Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.411
Filtrar
1.
BMC Pulm Med ; 24(1): 206, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671384

RESUMO

BACKGROUND: The Corona Virus Disease 2019 (COVID-19) pandemic has struck globally. Whether the related proteins of retinoic acid (RA) signaling pathway are causally associated with the risk of COVID-19 remains unestablished. We conducted a two-sample Mendelian randomization (MR) study to assess the associations of retinol, retinol binding protein 4 (RBP4), retinol dehydrogenase 16 (RDH16) and cellular retinoic acid binding protein 1 (CRABP1) with COVID-19 in European population. METHODS: The outcome utilized the summary statistics of COVID-19 from the COVID-19 Host Genetics Initiative. The exposure data were obtained from public genome wide association study (GWAS) database. We extracted SNPs from exposure data and outcome data. The inverse variance weighted (IVW), MR-Egger and Wald ratio methods were employed to assess the causal relationship between exposure and outcome. Sensitivity analyses were performed to ensure the validity of the results. RESULTS: The MR estimates showed that retinol was associated with lower COVID-19 susceptibility using IVW (OR: 0.69, 95% CI: 0.53-0.90, P: 0.0065), whereas the associations between retinol and COVID-19 hospitalization or severity were not significant. RBP4 was associated with lower COVID-19 susceptibility using the Wald ratio (OR: 0.83, 95% CI: 0.72-0.95, P: 0.0072). IVW analysis showed RDH16 was associated with increased COVID-19 hospitalization (OR: 1.10, 95% CI: 1.01-1.18, P: 0.0199). CRABP1 was association with lower COVID-19 susceptibility (OR: 0.95, 95% CI: 0.91-0.99, P: 0.0290) using the IVW. CONCLUSIONS: We found evidence of possible causal association of retinol, RBP4, RDH16 and CRABP1 with the susceptibility, hospitalization and severity of COVID-19. Our study defines that retinol is significantly associated with lower COVID-19 susceptibility, which provides a reference for the prevention of COVID-19 with vitamin A supplementation.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Proteínas Plasmáticas de Ligação ao Retinol , SARS-CoV-2 , Vitamina A , Humanos , COVID-19/genética , COVID-19/epidemiologia , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , SARS-CoV-2/genética , Predisposição Genética para Doença , Receptores do Ácido Retinoico/genética
2.
Am J Hematol ; 99(5): 1005-1007, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38410879

RESUMO

IRF2BP1 breaked in the middle of exon 1 at the c.322 position and fused with RARA intron 2 which is located at 3717 bp upstream of its exon 3. The fusion produced a new intron by forming a paired splicing donor GT at 9 bp downstream of RARA breakpoint and acceptor AG at the 5' end of RARA exon 3. The IRF2BP1::RARA fusion gene leads a fusion transcript involving IRF2BP1 exon 1 and RARA exon 3, linked by a 9-bp fragment derived from RARA intron 2. The patient with IRF2BP1::RARA has same clinical features of APL.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Cromossomos Humanos Par 17 , Éxons/genética , Leucemia Promielocítica Aguda/genética , Proteínas de Fusão Oncogênica/genética , Receptores do Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/genética , Translocação Genética
3.
Chem Biol Interact ; 387: 110773, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37977248

RESUMO

Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.


Assuntos
Receptores do Ácido Retinoico , Tretinoína , Tretinoína/farmacologia , Tretinoína/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Diferenciação Celular , Transdução de Sinais/fisiologia , Receptores Citoplasmáticos e Nucleares
4.
Front Endocrinol (Lausanne) ; 14: 1302736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027103

RESUMO

Bone homeostasis, depending on the balance between bone formation and bone resorption, is responsible for maintaining the proper structure and function of the skeletal system. As an important group of transcription factors, retinoic acid receptor-related orphan receptors (RORs) have been reported to play important roles in bone homeostasis by regulating the transcription of target genes in skeletal cells. On the other hand, the dysregulation of RORs often leads to various skeletal diseases such as osteoporosis, rheumatoid arthritis (RA), and osteoarthritis (OA). Herein, we summarized the roles and mechanisms of RORs in skeletal diseases, aiming to provide evidence for potential therapeutic strategies.


