Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.187
Filtrar
1.
Neuropharmacology ; 253: 109971, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705568

RESUMO

The impact of environmental enrichment (EE) on natural rewards, including social and appetitive rewards, was investigated in male Swiss mice. EE, known for providing animals with various stimuli, was assessed for its effects on conditioned place preference (CPP) associated with ethanol and social stimuli. We previously demonstrated that EE increased the levels of the prosocial neuropeptide oxytocin (OT) in the hypothalamus and enhanced ethanol rewarding effects via an oxytocinergic mechanism. This study also investigated the impact of EE on social dominance and motivation for rewards, measured OT-mediated phospholipase C (PLC) activity in striatal membranes, and assessed OT expression in the hypothalamus. The role of dopamine in motivating rewards was considered, along with the interaction between OT and D1 receptors (DR) in the nucleus accumbens (NAc). Results showed that EE mice exhibited a preference for ethanol reward over social reward, a pattern replicated by the OT analogue Carbetocin. EE mice demonstrated increased social dominance and reduced motivation for appetitive taste stimuli. Higher OT mRNA levels in the hypothalamus were followed by diminished OT receptor (OTR) signaling activity in the striatum of EE mice. Additionally, EE mice displayed elevated D1R expression, which was attenuated by the OTR antagonist (L-368-889). The findings underscore the reinforcing effect of EE on ethanol and social rewards through an oxytocinergic mechanism. Nonetheless, they suggest that mechanisms other than the prosocial effect of EE may contribute to the ethanol pro-rewarding effect of EE and Carbetocin. They also point towards an OT-dopamine interaction potentially underlying some of these effects.


Assuntos
Dopamina , Etanol , Núcleo Accumbens , Ocitocina , Receptores de Dopamina D1 , Receptores de Ocitocina , Recompensa , Animais , Ocitocina/metabolismo , Ocitocina/análogos & derivados , Masculino , Etanol/farmacologia , Etanol/administração & dosagem , Camundongos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Dopamina/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/antagonistas & inibidores , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Meio Ambiente , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Predomínio Social , Comportamento Social , Motivação/fisiologia , Motivação/efeitos dos fármacos
2.
Cell Commun Signal ; 22(1): 221, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594674

RESUMO

VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.


Assuntos
Diabetes Mellitus , Pré-Eclâmpsia , Feminino , Humanos , Recém-Nascido , Gravidez , Número de Gestações , Ocitocina/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Proteômica , Receptores de Ocitocina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Exp Gerontol ; 190: 112432, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614224

RESUMO

The beneficial effect of social interaction in mitigating the incidence of post-stroke depression (PSD) and ameliorating depressive symptoms has been consistently demonstrated through preclinical and clinical studies. However, the underlying relationship with oxytocin requires further investigation. In light of this, the present study aimed to explore the protective effect of pair housing on the development of PSD and the potential relationship with oxytocin receptors. The PSD model was induced by middle cerebral artery occlusion (MCAO) for 50 min, followed by 4-week isolated housing and restrained stress. Subsequently, each mouse in the pair-housing group (PH) was pair-housed with an isosexual healthy partner. Another group was continuously administrated fluoxetine (10 mg/Kg, i.p, once a day) for 3 weeks. To elucidate the potential role of oxytocin, we subjected pair-housed PSD mice to treatment with an oxytocin receptor (OXTR) antagonist (L368,889) (5 mg/Kg, i.p, once a day) for 3 weeks. At 31 to 32 days after MCAO, anxiety- and depressive-like behaviors were assessed using sucrose consumption, forced swim test, and tail-suspension test. The results showed that pair housing significantly improved post-stroke depression to an extent comparable to that of fluoxetine treatment. Furthermore, pair housing significantly decreased corticosterone in serum, increasing OXT mRNA expression in the hypothalamus. Treatment with L368,889 essentially reversed the effect of pair housing, with no discernible sex differences apart from changes in body weight. Pair housing increased hippocampal serotonin (5-HT), but treatment with L368,889 had no significant impact. Additionally, pair housing effectively reduced the number of reactive astrocytes and increased Nissl's body in the cortex and hippocampal CA3 regions. Correspondingly, treatment with L368,889 significantly reversed the changes in the Nissl's body and reactive astrocytes. Moreover, pair housing downregulated mRNA levels of TNF-α, IL-1ß, and IL-6 in the cortex caused by PSD, which was also reversed by treatment with L368,889. In conclusion, pair housing protects against the development of PSD depending on OXT and OXTR in the brain, with no significant divergence based on sex. These findings provide valuable insights into the potential of social interaction and oxytocin as therapeutic targets for PSD. Further research into the underlying mechanisms of these effects may contribute to the development of novel treatments for PSD.


