Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
J Biol Chem ; 299(8): 104990, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392850

RESUMO

Cycloartenyl ferulate (CF) is abundant in brown rice with multiple biologic functions. It has been reported to possess antitumor activity; however, the related mechanism of action of CF has not been clarified. Herein, we unexpectedly uncover the immunological regulation effects of CF and its molecular mechanism. We discovered that CF directly enhanced the killing capacity of natural killer (NK) cells for various cancer cells in vitro. In vivo, CF also improved cancer surveillance in mouse models of lymphoma clearance and metastatic melanoma dependent on NK cells. In addition, CF promoted anticancer efficacy of the anti-PD1 antibody with improvement of tumor immune microenvironment. Mechanistically, we first unveiled that CF acted on the canonical JAK1/2-STAT1 signaling pathway to enhance the immunity of the NK cells by selectively binding to interferon γ receptor 1. Collectively, our results indicate that CF is a promising immunoregulation agent worthy of attention in clinical application in the future. Due to broad biological significance of interferon γ, our findings also provide a capability to understand the diverse functions of CF.


Assuntos
Ácidos Cumáricos , Células Matadoras Naturais , Neoplasias , Receptores de Interferon , Animais , Camundongos , Interferon gama/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Microambiente Tumoral , Ácidos Cumáricos/farmacologia , Receptores de Interferon/imunologia , Receptor de Interferon gama
2.
J Biol Chem ; 298(12): 102698, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379255

RESUMO

Influenza remains a major public health challenge, as the viral infection activates multiple biological networks linked to altered host innate immunity. Following infection, IFN-λ, a ligand crucial for the resolution of viral infections, is known to bind to its cognate receptor, IFNLR1, in lung epithelia. However, little is known regarding the molecular expression and regulation of IFNLR1. Here, we show that IFNLR1 is a labile protein in human airway epithelia that is rapidly degraded after influenza infection. Using an unbiased proximal ligation biotin screen, we first identified that the Skp-Cullin-F box E3 ligase subunit, FBXO45, binds to IFNLR1. We demonstrate that FBXO45, induced in response to influenza infection, mediates IFNLR1 protein polyubiquitination and degradation through the ubiquitin-proteasome system by docking with its intracellular receptor domain. Furthermore, we found ectopically expressed FBXO45 and its silencing in cells differentially regulated both IFNLR1 protein stability and interferon-stimulated gene expression. Mutagenesis studies also indicated that expression of a K319R/K320R IFNLR1 variant in cells exhibited reduced polyubiquitination, yet greater stability and proteolytic resistance to FBXO45 and influenza-mediated receptor degradation. These results indicate that the IFN-λ-IFNLR1 receptor axis is tightly regulated by the Skp-Cullin-F box ubiquitin machinery, a pathway that may be exploited by influenza infection as a means to limit antiviral responses.


Assuntos
Influenza Humana , Humanos , Proteínas Culina/imunologia , Influenza Humana/imunologia , Interferon lambda , Interferons/imunologia , Receptores de Interferon/imunologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ligação Proteica
3.
Oncoimmunology ; 11(1): 2029298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127252

RESUMO

The oncogenic MUC1-C protein drives dedifferentiation of castrate resistant prostate cancer (CRPC) cells in association with chromatin remodeling. The present work demonstrates that MUC1-C is necessary for expression of IFNGR1 and activation of the type II interferon-gamma (IFN-γ) pathway. We show that MUC1-C→ARID1A/BAF signaling induces IFNGR1 transcription and that MUC1-C-induced activation of the NuRD complex suppresses FBXW7 in stabilizing the IFNGR1 protein. MUC1-C and NuRD were also necessary for expression of the downstream STAT1 and IRF1 transcription factors. We further demonstrate that MUC1-C and PBRM1/PBAF are necessary for IRF1-induced expression of (i) IDO1, WARS and PTGES, which metabolically suppress the immune tumor microenvironment (TME), and (ii) the ISG15 and SERPINB9 inhibitors of T cell function. Of translational relevance, we show that MUC1 associates with expression of IFNGR1, STAT1 and IRF1, as well as the downstream IDO1, WARS, PTGES, ISG15 and SERPINB9 immunosuppressive effectors in CRPC tumors. Analyses of scRNA-seq data further demonstrate that MUC1 correlates with cancer stem cell (CSC) and IFN gene signatures across CRPC cells. Consistent with these results, MUC1 associates with immune cell-depleted "cold" CRPC TMEs. These findings demonstrate that MUC1-C integrates chronic activation of the type II IFN-γ pathway and induction of chromatin remodeling complexes in linking the CSC state with immune evasion.