Assuntos
Receptores do Ácido Retinoico , Fatores de Transcrição , Receptores do Ácido Retinoico/genética , Homeostase
5.
J Virol ; 97(10): e0020523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728614

RESUMO

IMPORTANCE: A common hypothesis holds that bats (order Chiroptera) are outstanding reservoirs for zoonotic viruses because of a special antiviral interferon (IFN) system. However, functional studies about key components of the bat IFN system are rare. RIG-I is a cellular sensor for viral RNA signatures that activates the antiviral signaling chain to induce IFN. We cloned and functionally characterized RIG-I genes from two species of the suborders Yangochiroptera and Yinpterochiroptera. The bat RIG-Is were conserved in their sequence and domain organization, and similar to human RIG-I in (i) mediating virus- and IFN-activated gene expression, (ii) antiviral signaling, (iii) temperature dependence, and (iv) recognition of RNA ligands. Moreover, RIG-I of Rousettus aegyptiacus (suborder Yinpterochiroptera) and of humans were found to recognize SARS-CoV-2 infection. Thus, members of both bat suborders encode RIG-Is that are comparable to their human counterpart. The ability of bats to harbor zoonotic viruses therefore seems due to other features.


Assuntos
Quirópteros , Receptores do Ácido Retinoico , SARS-CoV-2 , Animais , Humanos , Quirópteros/metabolismo , COVID-19 , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , SARS-CoV-2/fisiologia , Vírus , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo
6.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569418

RESUMO

In alcohol-associated liver disease (ALD), hepatic reductions in vitamin A and perturbations in vitamin A metabolism are common. However, the roles that the vitamin A receptors, termed retinoic acid receptors (RARs), may have in preventing the pathophysiology of ALD remains unclear. Our prior data indicate that a RARß agonist limits the pathology of alcohol-related liver disease. Thus, we generated liver-specific AlbCre-RARß knockout (BKO) mice and compared them to wild type (WT) mice in an early ALD model. Both strains showed similar blood ethanol concentrations and ETOH-metabolizing enzymes. However, the livers of pair-fed-BKO and ETOH-BKO mice developed higher levels of steatosis and triglycerides than pair-fed-WT and ETOH-WT mice. The increased hepatic steatosis observed in the pair-fed-BKO and ETOH-BKO mice was associated with higher lipid synthesis/trafficking transcripts and lower beta-oxidation transcripts. ETOH-BKO mice also exhibited a higher integrated stress response (ISR) signature, including higher transcript and protein levels of ATF4 and its target, 4-EBP1. In human hepatocytes (HepG2) that lack RARß (RARß-KO), ETOH treatments resulted in greater reactive oxygen species compared to their parental cells. Notably, even without ETOH, ATF4 and 4-EBP1 protein levels were higher in the RARß-KO cells than in their parental cells. These 4-EBP1 increases were greatly attenuated in cultured ATF4-deficient and RARß/ATF4-deficient HepG2, suggesting that RARß is a crucial negative regulator of 4-EBP1 through ATF4 in cultured hepatocytes. Here, we identify RARß as a negative regulator of lipid metabolism and cellular stress in ALD.


Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Camundongos , Humanos , Animais , Etanol/toxicidade , Etanol/metabolismo , Vitamina A/metabolismo , Camundongos Knockout , Hepatopatias Alcoólicas/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo
7.
Front Neuroendocrinol ; 71: 101099, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37647946

RESUMO

It is well established that retinoic acid receptors (RARs) function as nuclear receptors that control gene expression in response to binding of the ligand retinoic acid (RA). However, some studies have proposed that RAR-alpha (RARa) controls synaptic plasticity via non-genomic effects outside the nucleus, i.e. effects on mRNA translation of GluA1, a sub-unit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. In order to support this non-genomic mechanism, studies have reported RARa knockout mice or treatment with pharmacological levels of RA and RAR antagonists to propose that RARa is required to control normal synaptic plasticity. A major shortcoming of the non-genomic hypothesis is that there have been no mutational studies showing that RARa can bind the GluA1 mRNA to control GLUA1 protein levels in a non-genomic manner. Also, without a genetic study that removes the endogenous ligand RA, it is impossible to conclude that RARa and its ligand RA control synaptic plasticity through a non-genomic signaling mechanism.