Assuntos
Canfanos , Depressão , Modelos Animais de Doenças , Fluoxetina , Piperazinas , Receptores de Ocitocina , Animais , Receptores de Ocitocina/metabolismo , Masculino , Depressão/etiologia , Depressão/metabolismo , Camundongos , Fluoxetina/farmacologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/psicologia , Abrigo para Animais , Ocitocina/farmacologia , Ocitocina/metabolismo , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/psicologia , Comportamento Animal/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos
4.
Pharmacol Rep ; 76(2): 416-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480666

RESUMO

BACKGROUND: There is substantial evidence for sex differences in the functioning of one of the most common receptor systems; G protein-coupled receptors (GPCRs). There are many points along the GPCR-mediated molecular signaling pathway at which males and females may differ, one of the first of which, chronologically, is in the stability of the interaction between the ligand and the receptor, or its binding affinity. Here we investigate the binding affinities of oxytocin (OT) and vasopressin (AVP) at the oxytocin receptor (OTR) and the vasopressin V1a receptor (V1aR), both of which are present in numerous in brain regions associated with social behavior. METHOD: In order to investigate sex- and estrous cycle-dependent differences in ligand-receptor binding affinity, male (n = 6) Syrian hamsters (Mesocricetus auratus), females on the day of estrus (E females, n = 6), and females on the second day of diestrus (D2 females n = 6) were chosen for study. Brains from hamsters were mounted on slides and competition and saturation binding assays were conducted. RESULTS: We report a remarkable similarity in the binding affinities of OT and AVP in males and females. Small differences were detected, however, in receptor and ligand specificity in females depending on whether they were in the estrous or diestrous stage of their ovulatory cycle. CONCLUSION: These data suggest that sex differences in binding affinity are not a likely source of the many sex differences that have been observed in the effects of OT and AVP in hamsters and other species.


Assuntos
Ocitocina , Caracteres Sexuais , Cricetinae , Animais , Masculino , Feminino , Ligantes , Vasopressinas/metabolismo , Receptores de Ocitocina/metabolismo , Mesocricetus , Arginina Vasopressina
5.
Transl Psychiatry ; 14(1): 168, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553454

RESUMO

Autistic individuals generally demonstrate impaired emotion recognition but it is unclear whether effects are emotion-specific or influenced by oxytocin receptor (OXTR) genotype. Here we implemented a dimensional approach using an implicit emotion recognition task together with functional MRI in a large cohort of neurotypical adult participants (N = 255, male = 131, aged 17-29 years) to establish associations between autistic traits and neural and behavioral responses to specific face emotions, together with modulatory effects of OXTR genotype. A searchlight-based multivariate pattern analysis (MVPA) revealed an extensive network of frontal, basal ganglia, cingulate and limbic regions exhibiting significant predictability for autistic traits from patterns of responses to angry relative to neutral expression faces. Functional connectivity analyses revealed a genotype interaction (OXTR SNPs rs2254298, rs2268491) for coupling between the orbitofrontal cortex and mid-cingulate during angry expression processing, with a negative association between coupling and autistic traits in the risk-allele group and a positive one in the non-risk allele group. Overall, results indicate extensive emotion-specific associations primarily between patterns of neural responses to angry faces and autistic traits in regions processing motivation, reward and salience but not in early visual processing. Functional connections between these identified regions were not only associated with autistic traits but also influenced by OXTR genotype. Thus, altered patterns of neural responses to threatening faces may be a potential biomarker for autistic symptoms although modulatory influences of OXTR genotype need to be taken into account.