Assuntos
Montagem e Desmontagem da Cromatina , Interferon gama , Mucina-1 , Neoplasias de Próstata Resistentes à Castração , Montagem e Desmontagem da Cromatina/imunologia , Humanos , Terapia de Imunossupressão , Masculino , Mucina-1/imunologia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores de Interferon/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral , Receptor de Interferon gama
4.
Immunity ; 55(2): 308-323.e9, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34800368

RESUMO

Tumor-infiltrating dendritic cells (DCs) assume varied functional states that impact anti-tumor immunity. To delineate the DC states associated with productive anti-tumor T cell immunity, we compared spontaneously regressing and progressing tumors. Tumor-reactive CD8+ T cell responses in Batf3-/- mice lacking type 1 DCs (DC1s) were lost in progressor tumors but preserved in regressor tumors. Transcriptional profiling of intra-tumoral DCs within regressor tumors revealed an activation state of CD11b+ conventional DCs (DC2s) characterized by expression of interferon (IFN)-stimulated genes (ISGs) (ISG+ DCs). ISG+ DC-activated CD8+ T cells ex vivo comparably to DC1. Unlike cross-presenting DC1, ISG+ DCs acquired and presented intact tumor-derived peptide-major histocompatibility complex class I (MHC class I) complexes. Constitutive type I IFN production by regressor tumors drove the ISG+ DC state, and activation of MHC class I-dressed ISG+ DCs by exogenous IFN-ß rescued anti-tumor immunity against progressor tumors in Batf3-/- mice. The ISG+ DC gene signature is detectable in human tumors. Engaging this functional DC state may present an approach for the treatment of human disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Interferon Tipo I/imunologia , Linfócitos do Interstício Tumoral/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antígeno CD11b/imunologia , Apresentação Cruzada , Células Dendríticas/efeitos dos fármacos , Interferon beta/administração & dosagem , Interferon beta/farmacologia , Camundongos , Neoplasias/imunologia , Receptores de Interferon/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia
5.
Front Immunol ; 12: 731807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899691

RESUMO

Asthma is a chronic respiratory disease affecting people of all ages, especially children, worldwide. Origins of asthma are suggested to be placed in early life with heterogeneous clinical presentation, severity and pathophysiology. Exacerbations of asthma disease can be triggered by many factors, including viral respiratory tract infections. Rhinovirus (RV) induced respiratory infections are the predominant cause of the common cold and also play a crucial role in asthma development and exacerbations. Rhinovirus mainly replicates in epithelial cells lining the upper and lower respiratory tract. Type III interferons, also known as interferon-lambda (IFNλ), are potent immune mediators of resolution of infectious diseases but they are known to be involved in autoimmune diseases as well. The protective role of type III IFNs in antiviral, antibacterial, antifungal and antiprotozoal functions is of major importance for our innate immune system. The IFNλ receptor (IFNλR) is expressed in selected types of cells like epithelial cells, thus orchestrating a specific immune response at the site of viruses and bacteria entry into the body. In asthma, IFNλ restricts the development of TH2 cells, which are induced in the airways of asthmatic patients. Several studies described type III IFNs as the predominant type of interferon increased after infection caused by respiratory viruses. It efficiently reduces viral replication, viral spread into the lungs and viral transmission from infected to naive individuals. Several reports showed that bronchial epithelial cells from asthmatic subjects have a deficient response of type III interferon after RV infection ex vivo. Toll like Receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) expressed on infectious agents, and induce the development of antiviral and antibacterial immunity. We recently discovered that activation of TLR7/8 resulted in enhanced IFNλ receptor mRNA expression in PBMCs of healthy and asthmatic children, opening new therapeutic frontiers for rhinovirus-induced asthma. This article reviews the recent advances of the literature on the regulated expression of type III Interferons and their receptor in association with rhinovirus infection in asthmatic subjects.


Assuntos
Asma/imunologia , Interferons/imunologia , Receptores de Interferon/imunologia , Animais , Asma/virologia , Humanos , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/imunologia , Rhinovirus , Interferon lambda
6.
Front Immunol ; 12: 735576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899695