Assuntos
Receptores do Ácido Retinoico , Tretinoína , Camundongos , Animais , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ligantes , Tretinoína/metabolismo , Tretinoína/farmacologia , Receptor alfa de Ácido Retinoico , Plasticidade Neuronal/fisiologia
8.
Mol Carcinog ; 62(12): 1935-1946, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37642311

RESUMO

Cellular retinoic acid binding protein 1 (CRABP1) participates in the regulation of retinoid signaling. Previous studies showed conflicting results regarding the role of CRABP1 in tumor biology, including protumorigenic and tumor-suppressive effects in different types of cancer. Our bioinformatics analyses suggested that CRABP1 expression was downregulated in thyroid cancer. Ectopic expression of CRABP1 in thyroid cancer cells suppressed migratory and invasive activity without affecting cell growth or cell cycle distribution. In transformed normal thyroid follicular epithelial cells, silencing of CRABP1 expression increased invasiveness. Additionally, CRABP1 overexpression was associated with downregulation of the mesenchymal phenotype. Kinase phosphorylation profiling indicated that CRABP1 overexpression was accompanied by a decrease in phosphorylation of epidermal growth factor (EGF) receptor and downstream phosphorylation of Akt, STAT3, and FAK, which were reversed by exogenous EGF treatment. Immunohistochemical analysis of our tissue microarrays revealed an inverse association between CRABP1 expression and disease stage of differentiated thyroid cancer. Taken together, our results suggest that CRABP1 expression is aberrantly lost in thyroid cancer, and this downregulation promotes the epithelial-mesenchymal transition at least partly through modulating EGF receptor signaling.


Assuntos
Fator de Crescimento Epidérmico , Neoplasias da Glândula Tireoide , Humanos , Fator de Crescimento Epidérmico/metabolismo , Regulação para Baixo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo
9.
Adv Exp Med Biol ; 1415: 327-332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440052

RESUMO

The retinoic acid receptor-related orphan receptors (RORs) are ligand-mediated transcription factors with important biological roles in regulating circadian rhythms, metabolism, immunity, angiogenesis, inflammation, and development. They belong to the superfamily of nuclear receptors and include three family members: RORα, RORß, and RORγ. Currently identified ROR ligands include cholesterol and cholesterol derivatives for RORα and RORγ, and stearic acid and all-trans retinoic acid for RORß. Aberrant signaling of the RORs is involved in the pathogenesis of several human diseases including autoimmune diseases, metabolic disorders, and certain cancers. In the eye, RORs regulate normal development of the lens and the retina, and also contribute to potentially blinding eye diseases, especially retinal vascular diseases. Here, we review the role of RORs in eye development and disease to highlight their potential as druggable targets for therapeutic development in retinal vascular and degenerative diseases.


Assuntos
Neoplasias , Receptores do Ácido Retinoico , Humanos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Fatores de Transcrição , Tretinoína , Neoplasias/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares
10.
J Mol Graph Model ; 124: 108539, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37331258