Assuntos
Transtorno Autístico , Receptores de Ocitocina , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Ira , Transtorno Autístico/genética , Emoções/fisiologia , Genótipo , Imageamento por Ressonância Magnética , Ocitocina , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
6.
J Psychiatr Res ; 173: 260-270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554622

RESUMO

Antibodies are one of the most utilized tools in biomedical research. However, few of them are rigorously evaluated, as there are no accepted guidelines or standardized methods for determining their validity before commercialization. Often, an antibody is considered validated if it detects a band by Western blot of the expected molecular weight and, in some cases, if blocking peptides result in loss of staining. Neither of these approaches are unquestionable proof of target specificity. Since the oxytocin receptor has recently become a popular target in neuropsychiatric research, the need for specific antibodies to be used in brain has arisen. In this work, we have tested the specificity of six commercially available oxytocin receptor antibodies, indicated by the manufacturers to be suitable for Western blot and with an available image showing the correct size band (45-55 KDa). Antibodies were first tested by Western blot in brain lysates of wild-type and oxytocin receptor knockout mice. Uterus tissue was also tested as control for putative differential tissue specificity. In brain, the six tested antibodies lacked target specificity, as both wild-type and receptor knockout samples resulted in a similar staining pattern, including the expected 45-55 KDa band. Five of the six antibodies detected a selective band in uterus (which disappeared in knockout tissue). These five specific antibodies were also tested for immunohistochemistry in uterus, where only one was specific. However, when the uterine-specific antibody was tested in brain tissue, it lacked specificity. In conclusion, none of the six tested commercial antibodies are suitable to detect oxytocin receptor in brain by either Western blot or immunohistochemistry, although some do specifically detect it in uterus. The present work highlights the need to develop standardized antibody validation methods, including a proper negative control, in order to grant quality and reproducibility of the generated data.


Assuntos
Anticorpos , Receptores de Ocitocina , Animais , Feminino , Camundongos , Western Blotting , Camundongos Knockout , Receptores de Ocitocina/imunologia , Receptores de Ocitocina/metabolismo , Reprodutibilidade dos Testes
7.
J Chem Neuroanat ; 137: 102403, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38452468

RESUMO

Fluid satiation is an important signal and aspect of body fluid homeostasis. Oxytocin-receptor-expressing neurons (OxtrPBN) in the dorsolateral subdivision of the lateral parabrachial nucleus (dl LPBN) are key neurons which regulate fluid satiation. In the present study, we investigated brain regions activated by stimulation of OxtrPBN neurons in order to better characterise the fluid satiation neurocircuitry in mice. Chemogenetic activation of OxtrPBN neurons increased Fos expression (a proxy marker for neuronal activation) in known fluid-regulating brain nuclei, as well as other regions that have unclear links to fluid regulation and which are likely involved in regulating other functions such as arousal and stress relief. In addition, we analysed and compared Fos expression patterns between chemogenetically-activated fluid satiation and physiological-induced fluid satiation. Both models of fluid satiation activated similar brain regions, suggesting that the chemogenetic model of stimulating OxtrPBN neurons is a relevant model of physiological fluid satiation. A deeper understanding of this neural circuit may lead to novel molecular targets and creation of therapeutic agents to treat fluid-related disorders.


Assuntos
Neurônios , Núcleos Parabraquiais , Receptores de Ocitocina , Saciação , Animais , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Camundongos , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/genética , Neurônios/metabolismo , Saciação/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo
8.
Acta Psychiatr Scand ; 149(6): 458-466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477064

RESUMO

INTRODUCTION: Dysfunctions in the oxytocin system have been reported in patients with borderline personality disorder (BPD). Deficits could be related to interpersonal hypersensitivity, which has been previously associated with failures in social cognition (SC) in this disorder, especially in Theory of Mind (ToM) skills. The aim of this work is to study the links between the oxytocin system and SC impairments in patients with BPD. METHOD: Plasma oxytocin levels (OXT) and protein expression of oxytocin receptors in blood mononuclear cells (OXTR) were examined in 33 patients with a diagnosis of BPD (age: M 28.85, DT = 8.83). Social cognition was assessed using the Movie for the Assessment of Social Cognition (MASC). Statistical associations between biochemical factors and different response errors in MASC were analyzed through generalized linear regression controlling for relevant clinical factors. RESULTS: Generalized linear regression showed a significant relationship between lower OXTR and overmentalization in BPD patients (OR = 0.90). CONCLUSIONS: This work supports the relationship between alterations in the oxytocin system and ToM impairments observed in BPD patients, enhancing the search for endophenotypes related to the phenotypic features of the disorder to improve current clinical knowledge and address more specific therapeutic targets.


