuroblastoma. We have previously shown that expression of the p75 neurotrophin receptor (p75NTR) enhances apoptosis induction and mitochondrial accumulation of reactive oxygen species by 4-HPR in neuroblastoma cells. We now examine the signaling events that underlie this effect. METHODS: Systematic examination of pro- and anti-apoptotic signaling effectors was performed by Western blot. Specific inhibitors of JNK phosphorylation and scavengers of mitochondrial reactive oxygen species were used to demonstrate the roles of these phenomena in the enhancement of fenretinide efficacy. RESULTS: The present studies demonstrate that enhancement of 4-HPR-induced apoptosis by p75NTR is dependent upon p38MAPK phosphorylation, JNK phosphorylation, caspase 3 activation, Akt cleavage, and decreased Akt phosphorylation. In addition, treatment with 4-HPR results in upregulation of MKK4 and MEKK1, and phosphorylation of MKK3/6. Efforts to enhance the efficacy of 4-HPR and to identify those tumors most likely to respond to it might exploit these effectors of 4-HPR-induced apoptosis. CONCLUSIONS: Pharmacological agents that enhance MKK4 or MEKK1 expression or JNK expression or phosphorylation may enhance efficacy of 4-HPR in neuroblastomas that do not express high levels of p75NTR.


Assuntos
Antineoplásicos/farmacologia , Fenretinida/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/tratamento farmacológico , Receptores de Fator de Crescimento Neural/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , MAP Quinase Quinase 4/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteína Oncogênica v-akt/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(47): 18952-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24190996

RESUMO

Total and N-terminal isoform selective p73 knockout mice show a variety of central nervous system defects. Here we show that TAp73 is a transcriptional activator of p75 neurotrophin receptor (p75(NTR)) and that p75(NTR) mRNA and protein levels are strongly reduced in the central and peripheral nervous systems of p73 knockout mice. In parallel, primary cortical neurons from p73 knockout mice showed a reduction in neurite outgrowth and in nerve growth factor-mediated neuronal differentiation, together with reduced miniature excitatory postsynaptic current frequencies and behavioral defects. p73 null mice also have impairments in the peripheral nervous system with reduced thermal sensitivity, axon number, and myelin thickness. At least some of these morphological and functional impairments in p73 null cells can be rescued by p75(NTR) re-expression. Together, these data demonstrate that loss of p75(NTR) contributes to the neurological phenotype of p73 knockout mice.


Assuntos
Malformações do Sistema Nervoso/genética , Neuritos/patologia , Proteínas Nucleares/genética , Receptores de Fator de Crescimento Neural/deficiência , Animais , Western Blotting , Encéfalo/metabolismo , Biologia Computacional , Camundongos , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/genética , Bainha de Mielina/metabolismo , Malformações do Sistema Nervoso/patologia , Neuritos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional/genética
14.
Exp Neurol ; 249: 111-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24013014

RESUMO

Development of cardiac sympathetic heterogeneity after myocardial infarction contributes to ventricular arrhythmias and sudden cardiac death. Regions of sympathetic hyperinnervation and denervation appear in the viable myocardium beyond the infarcted area. While elevated nerve growth factor (NGF) is implicated in sympathetic hyperinnervation, the mechanisms underlying denervation are unknown. Recent studies show that selective activation of the p75 neurotrophin receptor (p75(NTR)) in sympathetic neurons causes axon degeneration. We used mice that lack p75(NTR) to test the hypothesis that activation of p75(NTR) causes peri-infarct sympathetic denervation after cardiac ischemia-reperfusion. Wild type hearts exhibited sympathetic denervation adjacent to the infarct 24h and 3 days after ischemia-reperfusion, but no peri-infarct sympathetic denervation occurred in p75(NTR)-/- mice. Sympathetic hyperinnervation was found in the distal peri-infarct myocardium in both genotypes 3 days after MI, and hyperinnervation was increased in the p75(NTR)-/- mice. By 7 days after ischemia-reperfusion, cardiac sympathetic innervation density returned back to sham-operated levels in both genotypes, indicating that axonal pruning did not require p75(NTR). Prior studies revealed that proNGF is elevated in the damaged left ventricle after ischemia-reperfusion, as is mRNA encoding brain-derived neurotrophic factor (BDNF). ProNGF and BDNF preferentially bind p75(NTR) rather than TrkA on sympathetic neurons. Immunohistochemistry using Bdnf-HA mice confirmed the presence of BDNF or proBDNF in the infarct after ischemia-reperfusion. Thus, at least two p75(NTR) ligands are elevated in the left ventricle after ischemia-reperfusion where they may stimulate p75(NTR)-dependent denervation of peri-infarct myocardium. In contrast, NGF-induced sympathetic hyperinnervation in the distal peri-infarct ventricle is attenuated by p75(NTR).


