Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.686
Filtrar
1.
Vet Microbiol ; 295: 110164, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936155

RESUMO

The membrane-associated RING-CH (MARCH) family of proteins are members of the E3 ubiquitin ligase family and are essential for a variety of biological functions. Currently, MARCH proteins are discovered to execute antiviral functions by directly triggering viral protein degradation or blocking the furin cleavage of viral class I fusion proteins. Here, we report a novel antiviral mechanism of MARCH1 and MARCH2 (MARCH1/2) in the replication of Pseudorabies virus (PRV), a member of the Herpesviridae family. We discovered MARCH1/2 restrict PRV replication at the cell-to-cell fusion step. Furthermore, MARCH1/2 block gB cleavage, and this is dependent on their E3 ligase activity. Interestingly, the blocking of gB cleavage by MARCH1/2 does not contribute to their antiviral activity in vitro. We discovered that MARCH1/2 are associated with the cell-to-cell fusion complex of gB, gD, gH, and gL and trap these viral proteins in the trans-Golgi network (TGN) rather than degrading them. Overall, we conclude that MARCH1/2 inhibit PRV by trapping the viral cell-to-cell fusion complex in TGN.


Assuntos
Herpesvirus Suídeo 1 , Ubiquitina-Proteína Ligases , Replicação Viral , Rede trans-Golgi , Herpesvirus Suídeo 1/fisiologia , Animais , Rede trans-Golgi/virologia , Rede trans-Golgi/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fusão Celular , Suínos , Linhagem Celular , Humanos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Células HEK293 , Pseudorraiva/virologia
2.
Arch Biochem Biophys ; 758: 110049, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879142

RESUMO

Formation of transport vesicles requires the coordinate activity of the coating machinery that selects cargo into the nascent vesicle and the membrane bending machinery that imparts curvature to the forming bud. Vesicle coating at the trans-Golgi Network (TGN) involves AP1, GGA2 and clathrin, which are recruited to membranes by activated ARF GTPases. The ARF activation at the TGN is mediated by the BIG1 and BIG2 guanine nucleotide exchange factors (GEFs). Membrane deformation at the TGN has been shown to be mediated by lipid flippases, including ATP8A1, that moves phospholipids from the inner to the outer leaflet of the TGN membrane. We probed a possible coupling between the coating and deformation machineries by testing for an interaction between BIG1, BIG2 and ATP8A1, and by assessing whether such an interaction may influence coating efficiency. Herein, we document that BIG1 and BIG2 co-localize with ATP8A1 in both, static and highly mobile TGN elements, and that BIG1 and BIG2 bind ATP8A1. We show that the interaction involves the catalytic Sec7 domain of the GEFs and the cytosolic C-terminal tail of ATP8A1. Moreover, we report that the expression of ATP8A1, but not ATP8A1 lacking the GEF-binding cytosolic tail, increases the generation of activated ARFs at the TGN and increases the selective recruitment of AP1, GGA2 and clathrin to TGN membranes. This occurs without increasing BIG1 or BIG2 levels at the TGN, suggesting that the binding of the ATP8A1 flippase tail to the Sec7 domain of BIG1/BIG2 increases their catalytic activity. Our results support a model in which a flippase component of the deformation machinery impacts the activity of the GEF component of the coating machinery.


Assuntos
Fatores de Ribosilação do ADP , Fatores de Troca do Nucleotídeo Guanina , Rede trans-Golgi , Rede trans-Golgi/metabolismo , Humanos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Adenosina Trifosfatases/metabolismo , Células HeLa , Ligação Proteica , Proteínas de Membrana , Proteínas de Transferência de Fosfolipídeos
3.
PLoS Pathog ; 20(6): e1012289, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829892