Assuntos
Transtorno da Personalidade Borderline , Ocitocina , Receptores de Ocitocina , Cognição Social , Teoria da Mente , Humanos , Transtorno da Personalidade Borderline/sangue , Transtorno da Personalidade Borderline/fisiopatologia , Ocitocina/sangue , Ocitocina/metabolismo , Adulto , Feminino , Receptores de Ocitocina/metabolismo , Masculino , Teoria da Mente/fisiologia , Adulto Jovem
9.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38438259

RESUMO

Oxytocinergic transmission blocks nociception at the peripheral, spinal, and supraspinal levels through the oxytocin receptor (OTR). Indeed, a neuronal pathway from the hypothalamic paraventricular nucleus (PVN) to the spinal cord and trigeminal nucleus caudalis (Sp5c) has been described. Hence, although the trigeminocervical complex (TCC), an anatomical area spanning the Sp5c, C1, and C2 regions, plays a role in some pain disorders associated with craniofacial structures (e.g., migraine), the role of oxytocinergic transmission in modulating nociception at this level has been poorly explored. Hence, in vivo electrophysiological recordings of TCC wide dynamic range (WDR) cells sensitive to stimulation of the periorbital or meningeal region were performed in male Wistar rats. PVN electrical stimulation diminished the neuronal firing evoked by periorbital or meningeal electrical stimulation; this inhibition was reversed by OTR antagonists administered locally. Accordingly, neuronal projections (using Fluoro-Ruby) from the PVN to the WDR cells filled with Neurobiotin were observed. Moreover, colocalization between OTR and calcitonin gene-related peptide (CGRP) or OTR and GABA was found near Neurobiotin-filled WDR cells. Retrograde neuronal tracers deposited at the meningeal (True-Blue, TB) and infraorbital nerves (Fluoro-Gold, FG) showed that at the trigeminal ganglion (TG), some cells were immunopositive to both fluorophores, suggesting that some TG cells send projections via the V1 and V2 trigeminal branches. Together, these data may imply that endogenous oxytocinergic transmission inhibits the nociceptive activity of second-order neurons via OTR activation in CGRPergic (primary afferent fibers) and GABAergic cells.


Assuntos
Estimulação Elétrica , Ocitocina , Núcleo Hipotalâmico Paraventricular , Ratos Wistar , Receptores de Ocitocina , Transmissão Sináptica , Animais , Masculino , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Ocitocina/metabolismo , Ocitocina/análogos & derivados , Ratos , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/antagonistas & inibidores , Transmissão Sináptica/fisiologia , Nociceptores/fisiologia , Nociceptores/metabolismo , Nociceptividade/fisiologia , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos dos fármacos , Meninges/fisiologia , Inibição Neural/fisiologia
10.
Peptides ; 175: 171178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368908

RESUMO

Engaging in positive social (i.e., prosocial) interactions during adolescence acts to modulate neural circuits that determine adult adaptive behavior. While accumulating evidence indicates that a strong craving for prosocial behavior contributes to sustaining neural development, the consequences of social deprivation during adolescence on social neural circuits, including those involving oxytocin (OXT) and vasopressin (AVP), are poorly characterized. We evaluated adaptive behaviors in socially isolated mice, including anxiety-like, social, and defensive behaviors, along with OXT and AVP neural profiles in relevant brain regions. Social isolation from postnatal day (P-)22 to P-48 induced enhanced defensive and exploratory behaviors, in nonsocial and social contexts. Unlike OXT neurons, AVP+ cell density in the paraventricular nucleus of the hypothalamus increases with age in males. Social isolation also modulated gene expression in the medial amygdala (MeA), including the upregulation of OXT receptors in males and the downregulation of AVP1a receptors in both sexes. Socially isolated mice showed an enhanced defensive, anogenital approach toward a novel adult female during direct social interactions. Subsequent c-Fos mapping revealed diminished neural activity in restricted brain areas, including the MeA, lateral septum, and posterior intralaminar nucleus of the thalamus, in socially isolated mice. These data indicate that neural signals arising from daily social interactions invoke region-specific modification of neuropeptide expression that coordinates with altered defensiveness and neural responsivities, including OXT- and AVP-projecting regions. The present findings indicate an involvement of OXT and AVP circuits in adolescent neural and behavioral plasticity that is tuned by daily social interaction.