Assuntos
Traumatismos Cardíacos/metabolismo , Ventrículos do Coração/inervação , Ventrículos do Coração/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Simpatectomia/métodos , Animais , Feminino , Traumatismos Cardíacos/patologia , Ventrículos do Coração/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/patologia , Miocárdio/patologia
15.
PLoS One ; 8(6): e66497, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840491

RESUMO

Enduring reorganization is accepted as a fundamental process of adult neural plasticity. The most dramatic example of this reorganization is the birth and continuously occurring incorporation of new neurons into the pre-existing network of the adult mammalian hippocampus. Based on this phenomenon we transplanted murine embryonic stem (ES)-cell derived neuronal precursors (ESNPs) into murine organotypic hippocampal slice cultures (OHC) and examined their integration. Using a precise quantitative morphological analysis combined with a detailed electrophysiology, we show a region-specific morphological integration of transplanted ESNPs into different subfields of the hippocampal tissue, resulting in pyramidal neuron-like embryonic stem cell-derived neurons (ESNs) in the Cornu Ammonis (CA1 and CA3) and granule neuron-like ESNs in the dentate gyrus (DG), respectively. Subregion specific structural maturation was accompanied by the development of dendritic spines and the generation of excitatory postsynaptic currents (EPSCs). This cell type specific development does not depend upon NMDA-receptor-dependent synaptic transmission. The presented integration approach was further used to determine the cell-autonomous function of the pan-neurotrophin receptor p75 (P75(NTR)), as a possible negative regulator of ESN integration. By this means we used p75(NTR)-deficient ESNPs to study their integration into a WT organotypic environment. We show here that p75(NTR) is not necessary for integration per se but plays a suppressing role in dendritic development.


Assuntos
Giro Denteado/citologia , Células-Tronco Embrionárias/fisiologia , Rede Nervosa/citologia , Células-Tronco Neurais/transplante , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Diferenciação Celular , Forma Celular , Células Cultivadas , Espinhas Dendríticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/fisiologia , Especificidade de Órgãos , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Sinapses/fisiologia
16.
J Neurosci ; 33(24): 9957-62, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23761891

RESUMO

During development, mammalian neuromuscular junctions (NMJs) transit from multiple-innervation to single-innervation through axonal competition via unknown molecular mechanisms. Previously, using an in vitro model system, we demonstrated that the postsynaptic secretion of pro-brain-derived neurotrophic factor (proBDNF) stabilizes or eliminates presynaptic axon terminals, depending on its proteolytic conversion at synapses. Here, using developing mouse NMJs, we obtained in vivo evidence that proBDNF and mature BDNF (mBDNF) play roles in synapse elimination. We observed that exogenous proBDNF promoted synapse elimination, whereas mBDNF infusion substantially delayed synapse elimination. In addition, pharmacological inhibition of the proteolytic conversion of proBDNF to mBDNF accelerated synapse elimination via activation of p75 neurotrophin receptor (p75(NTR)). Furthermore, the inhibition of both p75(NTR) and sortilin signaling attenuated synapse elimination. We propose a model in which proBDNF and mBDNF serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, in vivo.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Junção Neuromuscular/metabolismo , Precursores de Proteínas/fisiologia , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Fator Neurotrófico Derivado do Encéfalo/deficiência , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/crescimento & desenvolvimento , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/citologia
17.
Cell Death Dis ; 4: e579, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23559013

RESUMO

The p75 neurotrophin receptor (p75(NTR)) is a known mediator of ß-amyloid (Aß)-induced neurotoxicity implicated in Alzheimer's disease (AD). Here, we demonstrate that death receptor 6 (DR6) binds to p75(NTR) and is a component of the p75(NTR) signaling complex responsible for Aß-induced cortical neuron death. Cortical neurons isolated from either DR6 or p75(NTR) null mice are resistant to Aß-induced neurotoxicity. Blocking DR6 function in cortical neurons by anti-DR6 antibodies that block the binding of DR6 to p75(NTR) receptor complex or by a dominant negative DR6 construct lacking the cytoplasmic signaling death domain attenuates Aß-induced caspase 3 activation and cell death. DR6 expression is upregulated in AD cortex and correlates with elevated neuronal death. Targeting the disruption of the DR6/p75(NTR) complex to prevent Aß cytotoxicity represents a new approach for the treatment of neurodegenerative disorders such as AD.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Fator de Crescimento Neural/genética , Receptores do Fator de Necrose Tumoral/genética , Peptídeos beta-Amiloides/farmacologia , Animais , Anticorpos/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Cultura Primária de Células , Ligação Proteica , Receptores de Fator de Crescimento Neural/deficiência , Receptores do Fator de Necrose Tumoral/deficiência , Transdução de Sinais/efeitos dos fármacos
18.
Cerebellum ; 12(3): 300-3, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23307658