RESUMO

During entry, human papillomavirus (HPV) traffics from the endosome to the trans Golgi network (TGN) and Golgi and then the nucleus to cause infection. Although dynein is thought to play a role in HPV infection, how this host motor recruits the virus to support infection and which entry step(s) requires dynein are unclear. Here we show that the dynein cargo adaptor BICD2 binds to the HPV L2 capsid protein during entry, recruiting HPV to dynein for transport of the virus along the endosome-TGN/Golgi axis to promote infection. In the absence of BICD2 function, HPV accumulates in the endosome and TGN and infection is inhibited. Cell-based and in vitro binding studies identified a short segment near the C-terminus of L2 that can directly interact with BICD2. Our results reveal the molecular basis by which the dynein motor captures HPV to promote infection and identify this virus as a novel cargo of the BICD2 dynein adaptor.


Assuntos
Proteínas do Capsídeo , Papillomavirus Humano 16 , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Proteínas do Capsídeo/metabolismo , Papillomavirus Humano 16/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Dineínas/metabolismo , Endossomos/metabolismo , Endossomos/virologia , Rede trans-Golgi/metabolismo , Rede trans-Golgi/virologia , Internalização do Vírus , Ligação Proteica , Células HeLa , Proteínas Associadas aos Microtúbulos/metabolismo , Dineínas do Citoplasma/metabolismo
4.
Cell Rep ; 43(4): 114070, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583156

RESUMO

Nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome hyperactivation contributes to many human chronic inflammatory diseases, and understanding how NLRP3 inflammasome is regulated can provide strategies to treat inflammatory diseases. Here, we demonstrate that NLRP3 Cys126 is palmitoylated by zinc finger DHHC-type palmitoyl transferase 7 (ZDHHC7), which is critical for NLRP3-mediated inflammasome activation. Perturbing NLRP3 Cys126 palmitoylation by ZDHHC7 knockout, pharmacological inhibition, or modification site mutation diminishes NLRP3 activation in macrophages. Furthermore, Cys126 palmitoylation is vital for inflammasome activation in vivo. Mechanistically, ZDHHC7-mediated NLRP3 Cys126 palmitoylation promotes resting NLRP3 localizing on the trans-Golgi network (TGN) and activated NLRP3 on the dispersed TGN, which is indispensable for recruitment and oligomerization of the adaptor ASC (apoptosis-associated speck-like protein containing a CARD). The activation of NLRP3 by ZDHHC7 is different from the termination effect mediated by ZDHHC12, highlighting versatile regulatory roles of S-palmitoylation. Our study identifies an important regulatory mechanism of NLRP3 activation that suggests targeting ZDHHC7 or the NLRP3 Cys126 residue as a potential therapeutic strategy to treat NLRP3-related human disorders.


Assuntos
Acetiltransferases , Aciltransferases , Cisteína , Inflamassomos , Lipoilação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aciltransferases/metabolismo , Humanos , Animais , Cisteína/metabolismo , Camundongos , Células HEK293 , Camundongos Endogâmicos C57BL , Rede trans-Golgi/metabolismo , Macrófagos/metabolismo
5.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38558238

RESUMO

Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the previously identified interactome of the Transport Protein Particle II (TRAPPII) complex required for TGN structure and function. We identified physical and genetic interactions between AtTRAPPII and shaggy-like kinases (GSK3/AtSKs) and provided in vitro and in vivo evidence that the TRAPPII phosphostatus mediates adaptive responses to abiotic cues. AtSKs are multifunctional kinases that integrate a broad range of signals. Similarly, the AtTRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fosforilação , Transporte Proteico , Rede trans-Golgi/metabolismo , Proteínas de Transporte/metabolismo
6.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578286

RESUMO

The AP-1 adaptor complex is found in all eukaryotes, but it has been implicated in different pathways in different organisms. To look directly at AP-1 function, we generated stably transduced HeLa cells coexpressing tagged AP-1 and various tagged membrane proteins. Live cell imaging showed that AP-1 is recruited onto tubular carriers trafficking from the Golgi apparatus to the plasma membrane, as well as onto transferrin-containing early/recycling endosomes. Analysis of single AP-1 vesicles showed that they are a heterogeneous population, which starts to sequester cargo 30 min after exit from the ER. Vesicle capture showed that AP-1 vesicles contain transmembrane proteins found at the TGN and early/recycling endosomes, as well as lysosomal hydrolases, but very little of the anterograde adaptor GGA2. Together, our results support a model in which AP-1 retrieves proteins from post-Golgi compartments back to the TGN, analogous to COPI's role in the early secretory pathway. We propose that this is the function of AP-1 in all eukaryotes.