Assuntos
Hipotálamo , Ocitocina , Masculino , Camundongos , Feminino , Animais , Hipotálamo/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Isolamento Social , Tonsila do Cerebelo/metabolismo , Comportamento Social , Arginina Vasopressina/metabolismo
11.
Sci Rep ; 14(1): 4709, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409197

RESUMO

Considerable global demand exists for the development of novel drugs for the treatment of alopecia. A recent report demonstrated that oxytocin promotes hair growth activity in human dermal papilla (DP) cells; however, its application in drugs or cosmetic products is challenging because rapid degradation and relatively large molecular weight prevent long-term topical administration on the scalp. Here, we examined cinnamic acid, a small molecule activator for oxytocin receptor (OXTR) expression. Treatment with cinnamic acid led to upregulation of OXTR and trichogenic gene expression in human DP cells. Furthermore, inhibition of OXTR with an antagonist, L-371,257, suppressed hair growth-related gene expression in DP cells. These findings suggest that cinnamic acid enhances the hair growth ability of DP cells via oxytocin signaling. Additionally, we tested the hair growth-promoting effects of cinnamic acid using hair follicle organoids in vitro and observed that cinnamic acid significantly promoted the growth of hair peg-like sprouting. These promising results may be useful for developing hair growth-promoting products targeting oxytocin.


Assuntos
Cinamatos , Folículo Piloso , Ocitocina , Humanos , Folículo Piloso/metabolismo , Ocitocina/farmacologia , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Células Cultivadas , Cabelo , Organoides
12.
Neuropharmacology ; 247: 109848, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253222

RESUMO

Social deficits are debilitating features of many psychiatric disorders, including autism. While time-intensive behavioral therapy is moderately effective, there are no pharmacological interventions for social deficits in autism. Many studies have attempted to treat social deficits using the neuropeptide oxytocin for its powerful neuromodulatory abilities and influence on social behaviors and cognition. However, clinical trials utilizing supplementation paradigms in which exogenous oxytocin is chronically administered independent of context have failed. An alternative treatment paradigm suggests pharmacologically activating the endogenous oxytocin system during behavioral therapy to enhance the efficacy of therapy by facilitating social learning. To this end, melanocortin receptor agonists like Melanotan II (MTII), which induces central oxytocin release and accelerates formation of partner preference, a form of social learning, in prairie voles, are promising pharmacological tools. To model pharmacological activation of the endogenous oxytocin system during behavioral therapy, we administered MTII prior to social interactions between male and female voles. We assessed its effect on oxytocin-dependent activity in brain regions subserving social learning using Fos expression as a proxy for neuronal activation. In non-social contexts, MTII only activated hypothalamic paraventricular nucleus, a primary site of oxytocin synthesis. However, during social interactions, MTII selectively increased oxytocin-dependent activation of nucleus accumbens, a site critical for social learning. These results suggest a mechanism for the MTII-induced acceleration of partner preference formation observed in previous studies. Moreover, they are consistent with the hypothesis that pharmacologically activating the endogenous oxytocin system with a melanocortin agonist during behavioral therapy has potential to facilitate social learning.


Assuntos
Núcleo Accumbens , Ocitocina , Masculino , Humanos , Feminino , Animais , Ocitocina/metabolismo , Núcleo Accumbens/metabolismo , Melanocortinas/metabolismo , Comportamento Social , Receptores de Ocitocina/metabolismo , Meio Social , Arvicolinae/fisiologia
13.
Neuropsychobiology ; 83(1): 28-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38185116