RESUMO

The p75 neurotrophin receptor is highly expressed in the developing nervous system and is required for neuronal survival, growth, and synaptic transmission. In young mice, p75 is present in both granular cells and Purkinje cells of the cerebellum. Although p75 has been implicated in modulation of neuronal excitability in several neuronal types, whether and how it affects the excitability of cerebellar Purkinje neurons remained unclear. Using extracellular recordings of spontaneous firing of Purkinje neurons in cerebellar slices prepared from wild type and p75 knockout mice, we measured intrinsic firing properties in the presence of fast synaptic blockers of more than 200 Purkinje cells, each for a period of 5 min, for each genotype. We detected a significant increase in the mean firing frequency in p75(-/-) neurons comparing to the wild type littermates. Upon separating tonically firing from phasically firing cells, i.e., cells with firing pauses of longer than 300 ms, we observed that the change mainly arose from phasic firing cells and can be explained by an increase in the firing/silence ratio and a decrease in the number of long pauses during the 5-min recording period. We conclude that p75 plays an important role in regulating the firing-to-silence transition during the phasic firing period of the spontaneous firing of Purkinje cells. Thus, p75 exerts a modulatory function on Purkinje cell firing patterns, through which it may act as a key player in motor coordination and other cerebellum-regulated activities since Purkinje cells represent the sole neuronal output of the cerebellar cortex.


Assuntos
Potenciais de Ação/genética , Cerebelo/citologia , Células de Purkinje/fisiologia , Receptores de Fator de Crescimento Neural/deficiência , Animais , Animais Recém-Nascidos , Técnicas In Vitro , Camundongos , Camundongos Knockout
19.
J Neurochem ; 125(3): 386-98, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23350698

RESUMO

The expression of the neurotrophins and their receptors is essential for peripheral nervous system development and myelination. We have previously demonstrated that brain-derived neurotrophic factor (BDNF) exerts contrasting influences upon Schwann cell myelination in vitro - promoting myelination via neuronally expressed p75NTR, but inhibiting myelination via neuronally expressed TrkB. We have generated a small peptide called cyclo-dPAKKR that structurally mimics the region of BDNF that binds p75NTR. Here, we have investigated whether utilizing cyclo-dPAKKR to selectively target p75NTR is an approach that could exert a unified promyelinating response. Like BDNF, cyclo-dPAKKR promoted myelination of nerve growth factor-dependent neurons in vitro, an effect dependent on the neuronal expression of p75NTR. Importantly, cyclo-dPAKKR also significantly promoted the myelination of tropomyosin-related kinase receptor B-expressing neurons in vitro, whereas BDNF exerted a significant inhibitory effect. This indicated that while BDNF exerted a contrasting influence upon the myelination of distinct subsets of dorsal root ganglion (DRG) neurons in vitro, cyclo-dPAKKR uniformly promoted their myelination. Local injection of cyclo-dPAKKR adjacent to the developing sciatic nerve in vivo significantly enhanced myelin protein expression and significantly increased the number of myelinated axons. These results demonstrate that cyclo-dPAKKR promotes peripheral myelination in vitro and in vivo, suggesting it is a strategy worthy of further investigation for the treatment of peripheral demyelinating diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/química , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Bainha de Mielina/metabolismo , Peptídeos/farmacologia , Nervo Isquiático/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/efeitos dos fármacos , Neurregulinas , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Fator de Crescimento Neural/deficiência , Células de Schwann , Nervo Isquiático/efeitos dos fármacos
20.
J Exp Med ; 209(12): 2291-305, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23091165

RESUMO

Treatment of acute cardiac ischemia focuses on reestablishment of blood flow in coronary arteries. However, impaired microvascular perfusion damages peri-infarct tissue, despite arterial patency. Identification of cytokines that induce microvascular dysfunction would provide new targets to limit microvascular damage. Pro-nerve growth factor (NGF), the precursor of NGF, is a well characterized cytokine in the brain induced by injury. ProNGF activates p75 neurotrophin receptor (p75(NTR)) and sortilin receptors to mediate proapoptotic responses. We describe induction of proNGF by cardiomyocytes, and p75(NTR) in human arterioles after fatal myocardial infarction, but not with unrelated pathologies. After mouse cardiac ischemia-reperfusion (I-R) injury, rapid up-regulation of proNGF by cardiomyocytes and p75(NTR) by microvascular pericytes is observed. To identify proNGF actions, we generated a mouse expressing a mutant Ngf allele with impaired processing of proNGF to mature NGF. The proNGF-expressing mouse exhibits cardiac microvascular endothelial activation, a decrease in pericyte process length, and increased vascular permeability, leading to lethal cardiomyopathy in adulthood. Deletion of p75(NTR) in proNGF-expressing mice rescues the phenotype, confirming the importance of p75(NTR)-expressing pericytes in the development of microvascular injury. Furthermore, deficiency in p75(NTR) limits infarct size after I-R. These studies identify novel, nonneuronal actions for proNGF and suggest that proNGF represents a new target to limit microvascular dysfunction.


Assuntos
Encéfalo/metabolismo , Microvasos/patologia , Infarto do Miocárdio/metabolismo , Fator de Crescimento Neural/metabolismo , Pericitos/metabolismo , Precursores de Proteínas/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Western Blotting , Primers do DNA/genética , Ecocardiografia , Ensaio de Imunoadsorção Enzimática , Técnicas de Introdução de Genes , Humanos , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Microvasos/metabolismo , Mutagênese Sítio-Dirigida , Infarto do Miocárdio/patologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/metabolismo , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...