RESUMO

Kaposi sarcoma (KS) is one of the most common AIDS-related malignant neoplasms, which can leave lesions on the skin among HIV patients. These lesions can be treated with 9-cis-retinoic acid (9-cis-RA), an endogenous ligand of retinoic acid receptors that has been FDA-approved for treatment of KS. However, topical application of 9-cis-RA can induce several unpleasant side effects, like headache, hyperlipidemia, and nausea. Hence, alternative therapeutics with less side effects are desirable. There are case reports associating over-the-counter antihistamine usage with regression of KS. Antihistamines competitively bind to H1 receptor and block the action of histamine, best known for being released in response to allergens. Furthermore, there are already dozens of antihistamines that are FDA-approved with less side effects than 9-cis-RA. This led our team to conduct a series of in-silico assays to determine whether antihistamines can activate retinoic acid receptors. First, we utilized high-throughput virtual screening and molecular dynamics simulations to model high-affinity interactions between antihistamines and retinoic acid receptor beta (RARß). We then performed systems genetics analysis to identify a genetic association between H1 receptor itself and molecular pathways involved in KS. Together, these findings advocate for exploration of antihistamines against KS, starting with our two promising hit compounds, bepotastine and hydroxyzine, for experimental validation study in the future.


Assuntos
Infecções por HIV , Simulação de Dinâmica Molecular , Humanos , Receptores Histamínicos H1/genética , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/uso terapêutico , Antagonistas dos Receptores Histamínicos H1/farmacologia , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Alitretinoína , Tretinoína/metabolismo , Tretinoína/farmacologia
11.
Eur J Med Genet ; 66(8): 104802, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321544

RESUMO

BACKGROUND: Definition of the individual genotypes that cause a Mendelian phenotype is of great importance both to clinical diagnostics and disease characterization. Heterozygous de novo gain-of-function missense variants in RARB are associated with syndromic microphthalmia 12 (MCOPS12), a developmental disorder characterized by eye malformations and variable involvement of other organs. A subset of patients were described with poorly delineated movement disorders. Additionally, RARB bi-allelic loss-of-function variants, inherited from asymptomatic heterozygous carrier parents, have been found in a recessive family with four MCOPS12-affected members. PATIENT/METHODS: We used trio whole-exome sequencing to explore the molecular basis of disease in an individual with congenital eye abnormality and movement disorder. All patients with reported RARB variants were reviewed. RESULTS: We report on identification of a heterozygous de novo RARB nonsense variant in a girl with microphthalmia and progressive generalized dystonia. Public database entries indicate that the de novo variant is recurrently present in clinically affected subjects but a literature report has not yet been available. CONCLUSIONS: We provide the first detailed evidence for a role of dominant RARB truncating alterations in congenital eye-brain disease, expanding the spectrum of MCOPS12-associated mutations. Considered together with the published family with bi-allelic variants, the data suggest manifestation and non-manifestation of disease in relation to almost identical RARB loss-of-function variations, an apparent paradox that is seen in a growing number of human genetic conditions associated with both recessive and dominant inheritance patterns.


Assuntos
Distonia , Distúrbios Distônicos , Anormalidades do Olho , Microftalmia , Transtornos dos Movimentos , Feminino , Humanos , Microftalmia/genética , Receptores do Ácido Retinoico/genética
12.
Free Radic Biol Med ; 205: 202-213, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37302616

RESUMO

Acute liver injury (ALI) can progress to severe liver diseases, making its prevention and treatment a focus of research. Retinoic acid (RA) has been shown to have anti-oxidative and iron-regulatory effects on organs. In this study, we investigated the effect of RA on lipopolysaccharide (LPS)-induced ALI in both in vivo and in vitro experiments. We found that RA significantly reduced LPS-induced serum iron and red blood cell-associated disorders, as well as decreased serum ALT and AST levels. RA also reversed the accumulation of non-heme iron and labile iron in LPS-induced mice and hepatocytes by increasing the expression of FTL/H and Fpn. Furthermore, RA inhibited tissue reactive oxygen species (ROS) and malondialdehyde (MDA) production and improved the expression of Nrf2/HO-1/GPX4 in mice and Nrf2 signaling in hepatocytes. In vitro experiments employing RAR agonists and antagonists have revealed that retinoic acid (RA) can effectively inhibit cell ferroptosis induced by lipopolysaccharide (LPS), erastin, and RSL3. The mechanism underlying this inhibition may involve the activation of retinoic acid receptors beta (RARß) and gamma (RARγ). Knocking down the RARß gene in Hepatocytes cells significantly diminished the RA's protective effect, indicating that the anti-ferroptotic role of RA was partially mediated by RARß signaling. Overall, our study demonstrated that RA inhibited ferroptosis-induced liver damage by regulating Nrf2/HO-1/GPX4 and RARß signaling.