RESUMO

INTRODUCTION: Vasopressin (AVP) and oxytocin (OT) exert sex-specific effects on social pair bonding and stress reactions while also influencing craving in substance use disorders. In this regard, intranasal oxytocin (OT) and AVP antagonists present potential treatments for tobacco use disorder (TUD). Since transcription of both hormones is also regulated by gene methylation, we hypothesized sex-specific changes in methylation levels of the AVP, OT, and OT receptor (OXTR) gene during nicotine withdrawal. METHODS: The study population consisted of 49 smokers (29 males, 20 females) and 51 healthy non-smokers (25 males, 26 females). Blood was drawn at day 1, day 7, and day 14 of smoking cessation. Craving was assessed with the questionnaire on smoking urges (QSU). RESULTS: Throughout cessation, mean methylation of the OT promoter gene increased in males and decreased in females. OXTR receptor methylation decreased in females, while in males it was significantly lower at day 7. Regarding the AVP promoter, mean methylation increased in males while there were no changes in females. Using mixed linear modeling, CpG position, time point, sex, and the interaction of time point and sex as well as time point, sex, and QSU had a significant fixed effect on OT and AVP gene methylation. The interaction effect suggests that sex, time point, and QSU are interrelated, meaning that, depending on the sex, methylation could be different at different time points and vice versa. There was no significant effect of QSU on mean OXTR methylation. DISCUSSION: We identified differences at specific CpGs between controls and smokers in OT and AVP and in overall methylation of the AVP gene. Furthermore, we found sex-specific changes in mean methylation levels of the mentioned genes throughout smoking cessation, underlining the relevance of sex in the OT and vasopressin system. This is the first study on epigenetic regulation of the OT promoter in TUD. Our results have implications for research on the utility of the AVP and OT system for treating substance craving. Future studies on both targets need to analyze their effect in the context of sex, social factors, and gene regulation.


Assuntos
Ocitocina , Tabagismo , Masculino , Feminino , Humanos , Ocitocina/genética , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Tabagismo/genética , Epigênese Genética , Vasopressinas/genética , Vasopressinas/metabolismo , Metilação , Arginina Vasopressina/genética , Receptores de Vasopressinas/genética
14.
J Periodontal Res ; 59(2): 280-288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226427

RESUMO

OBJECTIVE: The objective of the study was to evaluate the expression of oxytocin receptors in normal and inflamed gingiva, as well as the effects of systemic administration of oxytocin in bone loss and gum inflammatory mediators in a rat model of experimental periodontitis. BACKGROUND DATA: Current evidence supports the hypothesis of a disbalance between the oral microbiota and the host's immune response in the pathogenesis of periodontitis. Increased complexity of the microbial biofilm present in the periodontal pocket leads to local production of nitrogen and oxygen-reactive species, cytokines, chemokines, and other proinflammatory mediators which contribute to periodontal tissue destruction and bone loss. Oxytocin has been suggested to participate in the modulation of immune and inflammatory processes. We have previously shown that oxytocin, nitric oxide, and endocannabinoid system interact providing a mechanism of regulation for systemic inflammation. Here, we aimed at investigating not only the presence and levels of expression of oxytocin receptors on healthy and inflamed gingiva, but also the effects of oxytocin treatment on alveolar bone loss, and systemic and gum expression of inflammatory mediators involved in periodontal tissue damage using ligature-induced periodontitis. Therefore, anti-inflammatory strategies oriented at modulating the host's immune response could be valuable adjuvants to the main treatment of periodontal disease. METHODS: We used an animal model of ligature-induced periodontitis involving the placement of a linen thread (Barbour flax 100% linen suture, No. 50; size 2/0) ligature around the neck of first lower molars of adult male rats. The ligature was left in place during the entire experiment (7 days) until euthanasia. Animals with periodontitis received daily treatment with oxytocin (OXT, 1000 µg/kg, sc.) or vehicle and/or atosiban (3 mg/kg, sc.), an antagonist of oxytocin receptors. The distance between the cement-enamel junction and the alveolar bone crest was measured in stained hemimandibles in the long axis of both buccal and lingual surfaces of both inferior first molars using a caliper. TNF-α levels in plasma were determined using specific rat enzyme-linked immunosorbent assays (ELISA). OXT receptors, IL-6, IL-1ß, and TNF-α expression were determined in gingival tissues by semiquantitative or real-time PCR. RESULTS: We show that oxytocin receptors are expressed in normal and inflamed gingival tissues in male rats. We also show that the systemic administration of oxytocin prevents the experimental periodontitis-induced increased gum expression of oxytocin receptors, TNF-α, IL-6, and IL-1ß (p < .05). Furthermore, we observed a reduction in bone loss in rats treated with oxytocin in our model. CONCLUSIONS: Our results demonstrate that oxytocin is a novel and potent modulator of the gingival inflammatory process together with bone loss preventing effects in an experimental model of ligature-induced periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Ratos , Masculino , Animais , Ocitocina/uso terapêutico , Ocitocina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptores de Ocitocina/metabolismo , Modelos Animais de Doenças , Periodontite/metabolismo , Gengiva/metabolismo , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/etiologia , Processo Alveolar/metabolismo , Mediadores da Inflamação/metabolismo
15.
Nature ; 626(7998): 347-356, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267576

RESUMO

To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.