Assuntos
Complexo de Golgi , Proteínas de Membrana , Transporte Proteico , Fator de Transcrição AP-1 , Humanos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Endossomos/genética , Endossomos/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Células HeLa , Proteínas de Membrana/metabolismo , Rede trans-Golgi/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
7.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38652246

RESUMO

The regulation of intracellular membrane traffic is coupled with the cell's need to respond to environmental stimuli, which ultimately is critical for different processes such as cell growth and development. In this issue, Wiese et al. (https://www.doi.org/10.1083/jcb.202311125) explore the role of the trans-Golgi network (TGN) in stress response, exposing its role in mediating adaptive growth decisions.


Assuntos
Proteínas de Plantas , Proteínas de Transporte Vesicular , Rede trans-Golgi , Adaptação Fisiológica , Proteínas de Plantas/metabolismo , Plantas , Estresse Fisiológico , Rede trans-Golgi/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
Cell Mol Biol Lett ; 29(1): 54, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627612

RESUMO

BACKGROUND: The trafficking of cargoes from endosomes to the trans-Golgi network requires numerous sequential and coordinated steps. Cargoes are sorted into endosomal-derived carriers that are transported, tethered, and fused to the trans-Golgi network. The tethering step requires several complexes, including the Golgi-associated retrograde protein complex, whose localization at the trans-Golgi network is determined by the activity of small GTPases of the Arl and Rab family. However, how the Golgi-associated retrograde protein complex recognizes the endosome-derived carriers that will fuse with the trans-Golgi network is still unknown. METHODS: We studied the retrograde trafficking to the trans-Golgi network by using fluorescent cargoes in cells overexpressing Rab4b or after Rab4b knocked-down by small interfering RNA in combination with the downregulation of subunits of the Golgi-associated retrograde protein complex. We used immunofluorescence and image processing (Super Resolution Radial Fluctuation and 3D reconstruction) as well as biochemical approaches to characterize the consequences of these interventions on cargo carriers trafficking. RESULTS: We reported that the VPS52 subunit of the Golgi-associated retrograde protein complex is an effector of Rab4b. We found that overexpression of wild type or active Rab4b increased early endosomal to trans-Golgi network retrograde trafficking of the cation-independent mannose-6-phosphate receptor in a Golgi-associated retrograde protein complex-dependent manner. Conversely, overexpression of an inactive Rab4b or Rab4b knockdown attenuated this trafficking. In the absence of Rab4b, the internalized cation-independent mannose 6 phosphate receptor did not have access to VPS52-labeled structures that look like endosomal subdomains and/or endosome-derived carriers, and whose subcellular distribution is Rab4b-independent. Consequently, the cation-independent mannose-6-phosphate receptor was blocked in early endosomes and no longer had access to the trans-Golgi network. CONCLUSION: Our results support that Rab4b, by controlling the sorting of the cation-independent mannose-6-phosphate receptor towards VPS52 microdomains, confers a directional specificity for cargo carriers en route to the trans-Golgi network. Given the importance of the endocytic recycling in cell homeostasis, disruption of the Rab4b/Golgi-associated retrograde protein complex-dependent step could have serious consequences in pathologies.