RESUMO

Interferon lambda (IFNλ) signaling is a promising therapeutic target against viral infection in murine models, yet little is known about its molecular regulation and its cognate receptor, interferon lambda receptor 1 (IFNLR1) in human lung. We hypothesized that the IFNλ signaling axis was active in human lung macrophages. In human alveolar macrophages (HAMs), we observed increased IFNLR1 expression and robust increase in interferon-stimulated gene (ISG) expression in response to IFNλ ligand. While human monocytes express minimal IFNLR1, differentiation of monocytes into macrophages with macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) increased IFNLR1 mRNA, IFNLR1 protein expression, and cellular response to IFNλ ligation. Conversely, in mice, M-CSF or GM-CSF stimulated macrophages failed to produce ISGs in response to related ligands, IFNL2 or IFNL3, suggesting that IFNLR1 signaling in macrophages is species-specific. We next hypothesized that IFNλ signaling was critical in influenza antiviral responses. In primary human airway epithelial cells and precision-cut human lung slices, influenza infection substantially increased IFNλ levels. Pretreatment of both HAMs and differentiated human monocytes with IFNL1 significantly inhibited influenza infection. IFNLR1 knockout in the myeloid cell line, THP-1, exhibited reduced interferon responses to either direct or indirect exposure to influenza infection suggesting the indispensability of IFNLR1 for antiviral responses. These data demonstrate the presence of IFNλ - IFNLR1 signaling axis in human lung macrophages and a critical role of IFNλ signaling in combating influenza infection.


Assuntos
Influenza Humana/imunologia , Interferons/imunologia , Macrófagos Alveolares/imunologia , Animais , Células Cultivadas , Humanos , Macrófagos Alveolares/virologia , Camundongos , Receptores de Interferon/imunologia , Transdução de Sinais/imunologia , Interferon lambda
7.
Int J Mycobacteriol ; 10(4): 349-357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916451

RESUMO

Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM) remain the leading causes of lung disease and mortality worldwide. Interferon-gamma (IFN-γ) and its receptor (IFN-γR) play a key role in mediating immunity against Mtb and NTM. This study was conducted as a systematic review; all information was collected from databases such as: PubMed, Scopus, Medline, SID, and medical databases. Finally, all the collected data were reviewed, and all content was categorized briefly. There is growing evidence that IFN-γ plays an important role in host defense against these two intracellular pathogens by activating macrophages. In addition, IFN-γ has been shown to be an integral part of various antibacterial methods such as granuloma formation and phagosome-lysosome fusion, both of which lead to the death of intracellular Mycobacterium. As a result, its absence is associated with overgrowth of intracellular pathogens and disease caused by Mtb or Mycobacterium nontuberculosis. We also look at the role of IFN-γR in Mtb or NTM because IFN-γ acts through IFN-γR. Finally, we introduce new approaches to the treatment of M. tuberculosis complex (MTC) and NTM disease, such as cell and gene-based therapies that work by modulating IFN-γ and IFN-γR.


Assuntos
Interferon gama/imunologia , Infecções por Mycobacterium não Tuberculosas , Receptores de Interferon/imunologia , Tuberculose , Humanos , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium tuberculosis , Micobactérias não Tuberculosas , Tuberculose/imunologia , Receptor de Interferon gama
8.
Front Immunol ; 12: 753849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790197

RESUMO

Background: CD14+ monocytes present antigens to adaptive immune cells via monocytic human leukocyte antigen receptor (mHLA-DR), which is described as an immunological synapse. Reduced levels of mHLA-DR can display an acquired immune defect, which is often found in sepsis and predisposes for secondary infections and fatal outcomes. Monocytic HLA-DR expression is reliably induced by interferon- γ (IFNγ) therapy. Case Report: We report a case of multidrug-resistant superinfected COVID-19 acute respiratory distress syndrome (ARDS) on extracorporeal membrane oxygenation (ECMO) support. The resistance profiles of the detected Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii and Citrobacter freundii isolates were equipped with resistance to all four antibiotic classes including carbapenems (4MRGN) and Cefiderocol in the case of K. pneumoniae. A causal therapeutic antibiotic strategy was not available. Therefore, we measured the immune status of the patient aiming to identify a potential acquired immune deficiency. Monocyte HLA-DR expression identified by FACS analysis revealed an expression level of 34% positive monocytes and suggested severe immunosuppression. We indicated IFNγ therapy, which resulted in a rapid increase in mHLA-DR expression (96%), rapid resolution of invasive bloodstream infection, and discharge from the hospital on day 70. Discussion: Superinfection is a dangerous complication of COVID-19 pneumonia, and sepsis-induced immunosuppression is a risk factor for it. Immunosuppression is expressed by a disturbed antigen presentation of monocytes to cells of the adaptive immune system. The case presented here is remarkable as no validated antibiotic regimen existed against the detected bacterial pathogens causing bloodstream infection and severe pneumonia in a patient suffering from COVID-19 ARDS. Possible restoration of the patient's own immunity by IFNγ was a plausible option to boost the patient's immune system, eliminate the identified 4MRGNs, and allow for lung recovery. This led to the conclusion that immune status monitoring is useful in complicated COVID-19-ARDS and that concomitant IFNγ therapy may support antibiotic strategies. Conclusion: After a compromised immune system has been detected by suppressed mHLA-DR levels, the immune system can be safely reactivated by IFNγ.