Assuntos
Agressão , Aprendizagem da Esquiva , Hipotálamo , Vias Neurais , Neurônios , Ocitocina , Aprendizado Social , Animais , Camundongos , Agressão/fisiologia , Aprendizagem da Esquiva/fisiologia , Sinais (Psicologia) , Medo/fisiologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Comportamento Social , Aprendizado Social/fisiologia , Núcleo Supraóptico/citologia , Núcleo Supraóptico/metabolismo , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Plasticidade Neuronal
16.
Psychoneuroendocrinology ; 160: 106917, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071877

RESUMO

Oxytocin (OT) influences a range of social behaviors by enhancing the salience of social cues and regulating the expression of specific social behaviors (e.g., maternal care versus defensive aggression). We previously showed that stimulating OT receptors in the basolateral amygdala of rats also enhanced the salience of fear conditioned stimuli: relative to rats given vehicle infusions, rats infused with [Thr4,Gly7]-oxytocin (TGOT), a selective OT receptor agonist, showed greater discrimination between a cue predictive of danger, and one that signaled safety. In the present series of experiments using male rats, the effects of OT receptor activation in the basolateral amygdala on stimulus processing were examined further using conditioning protocols that consist of changes in stimulus-outcome contingencies (i.e., extinction and reversal), and with stimuli paired with aversive (i.e., foot shock) and appetitive (i.e., sucrose) outcomes. It was revealed that the effects of OTR stimulation diverge for aversive and appetitive learning - enhancing the former but not the latter. However, across both types of learning, OTR stimulation enhanced the detection of conditioned stimuli. Overall, these results are consistent with an emerging view of OT's effects on stimulus salience; facilitating the detection of meaningful stimuli while reducing responding to those that are irrelevant.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Ratos , Masculino , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Receptores de Ocitocina/metabolismo , Ocitocina/farmacologia , Ocitocina/metabolismo , Reversão de Aprendizagem , Medo/fisiologia
17.
Psychoneuroendocrinology ; 160: 106666, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951085

RESUMO

Although intranasal oxytocin administration to tap into central functions is the most commonly used non-invasive means for exploring oxytocin's role in human cognition and behavior, the way by which intranasal oxytocin acts on the brain is not yet fully understood. Recent research suggests that brain regions densely populated with oxytocin receptors may play a central role in intranasal oxytocin's action mechanisms in the brain. In particular, intranasal oxytocin may act directly on (subcortical) regions rich in oxytocin receptors via binding to these receptors while only indirectly affecting other (cortical) regions via their neural connections to oxytocin receptor-enriched regions. Aligned with this notion, the current study adopted a novel approach to test 1) whether the connections between oxytocin receptor-enriched regions (i.e., the thalamus, pallidum, caudate nucleus, putamen, and olfactory bulbs) and other regions in the brain were responsive to intranasal oxytocin administration, and 2) whether oxytocin-induced effects varied as a function of age. Forty-six young (24.96 ± 3.06 years) and 44 older (69.89 ± 2.99 years) participants were randomized, in a double-blind procedure, to self-administer either intranasal oxytocin or placebo before resting-state fMRI. Results supported age-dependency in the effects of intranasal oxytocin administration on connectivity between oxytocin receptor-enriched regions and other regions in the brain. Specifically, compared to placebo, oxytocin decreased both connectivity density and connectivity strength of the thalamus for young participants while it increased connectivity density and connectivity strength of the caudate for older participants. These findings inform the mechanisms underlying the effects of exogenous oxytocin on brain function and highlight the importance of age in these processes.