Assuntos
Receptor IGF Tipo 2 , Rede trans-Golgi , Cátions/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Receptor IGF Tipo 2/metabolismo , Rede trans-Golgi/metabolismo
9.
Mol Biol Cell ; 35(5): ar61, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446634

RESUMO

Neurons are polarized cells that require accurate membrane trafficking to maintain distinct protein complements at dendritic and axonal membranes. The Kinesin-3 family members KIF13A and KIF13B are thought to mediate dendrite-selective transport, but the mechanism by which they are recruited to polarized vesicles and the differences in the specific trafficking role of each KIF13 have not been defined. We performed live-cell imaging in cultured hippocampal neurons and found that KIF13A is a dedicated dendrite-selective kinesin. KIF13B confers two different transport modes, dendrite- and axon-selective transport. Both KIF13s are maintained at the trans-Golgi network by interactions with the heterotetrameric adaptor protein complex AP-1. Interference with KIF13 binding to AP-1 resulted in disruptions to both dendrite- and axon-selective trafficking. We propose that AP-1 is the molecular link between the sorting of polarized cargoes into vesicles and the recruitment of kinesins that confer polarized transport.


Assuntos
Complexo 1 de Proteínas Adaptadoras , Complexo de Golgi , Cinesinas , Rede trans-Golgi , Células Cultivadas , Complexo de Golgi/metabolismo , Cinesinas/metabolismo , Neurônios/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Complexo 1 de Proteínas Adaptadoras/metabolismo , Rede trans-Golgi/metabolismo
10.
Elife ; 122024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466628

RESUMO

Secretory proteins are sorted at the trans-Golgi network (TGN) for export into specific transport carriers. However, the molecular players involved in this fundamental process remain largely elusive. Here, we identified the human transmembrane protein TGN46 as a receptor for the export of secretory cargo protein PAUF in CARTS - a class of protein kinase D-dependent TGN-to-plasma membrane carriers. We show that TGN46 is necessary for cargo sorting and loading into nascent carriers at the TGN. By combining quantitative fluorescence microscopy and mutagenesis approaches, we further discovered that the lumenal domain of TGN46 encodes for its cargo sorting function. In summary, our results define a cellular function of TGN46 in sorting secretory proteins for export from the TGN.


Assuntos
Proteínas de Membrana , Rede trans-Golgi , Humanos , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Rede trans-Golgi/metabolismo
11.
Elife ; 132024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501165

RESUMO

Cargo traffic through the Golgi apparatus is mediated by cisternal maturation, but it remains largely unclear how the cis-cisternae, the earliest Golgi sub-compartment, is generated and how the Golgi matures into the trans-Golgi network (TGN). Here, we use high-speed and high-resolution confocal microscopy to analyze the spatiotemporal dynamics of a diverse set of proteins that reside in and around the Golgi in budding yeast. We find many mobile punctate structures that harbor yeast counterparts of mammalian endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) proteins, which we term 'yeast ERGIC'. It occasionally exhibits approach and contact behavior toward the ER exit sites and gradually matures into the cis-Golgi. Upon treatment with the Golgi-disrupting agent brefeldin A, the ERGIC proteins form larger aggregates corresponding to the Golgi entry core compartment in plants, while cis- and medial-Golgi proteins are absorbed into the ER. We further analyze the dynamics of several late Golgi proteins to better understand the Golgi-TGN transition. Together with our previous studies, we demonstrate a detailed spatiotemporal profile of the entire cisternal maturation process from the ERGIC to the Golgi and further to the TGN.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Animais , Saccharomyces cerevisiae/metabolismo , Complexo de Golgi/metabolismo , Rede trans-Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Mamíferos
12.
Mol Biol Cell ; 35(4): ar56, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381558