Assuntos
Bactérias/imunologia , COVID-19/imunologia , Resistência a Múltiplos Medicamentos/imunologia , Antígenos HLA/imunologia , Interferon gama/imunologia , Monócitos/imunologia , Síndrome do Desconforto Respiratório/imunologia , Adulto , Humanos , Receptores de Interferon/imunologia , Receptor de Interferon gama
9.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769174

RESUMO

A pivotal role of type I interferons in systemic lupus erythematosus (SLE) is widely accepted. Type III interferons (IFN-λ) however, the most recently discovered cytokines grouped within the interferon family, have not been extensively studied in lupus disease models yet. Growing evidence suggests a role for IFN-λ in regulating both innate and adaptive immune responses, and increased serum concentrations have been described in multiple autoimmune diseases including SLE. Using the pristane-induced lupus model, we found that mice with defective IFN-λ receptors (Ifnlr1-/-) showed increased survival rates, decreased lipogranuloma formation and reduced anti-dsDNA autoantibody titers in the early phase of autoimmunity development compared to pristane-treated wild-type mice. Moreover, Ifnlr1-/- mice treated with pristane had reduced numbers of inflammatory mononuclear phagocytes and cNK cells in their kidneys, resembling untreated control mice. Systemically, circulating B cells and monocytes (CD115+Ly6C+) were reduced in pristane-treated Ifnlr1-/- mice. The present study supports a significant role for type III interferons in the pathogenesis of pristane-induced murine autoimmunity as well as in systemic and renal inflammation. Although the absence of type III interferon receptors does not completely prevent the development of autoantibodies, type III interferon signaling accelerates the development of autoimmunity and promotes a pro-inflammatory environment in autoimmune-prone hosts.


Assuntos
Imunidade Celular , Imunidade Humoral , Interferons/imunologia , Leucócitos/imunologia , Lúpus Eritematoso Sistêmico , Terpenos/efeitos adversos , Animais , Interferons/genética , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Knockout , Receptores de Interferon/deficiência , Receptores de Interferon/imunologia , Terpenos/farmacologia , Interferon lambda
10.
Blood ; 138(8): 722-737, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34436524

RESUMO

Immunopathology and intestinal stem cell (ISC) loss in the gastrointestinal (GI) tract is the prima facie manifestation of graft-versus-host disease (GVHD) and is responsible for significant mortality after allogeneic bone marrow transplantation (BMT). Approaches to prevent GVHD to date focus on immune suppression. Here, we identify interferon-λ (IFN-λ; interleukin-28 [IL-28]/IL-29) as a key protector of GI GVHD immunopathology, notably within the ISC compartment. Ifnlr1-/- mice displayed exaggerated GI GVHD and mortality independent of Paneth cells and alterations to the microbiome. Ifnlr1-/- intestinal organoid growth was significantly impaired, and targeted Ifnlr1 deficiency exhibited effects intrinsic to recipient Lgr5+ ISCs and natural killer cells. PEGylated recombinant IL-29 (PEG-rIL-29) treatment of naive mice enhanced Lgr5+ ISC numbers and organoid growth independent of both IL-22 and type I IFN and modulated proliferative and apoptosis gene sets in Lgr5+ ISCs. PEG-rIL-29 treatment improved survival, reduced GVHD severity, and enhanced epithelial proliferation and ISC-derived organoid growth after BMT. The preservation of ISC numbers in response to PEG-rIL-29 after BMT occurred both in the presence and absence of IFN-λ-signaling in recipient natural killer cells. IFN-λ is therefore an attractive and rapidly testable approach to prevent ISC loss and immunopathology during GVHD.