Assuntos
Lipopolissacarídeos , Tretinoína , Camundongos , Animais , Tretinoína/farmacologia , Tretinoína/metabolismo , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Fígado/metabolismo , Ferro/metabolismo
14.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239961

RESUMO

HNF4α, a member of the nuclear receptor superfamily, regulates the genes involved in lipid and glucose metabolism. The expression of the RARß gene in the liver of HNF4α knock-out mice was higher versus wildtype controls, whereas oppositely, RARß promoter activity was 50% reduced by the overexpression of HNF4α in HepG2 cells, and treatment with retinoic acid (RA), a major metabolite of vitamin A, increased RARß promoter activity 15-fold. The human RARß2 promoter contains two DR5 and one DR8 binding motifs, as RA response elements (RARE) proximal to the transcription start site. While DR5 RARE1 was previously reported to be responsive to RARs but not to other nuclear receptors, we show here that mutation in DR5 RARE2 suppresses the promoter response to HNF4α and RARα/RXRα. Mutational analysis of ligand-binding pocket amino acids shown to be critical for fatty acid (FA) binding indicated that RA may interfere with interactions of FA carboxylic acid headgroups with side chains of S190 and R235, and the aliphatic group with I355. These results could explain the partial suppression of HNF4α transcriptional activation toward gene promoters that lack RARE, including APOC3 and CYP2C9, while conversely, HNF4α may bind to RARE sequences in the promoter of the genes such as CYP26A1 and RARß, activating these genes in the presence of RA. Thus, RA could act as either an antagonist towards HNF4α in genes lacking RAREs, or as an agonist for RARE-containing genes. Overall, RA may interfere with the function of HNF4α and deregulate HNF4α targets genes, including the genes important for lipid and glucose metabolism.


Assuntos
Fator 4 Nuclear de Hepatócito , Hepatócitos , Receptores do Ácido Retinoico , Tretinoína , Animais , Humanos , Camundongos , Glucose , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Lipídeos , Receptor alfa de Ácido Retinoico/genética , Tretinoína/farmacologia , Receptores do Ácido Retinoico/genética
15.
Hematol Oncol ; 41(4): 784-788, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37132198

RESUMO

Acute promyelocytic leukemia (APL) is a unique subtype of acute myeloid leukemia (AML) which is characterized by specific clinical and biological features. Typical APL cases are caused by PML::RARA fusion gene and are exquisitely sensitive to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). Rarely, APLs are caused by atypical fusions involving RARA or, in fewer cases still, fusions involving other members of the retinoic acid receptors (RARB or RARG). To date, seven partner genes of RARG have been reported in a total of 18 cases of variant APL. Patients with RARG fusions showed distinct clinical resistance to ATRA and had poor outcomes. Here, we report PRPF19 gene as a novel partner of RARG and identify a rare interposition-type gene fusion in a variant APL patient with a rapidly fatal clinical course. The incomplete ligand-binding domain of RARG in the fusion protein may account for the clinical ATRA resistance in this patient. These results broaden the spectrum of variant APL associated molecular aberrations. Accurately and timely identification of these rare gene fusions in variant APL is essential to guide therapeutic decisions.