Assuntos
Encéfalo , Ocitocina , Receptores de Ocitocina , Ocitocina/administração & dosagem , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Envelhecimento , Humanos , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Administração Intranasal , Receptores de Ocitocina/metabolismo , Vias Neurais
18.
Neuroendocrinology ; 114(2): 134-157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37806301

RESUMO

Oxytocin (OT), a hypothalamic nonaneuropeptide, can extensively modulate mental and physical activities; however, the regulation of its secretion from hypothalamic OT neurons remains poorly understood. OT neuronal activity is generally modulated by neurochemical environment, synaptic inputs, astrocytic plasticity, and interneuronal interactions. By changing intracellular signals and ion channel activity, these extracellular factors dynamically regulate OT neuronal activity and OT release in a microdomain-specific manner. In this process, OT receptor (OTR) and OTR-coupled G proteins are pivotal, typically observed during lactation. Suckling-elicited somatodendritic release of OT causes sequential activation of Gq and Gs proteins to increase the firing rate gradually and trigger burst firing transiently, and then of Gi/o protein to cause post-burst inhibition as a result of potential bolus somatodendritic release of OT during the burst-like discharges. Under chronic social stress like mother-baby separation and cesarean section, excessive somatodendritic secretion of OT and over-excitation of OT neurons cause post-excitation inhibition of OT neuronal activity and reduction of OT secretion. In this process, dominance of G protein that couples to OTR is switched from Gq to Gi/o type because of inhibition of OTR-Gq signaling following negative feedback of downstream Gq signaling or crosstalk of Gq with Gs and Gi signals. This review summarizes our current understandings of OT/OTR signaling in the autoregulation of OT neuronal activity under physiological and pathological conditions.


Assuntos
Ocitocina , Receptores de Ocitocina , Gravidez , Feminino , Humanos , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Cesárea , Neurônios/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Homeostase
19.
Horm Behav ; 157: 105427, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743114

RESUMO

Prenatal exposure to inflammation via maternal infection, allergy, or autoimmunity increases one's risk for developing neurodevelopmental and psychiatric disorders. Many of these disorders are associated with altered social behavior, yet the mechanisms underlying inflammation-induced social impairment remain unknown. We previously found that a rat model of acute allergic maternal immune activation (MIA) produced deficits like those found in MIA-linked disorders, including impairments in juvenile social play behavior. The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) regulate social behavior, including juvenile social play, across mammalian species. OT and AVP are also implicated in neuropsychiatric disorders characterized by social impairment, making them good candidate regulators of social deficits after MIA. We profiled how acute prenatal exposure to allergic MIA changed OT and AVP innervation in several brain regions important for social behavior in juvenile male and female rat offspring. We also assessed whether MIA altered additional behavioral phenotypes related to sociality and anxiety. We found that allergic MIA increased OT and AVP fiber immunoreactivity in the medial amygdala and had sex-specific effects in the nucleus accumbens, bed nucleus of the stria terminalis, and lateral hypothalamic area. We also found that MIA reduced ultrasonic vocalizations in neonates and increased the stereotypical nature of self-grooming behavior. Overall, these findings suggest that there may be sex-specific mechanisms underlying MIA-induced behavioral impairment and underscore OT and AVP as ideal candidates for future mechanistic studies.


Assuntos
Ocitocina , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ratos , Masculino , Feminino , Animais , Vasopressinas/metabolismo , Comportamento Social , Encéfalo/metabolismo , Arginina Vasopressina/metabolismo , Receptores de Ocitocina/metabolismo , Mamíferos/metabolismo
20.
J Chem Inf Model ; 64(1): 205-218, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38150388

RESUMO

A metadynamics protocol is presented to characterize the binding and unbinding of peptide ligands to class A G-protein-coupled receptors (GPCRs). The protocol expands on the one previously presented for binding and unbinding small-molecule ligands to class A GPCRs and accounts for the more demanding nature of the peptide binding-unbinding process. It applies to almost all class A GPCRs. Exemplary simulations are described for subtypes Y1R, Y2R, and Y4R of the neuropeptide Y receptor family, vasopressin binding to the vasopressin V2 receptor (V2R), and oxytocin binding to the oxytocin receptor (OTR). Binding free energies and the positions of alternative binding sites are presented and, where possible, compared with the experiment.


Assuntos
Receptores Acoplados a Proteínas G , Vasopressinas , Receptores Acoplados a Proteínas G/química , Vasopressinas/metabolismo , Receptores de Ocitocina/química , Receptores de Ocitocina/metabolismo , Ocitocina/metabolismo , Sítios de Ligação , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...