Assuntos
Transplante de Medula Óssea , Citocinas/farmacologia , Gastroenteropatias , Doença Enxerto-Hospedeiro , Interleucinas/farmacocinética , Transdução de Sinais , Animais , Citocinas/imunologia , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/genética , Gastroenteropatias/imunologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Interleucinas/imunologia , Camundongos , Camundongos Knockout , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transplante Homólogo
11.
Cytokine ; 146: 155637, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242899

RESUMO

Interferons have prominent roles in various pathophysiological conditions, mostly related to inflammation. Interferon-gamma (IFNγ) was, initially discovered as a potent antiviral agent, over 50 years ago, and has recently garnered renewed interest as a promising factor involved in both innate and adaptive immunity. When new disease epidemics appear such as SARS-CoV (severe acute respiratory syndrome coronavirus), MERS-CoV (Middle East respiratory syndrome coronavirus), IAV (Influenza A virus), and in particular the current SARS-CoV-2 pandemic, it is especially timely to review the complexity of immune system responses to viral infections. Here we consider the controversial roles of effectors like IFNγ, discussing its actions in immunomodulation and immunotolerance. We explore the possibility that modulation of IFNγ could be used to influence the course of such infections. Importantly, not only could endogenous expression of IFNγ influence the outcome, there are existing IFNγ therapeutics that can readily be applied in the clinic. However, our understanding of the molecular mechanisms controlled by IFNγ suggests that the exact timing for application of IFNγ-based therapeutics could be crucial: it should be earlier to significantly reduce the viral load and thus decrease the overall severity of the disease.


Assuntos
Imunidade Adaptativa/imunologia , COVID-19/imunologia , Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Interferon gama/imunologia , Antivirais/imunologia , Antivirais/uso terapêutico , COVID-19/virologia , Humanos , Interferon gama/uso terapêutico , Receptores de Interferon/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Transdução de Sinais/imunologia , Tratamento Farmacológico da COVID-19
12.
Fish Shellfish Immunol ; 117: 70-81, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34274423

RESUMO

In fish, type I IFNs are classified into three groups, i.e. Group I, Group II and Group III, which are further divided into seven subgroups according to the number of conservative cysteines, phylogenetic relationship, and probably their receptor complexes. In the present study, four type I IFNs and four cytokine receptor family B members (CRFBs) were identified in the Asian arowana, Scleropages formosus, an ancient species in the Osteoglossomorpha with commercial and conservation values. According to multiple sequence alignment and phylogenetic relationship, the four type I IFNs are named as IFNa1, IFNa2, IFNb and IFNc, with the former two belonging to Group I, and the latter two to Group II. The four receptors are named as CRFB1, CRFB2, CRFB5a and CRFB5b. The IFNs and their possible receptor genes are widely expressed in examined organs/tissues, and are induced following the stimulation of polyinosinic polycytidylic acid (polyI:C) in vivo. It was found that IFNa1, IFNa2, IFNb and IFNc use preferentially the receptor complexes, CRFB1 and CRFB5b, CRFB1 and CRFB5b, CRFB2 and CRFB5a, and CRFB2 and CRFB5b, respectively, indicating the evolutionary diversification in the interaction of type I IFNs and their receptors in this ancient fish species, S. formosus.


Assuntos
Proteínas de Peixes/imunologia , Peixes/imunologia , Interferon Tipo I/imunologia , Receptores de Interferon/imunologia , Sequência de Aminoácidos , Animais , Peixes/genética , Expressão Gênica , Interferon Tipo I/genética , Filogenia , Receptores de Interferon/genética
13.
Arthritis Rheumatol ; 73(7): 1244-1252, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33393726

RESUMO

OBJECTIVE: Behçet's disease is a complex systemic inflammatory vasculitis of incompletely understood etiology. This study was undertaken to investigate genetic associations with Behçet's disease in a diverse multiethnic population. METHODS: A total of 9,444 patients and controls from 7 different populations were included in this study. Genotyping was performed using an Infinium ImmunoArray-24 v.1.0 or v.2.0 BeadChip. Analysis of expression data from stimulated monocytes, and epigenetic and chromatin interaction analyses were performed. RESULTS: We identified 2 novel genetic susceptibility loci for Behçet's disease, including a risk locus in IFNGR1 (rs4896243) (odds ratio [OR] 1.25; P = 2.42 × 10-9 ) and within the intergenic region LNCAROD/DKK1 (rs1660760) (OR 0.78; P = 2.75 × 10-8 ). The risk variants in IFNGR1 significantly increased IFNGR1 messenger RNA expression in lipopolysaccharide-stimulated monocytes. In addition, our results replicated the association (P < 5 × 10-8 ) of 6 previously identified susceptibility loci in Behçet's disease: IL10, IL23R, IL12A-AS1, CCR3, ADO, and LACC1, reinforcing the notion that these loci are strong genetic factors in Behçet's disease shared across ancestries. We also identified >30 genetic susceptibility loci with a suggestive level of association (P < 5 × 10-5 ), which will require replication. Finally, functional annotation of genetic susceptibility loci in Behçet's disease revealed their possible regulatory roles and suggested potential causal genes and molecular mechanisms that could be further investigated. CONCLUSION: We performed the largest genetic association study in Behçet's disease to date. Our findings reveal novel putative functional variants associated with the disease and replicate and extend the genetic associations in other loci across multiple ancestries.