Assuntos
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Tretinoína , Trióxido de Arsênio/uso terapêutico , Leucemia Mieloide Aguda/genética , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/uso terapêutico , Fatores de Processamento de RNA , Proteínas Nucleares/genética , Enzimas Reparadoras do DNA/uso terapêutico
16.
Genet Med ; 25(8): 100856, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37092537

RESUMO

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Assuntos
Microftalmia , Receptores do Ácido Retinoico , Humanos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Retinoides
17.
J Dent Res ; 102(6): 667-677, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37036085

RESUMO

Retinoid signaling disorders cause craniofacial deformity, among which infants with maternal vitamin A deficiency (VAD) exhibited malformation of the eye, nose, palate, and parietal and jaw bone. Previous research uncovered the pathogenesis of eye defect and cleft palate of VAD in mice, but the studies on craniofacial skeletal deformity met obstacles, and the cell/lineage and underlying mechanism remain unclear. The retinoic acid receptor (RAR) is the key transcription factor in retinoid signaling, but individual knockout cannot simulate pathway inhibition. Here, we conditionally expressed dominant-negative RARα mutation (dnRARα) in osteoblasts to specifically inhibit the transcription activity of RAR in mice, which mimics the craniofacial deformities caused by VAD in clinical cases: hypomineralization of cranial bones, mandibular deformity, and clavicular hypoplasia. Furthermore, we performed 3-dimensional reconstruction based on micro-computed tomography and confirmed the abnormalities in the shape, size, and ossification of craniofacial bones due to osteoblastic RAR inhibition. Histological analysis indicated that inhibition of RAR in osteoblasts impaired both bone formation and bone resorption, which was confirmed by transcriptome sequencing of the calvaria. Furthermore, mechanism investigation showed that inhibition of RAR in osteoblasts directly decreased osteoblast differentiation in a cell-autonomous manner by impairing osteogenic gene transcription and also inhibited osteoclast differentiation via osteoblast-osteoclast crosstalk by impairing Rankl transcription. In summary, osteoblastic RAR activity is critical to craniofacial skeletal development, and its dysfunction leads to skeletal deformities mimicking VAD craniofacial defects, providing a new insight for VAD pathogenesis.


Assuntos
Deficiência de Vitamina A , Camundongos , Animais , Microtomografia por Raio-X , Receptores do Ácido Retinoico/genética , Crânio , Osteoblastos , Retinoides
18.
Front Immunol ; 14: 1107239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063830

RESUMO

Phospholipase A and acyltransferase (PLAAT) 4 is a class II tumor suppressor with phospholipid metabolizing abilities. It was characterized in late 2000s, and has since been referred to as 'tazarotene-induced gene 3' (TIG3) or 'retinoic acid receptor responder 3' (RARRES3) as a key downstream effector of retinoic acid signaling. Two decades of research have revealed the complexity of its function and regulatory roles in suppressing tumorigenesis. However, more recent findings have also identified PLAAT4 as a key anti-microbial effector enzyme acting downstream of interferon regulatory factor 1 (IRF1) and interferons (IFNs), favoring protection from virus and parasite infections. Unveiling the molecular mechanisms underlying its action may thus open new therapeutic avenues for the treatment of both cancer and infectious diseases. Herein, we aim to summarize a brief history of PLAAT4 discovery, its transcriptional regulation, and the potential mechanisms in tumor prevention and anti-pathogen defense, and discuss potential future directions of PLAAT4 research toward the development of therapeutic approaches targeting this enzyme with pleiotropic functions.


Assuntos
Genes Supressores de Tumor , Receptores do Ácido Retinoico , Receptores do Ácido Retinoico/genética , Tretinoína , Aciltransferases/genética , Fosfolipases/genética
19.
J Natl Cancer Inst ; 115(7): 838-852, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37040084