Assuntos
Síndrome de Behçet/genética , Monócitos/imunologia , Receptores de Interferon/genética , Síndrome de Behçet/imunologia , Estudos de Casos e Controles , Cromossomos Humanos Par 10/genética , DNA Intergênico/genética , Epigênese Genética , Feminino , Mutação com Ganho de Função , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lipopolissacarídeos , Masculino , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Receptores de Interferon/imunologia , Receptor de Interferon gama
14.
Methods Mol Biol ; 2225: 227-239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33108666

RESUMO

Severe inflammatory disease initiated by neurotrauma and stroke is of primary concern in these intractable pathologies as noted in recent studies and understanding of the pathogenesis of spinal cord injury (SCI) in the rat model. Successful anti-inflammatory treatments should result in neuroprotection and limit the loss of neurological function to injury caused by the initial damage. Continuous subdural infusion offers direct access to the cavity of injury (COI) that forms after balloon crush SCI deep in the spinal cord. Some anti-inflammatory compounds are not likely capable of crossing the blood-spinal cord barrier. Subdural infusion of myxoma virus-derived Serp-1, an anti-thrombotic/anti-thrombolytic, and also of M-T7, a chemokine inhibitor, improved the locomotor scores and pain sensation scores as well as reduced the numbers of macrophages in the COI by 50 and 80%, respectively, while intraperitoneal infusion of either protein had little effect. Injection of a chitosan hydrogel loaded with Serp-1 into the dorsal spinal column crush also resulted in improved neurological deficits and in reduction of the size of the crush lesion 4 weeks after injury. While neurological scores in a simplified hind-end (HE) locomotor test together with a toe-pinch withdrawal test demonstrated improvement in all balloon crush injury and dorsal spinal crush injury rats, a severe inflammation is induced by the injury indicating additional damage to the spinal cord. Thus neurological function testing can be contradictory, rather than corresponding, to the pathogenesis of SCI. The count of macrophages in the COI offers a precise, reliable method of measuring the effectiveness of a neuroprotective treatment of SCI in preclinical studies.


Assuntos
Anti-Inflamatórios/farmacologia , Fatores Imunológicos/farmacologia , Myxoma virus/química , Fármacos Neuroprotetores/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Proteínas Virais/farmacologia , Animais , Anti-Inflamatórios/imunologia , Quitosana/química , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Fatores Imunológicos/imunologia , Injeções Epidurais , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/imunologia , Ratos , Ratos Long-Evans , Receptores de Interferon/imunologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia , Proteínas Virais/imunologia
15.
Methods Mol Biol ; 2225: 257-273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33108668

RESUMO

Solid tissue transplant is a growing medical need that is further complicated by a limited donor organ supply. Acute and chronic rejection occurs in nearly all transplants and reduces long-term graft survival, thus increasing the need for repeat transplantation. Viruses have evolved highly adapted responses designed to evade the host's immune defenses. Immunomodulatory proteins derived from viruses represent a novel class of potential therapeutics that are under investigation as biologics to attenuate immune-mediated rejection and damage. These immune-modulating proteins have the potential to reduce the need for traditional posttransplant immune suppressants and improve graft survival. The myxoma virus-derived protein M-T7 is a promising biologic that targets chemokine and glycosaminoglycan pathways central to kidney transplant rejection. Orthotopic transplantations in mice are prohibitively difficult and costly and require a highly trained microsurgeon to successfully perform the procedure. Here we describe a kidney-to-kidney subcapsular transplant model as a practical and simple method for studying transplant rejection, a model that requires fewer mice. One kidney can be used as a donor for transplants into six or more recipient mice. Using this model there is lower morbidity, pain, and mortality for the mice. Subcapsular kidney transplantation provides a first step approach to testing virus-derived proteins as new potential immune-modulating therapeutics to reduce transplant rejection and inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Fatores Imunológicos/farmacologia , Transplante de Rim/métodos , Myxoma virus/química , Proteínas Virais/farmacologia , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/metabolismo , Biomarcadores/análise , Quimiocinas/biossíntese , Complemento C4b/genética , Complemento C4b/imunologia , Feminino , Expressão Gênica , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Fatores Imunológicos/biossíntese , Fatores Imunológicos/imunologia , Rim/imunologia , Rim/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Receptores de Interferon/biossíntese , Receptores de Interferon/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Transplante Homólogo , Proteínas Virais/biossíntese , Proteínas Virais/imunologia
16.
Fish Shellfish Immunol ; 107(Pt A): 194-201, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33011433