RESUMO

BACKGROUND: Adenoid cystic carcinoma (ACC) is a lethal malignancy of exocrine glands, characterized by the coexistence within tumor tissues of 2 distinct populations of cancer cells, phenotypically similar to the myoepithelial and ductal lineages of normal salivary epithelia. The developmental relationship linking these 2 cell types, and their differential vulnerability to antitumor treatments, remains unknown. METHODS: Using single-cell RNA sequencing, we identified cell-surface markers (CD49f, KIT) that enabled the differential purification of myoepithelial-like (CD49fhigh/KITneg) and ductal-like (CD49flow/KIT+) cells from patient-derived xenografts (PDXs) of human ACCs. Using prospective xenotransplantation experiments, we compared the tumor-initiating capacity of the 2 cell types and tested whether one could differentiate into the other. Finally, we searched for signaling pathways with differential activation between the 2 cell types and tested their role as lineage-specific therapeutic targets. RESULTS: Myoepithelial-like cells displayed higher tumorigenicity than ductal-like cells and acted as their progenitors. Myoepithelial-like and ductal-like cells displayed differential expression of genes encoding for suppressors and activators of retinoic acid signaling, respectively. Agonists of retinoic acid receptor (RAR) or retinoid X receptor (RXR) signaling (all-trans retinoic acid, bexarotene) promoted myoepithelial-to-ductal differentiation, whereas suppression of RAR/RXR signaling with a dominant-negative RAR construct abrogated it. Inverse agonists of RAR/RXR signaling (BMS493, AGN193109) displayed selective toxicity against ductal-like cells and in vivo antitumor activity against PDX models of human ACC. CONCLUSIONS: In human ACCs, myoepithelial-like cells act as progenitors of ductal-like cells, and myoepithelial-to-ductal differentiation is promoted by RAR/RXR signaling. Suppression of RAR/RXR signaling is lethal to ductal-like cells and represents a new therapeutic approach against human ACCs.


Assuntos
Antineoplásicos , Carcinoma Adenoide Cístico , Receptores do Ácido Retinoico , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Adenoide Cístico/tratamento farmacológico , Agonismo Inverso de Drogas , Estudos Prospectivos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides , Tretinoína
20.
Brain ; 146(8): 3455-3469, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36928982

RESUMO

Neural tube defects are the most severe congenital malformations that result from failure of neural tube closure during early embryonic development, and the underlying molecular mechanisms remain elusive. Retinoic acid, an active derivative of vitamin A, is critical for neural system development, and retinoic acid receptor (RAR) signalling malfunctions have been observed in human neural tube defects. However, retinoic acid-retinoic acid receptor signalling regulation and mechanisms in neural tube defects are not fully understood. The mRNA expression of RARs and retinoid X receptors in the different human neural tube defect phenotypes, including 11 pairs of anencephaly foetuses, 10 pairs of hydrocephalus foetuses and nine pairs of encephalocele foetuses, was investigated by NanoString nCounter technology. Immunoprecipitation-mass spectrometry was performed to screen the potential interacting targets of retinoic acid receptor γ. The interactions between proteins were confirmed by co-immunoprecipitation and immunofluorescence laser confocal microscopy. Luciferase and chromatin immunoprecipitation with quantitative real-time polymerase chain reaction assays were used to clarify the underlying mechanism. Moreover, a neural tube defect animal model, constructed using excess retinoic acid, was used for further analysis with established molecular biology technologies. We report that level of retinoic acid receptor γ (RARγ) mRNA was significantly upregulated in the brain tissues of human foetuses with anencephaly. To further understand the actions of retinoic acid receptor γ in neural tube defects, methylenetetrahydrofolate dehydrogenase 1 was identified as a specific retinoic acid receptor γ target from IP-MS screening. Additionally, methylenetetrahydrofolate dehydrogenase 1 negatively regulated retinoic acid receptor γ transcription factor activity. Furthermore, low expression of methylenetetrahydrofolate dehydrogenase 1 and activation of retinoic acid receptor signalling were further determined in human anencephaly and a retinoic acid-induced neural tube defect mouse model. This study reveals that methylenetetrahydrofolate dehydrogenase 1, the rate-determining enzyme in the one-carbon cycle, might be a specific regulator of retinoic acid receptors; these findings provide new insights into the functional linkage between nuclear folate metabolism and retinoic acid receptor signalling in neural tube defect pathology.


Assuntos
Anencefalia , Defeitos do Tubo Neural , Camundongos , Gravidez , Animais , Feminino , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/efeitos adversos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Tretinoína/efeitos adversos , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , RNA Mensageiro , Antígenos de Histocompatibilidade Menor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...