RESUMO

Type I interferons are a subset of cytokines playing central roles in host antiviral defense, and their effects depend on the interaction with the heterodimeric receptor complex. Surprisingly, two pairs of the receptor subunits, CRFB1 and CRFB5, and CRFB2 and CRFB5, have been identified in fish, but the studies about preferential receptor usage of different fish IFN subtypes are rather limited. In this study, the three receptor chains of type I IFNs named as On-CRFB1, On-CRFB2 and On-CRFB5 were identified in Nile tilapia, Oreochromis niloticus. These three genes were constitutively expressed in all tissues examined, with the highest expression level observed in muscle and liver, and were rapidly induced in liver following the stimulation of poly(I:C). Interestingly, it is possible that all three subtypes of tilapia IFNs are able to signal through two pairs of the receptor subunits, On-CRFB1 and On-CRFB5, and On-CRFB2 and On-CRFB5. More importantly, tilapia group I IFNs (On-IFNd and On-IFNh) preferentially signal through a receptor complex composed of On-CRFB1 and On-CRFB5, and group II IFNs (On-IFNc) preferentially signal through a receptor complex comprised of On-CRFB2 and On-CRFB5. The present study thus provides new insights into the receptor usage of group I and group II IFNs in fish.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Poli I-C/farmacologia , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Filogenia , Receptores de Interferon/química , Alinhamento de Sequência/veterinária
17.
PLoS Genet ; 16(10): e1009199, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104735

RESUMO

Interferons (IFNs) are cytokines that are central to the host defence against viruses and other microorganisms. If not properly regulated, IFNs may contribute to the pathogenesis of inflammatory autoimmune, or infectious diseases. To identify genetic polymorphisms regulating the IFN system we performed an unbiased genome-wide protein-quantitative trait loci (pQTL) mapping of cell-type specific type I and type II IFN receptor levels and their responses in immune cells from 303 healthy individuals. Seven genome-wide significant (p < 5.0E-8) pQTLs were identified. Two independent SNPs that tagged the multiple sclerosis (MS)-protective HLA class I alleles A*02/A*68 and B*44, respectively, were associated with increased levels of IFNAR2 in B and T cells, with the most prominent effect in IgD-CD27+ memory B cells. The increased IFNAR2 levels in B cells were replicated in cells from an independent set of healthy individuals and in MS patients. Despite increased IFNAR2 levels, B and T cells carrying the MS-protective alleles displayed a reduced response to type I IFN stimulation. Expression and methylation-QTL analysis demonstrated increased mRNA expression of the pseudogene HLA-J in B cells carrying the MS-protective class I alleles, possibly driven via methylation-dependent transcriptional regulation. Together these data suggest that the MS-protective effects of HLA class I alleles are unrelated to their antigen-presenting function, and propose a previously unappreciated function of type I IFN signalling in B and T cells in MS immune-pathogenesis.


Assuntos
Predisposição Genética para Doença , Antígeno HLA-A2/genética , Esclerose Múltipla/genética , Locos de Características Quantitativas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Linfócitos B/imunologia , Linfócitos B/patologia , Feminino , Citometria de Fluxo , Antígeno HLA-A2/imunologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon gama/genética , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Polimorfismo de Nucleotídeo Único/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia
18.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32796074

RESUMO

Recent Zika virus (ZIKV) outbreaks and unexpected clinical manifestations of ZIKV infection have prompted an increase in ZIKV-related research. Here, we identify two strain-specific determinants of ZIKV virulence in mice. We found that strain H/PF/2013 caused 100% lethality in Ifnar1-/- mice, whereas PRVABC59 caused no lethality; both strains caused 100% lethality in Ifnar1-/-Ifngr1-/- double-knockout (DKO) mice. Deep sequencing revealed a high-frequency variant in PRVABC59 not present in H/PF/2013: a G-to-T change at nucleotide 1965 producing a Val-to-Leu substitution at position 330 of the viral envelope (E) protein. We show that the V330 variant is lethal on both virus strain backgrounds, whereas the L330 variant is attenuating only on the PRVABC59 background. These results identify a balanced polymorphism in the E protein that is sufficient to attenuate the PRVABC59 strain but not H/PF/2013. The consensus sequences of H/PF/2013 and PRVABC59 differ by 3 amino acids, but these were not responsible for the difference in virulence between the two strains. H/PF/2013 and PRVABC59 differ by an additional 31 noncoding or silent nucleotide changes. We made a panel of chimeric viruses with identical amino acid sequences but nucleotide sequences derived from H/PF/2013 or PRVABC59. We found that 6 nucleotide differences in the 3' quarter of the H/PF/2013 genome were sufficient to confer virulence in Ifnar1-/- mice. Altogether, our work identifies a large and previously unreported difference in virulence between two commonly used ZIKV strains, in two widely used mouse models of ZIKV pathogenesis (Ifnar1-/- and Ifnar1-/- Ifngr1-/- DKO mice).IMPORTANCE Contemporary ZIKV strains are closely related and often used interchangeably in laboratory research. Here, we identify two strain-specific determinants of ZIKV virulence that are evident in only Ifnar1-/- mice but not Ifnar1-/-Ifngr1-/- DKO mice. These results identify a balanced polymorphism in the E protein that is sufficient to attenuate the PRVABC59 strain but not H/PF/2013. We further identify a second virulence determinant in the H/PF/2013 strain, which is driven by the viral nucleotide sequence but not the amino acid sequence. Altogether, our work identifies a large and previously unreported difference in virulence between two commonly used ZIKV strains, in two widely used mouse models of ZIKV pathogenesis. Our results highlight that even very closely related virus strains can produce significantly different pathogenic phenotypes in common laboratory models.


Assuntos
Variação Genética , Proteínas Virais , Infecção por Zika virus , Zika virus , Células A549 , Animais , Chlorocebus aethiops , Feminino , Humanos , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Especificidade da Espécie , Células Vero , Proteínas Virais/genética , Proteínas Virais/imunologia , Zika virus/genética , Zika virus/imunologia , Infecção por Zika virus/genética , Infecção por Zika virus/imunologia , Receptor de Interferon gama
19.
J Immunol ; 205(4): 883-891, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32769143

RESUMO

The innate immune system uses pattern recognition receptors to survey the intracellular and extracellular environment for signs of infection. Viral infection is detected through the presence of viral nucleic acids in infected cells. Pattern recognition receptor activation by viral nucleic acids induces the expression and secretion of type I IFNs (IFN-Is), important mediators of antiviral immunity. RIG-I-like receptors (RLRs) are RNA sensors that detect viral RNA in the cytosol and induce an IFN-I response. Viral RNAs contain features that set them apart from host RNAs, allowing RLRs to discriminate between cellular/self and viral/non-self RNA. The notion emerged that self RNAs can also engage RLRs and modulate the IFN-I response, indicating that the distinction between self and non-self RNA is not watertight. We review how self RNAs regulate RLR activation and the IFN-I response during viral infection and how recognition of self RNAs by RLRs is implicated in autoinflammatory disorders and cancer.


Assuntos
Inflamação/imunologia , Interferon Tipo I/imunologia , RNA Viral/imunologia , Receptores de Interferon/imunologia , Viroses/imunologia , Animais , Humanos , Receptores de Reconhecimento de Padrão/imunologia
20.
Antiviral Res ; 182: 104877, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32755662

RESUMO

Noroviruses are the main causative agents for acute viral gastroenteritis worldwide. RIG-I-like receptors (RLRs) triggered interferon (IFN) activation is essential for host defense against viral infections. In turn, viruses have developed sophisticated strategies to counteract host antiviral response. This study aims to investigate how murine norovirus (MNV) replicase interacts with RLRs-mediated antiviral IFN response. Counterintuitively, we found that the MNV replicase NS7 enhances the activation of poly (I:C)-induced IFN response and the transcription of downstream interferon-stimulated genes (ISGs). Interestingly, NS7 protein augments RIG-I and MDA5-triggered antiviral IFN response, which conceivably involves direct interactions with the caspase activation and recruitment domains (CARDs) of RIG-I and MDA5. Consistently, RIG-I and MDA5 exert anti-MNV activity in human HEK293T cells with ectopic expression of viral receptor CD300lf. This effect requires the activation of JAK/STAT pathway, and is further enhanced by NS7 overexpression. These findings revealed an unconventional role of MNV NS7 as augmenting RLRs-mediated IFN response to inhibit viral replication.


Assuntos
Proteína DEAD-box 58/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Norovirus/enzimologia , Receptores Imunológicos/imunologia , Receptores de Interferon/imunologia , Proteínas do Complexo da Replicase Viral/imunologia , Animais , Proteína DEAD-box 58/genética , Células HEK293 , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Interferons/imunologia , Camundongos , Norovirus/imunologia , Receptores Imunológicos/genética , Receptores de Interferon/genética , Proteínas do Complexo da Replicase Viral/genética , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...