RESUMO

Tepsin is an established accessory protein found in Adaptor Protein 4 (AP-4) coated vesicles, but the biological role of tepsin remains unknown. AP-4 vesicles originate at the trans-Golgi network (TGN) and target the delivery of ATG9A, a scramblase required for autophagosome biogenesis, to the cell periphery. Using in silico methods, we identified a putative LC3-Interacting Region (LIR) motif in tepsin. Biochemical experiments using purified recombinant proteins indicate tepsin directly binds LC3B preferentially over other members of the mammalian ATG8 family. Calorimetry and structural modeling data indicate this interaction occurs with micromolar affinity using the established LC3B LIR docking site. Loss of tepsin in cultured cells dysregulates ATG9A export from the TGN as well as ATG9A distribution at the cell periphery. Tepsin depletion in a mRFP-GFP-LC3B HeLa reporter cell line using siRNA knockdown increases autophagosome volume and number, but does not appear to affect flux through the autophagic pathway. Reintroduction of wild-type tepsin partially rescues ATG9A cargo trafficking defects. In contrast, reintroducing tepsin with a mutated LIR motif or missing N-terminus drives diffuse ATG9A subcellular distribution. Together, these data suggest roles for tepsin in cargo export from the TGN; ensuring delivery of ATG9A-positive vesicles; and in overall maintenance of autophagosome structure.


Assuntos
Autofagossomos , Autofagia , Animais , Humanos , Autofagossomos/metabolismo , Autofagia/genética , Rede trans-Golgi/metabolismo , Células HeLa , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mamíferos/metabolismo
13.
J Biol Chem ; 300(3): 105700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307383

RESUMO

Selective retrograde transport from endosomes back to the trans-Golgi network (TGN) is important for maintaining protein homeostasis, recycling receptors, and returning molecules that were transported to the wrong compartments. Two important transmembrane proteins directed to this pathway are the Cation-Independent Mannose-6-phosphate receptor (CI-MPR) and the ATP7B copper transporter. Among CI-MPR functions is the delivery of acid hydrolases to lysosomes, while ATP7B facilitates the transport of cytosolic copper ions into organelles or the extracellular space. Precise subcellular localization of CI-MPR and ATP7B is essential for the proper functioning of these proteins. This study shows that both CI-MPR and ATP7B interact with a variant of the clathrin adaptor 1 (AP-1) complex that contains a specific isoform of the γ-adaptin subunit called γ2. Through synchronized anterograde trafficking and cell-surface uptake assays, we demonstrated that AP-1γ2 is dispensable for ATP7B and CI-MPR exit from the TGN while being critically required for ATP7B and CI-MPR retrieval from endosomes to the TGN. Moreover, AP-1γ2 depletion leads to the retention of endocytosed CI-MPR in endosomes enriched in retromer complex subunits. These data underscore the importance of AP-1γ2 as a key component in the sorting and trafficking machinery of CI-MPR and ATP7B, highlighting its essential role in the transport of proteins from endosomes.


Assuntos
Complexo 1 de Proteínas Adaptadoras , ATPases Transportadoras de Cobre , Endossomos , Transporte Proteico , Receptor IGF Tipo 2 , Rede trans-Golgi , Humanos , Endossomos/metabolismo , Células HeLa , Transporte Proteico/genética , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo
14.
Nanoscale ; 16(12): 6017-6032, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38410045

RESUMO

Previous studies have shown that ultrasound may stimulate the release of extracellular vesicles, improving the efficiency of tumor detection. However, it is unclear whether ultrasonic stimulation affects the distribution of extracellular vesicles, and the duration of such stimulation release has not been extensively studied. In this study, we stimulated cells with low-intensity pulsed ultrasound and used liposomes containing black hole quenchers to simulate natural extracellular vesicles, confirming that ultrasound has a destructive effect on vesicles and thus affects particle size distribution. Furthermore, we used proteomics technology to examine the protein expression profile of small vesicles and discovered that the expression of proteins involved in exosome biogenesis was down-regulated. We then looked into the regulation of the actin cytoskeleton and endocytosis pathways, which are required for intracellular vesicle transport, and discovered that ultrasound might induce F-actin depolymerization. The intracellular transport of the cation-independent mannose-6-phosphate receptor (CI-MPR) in the trans-Golgi network (TGN) and the amount of Rab7a protein were proportional to the culture time after LIPUS treatment.


Assuntos
Vesículas Extracelulares , Rede trans-Golgi , Rede trans-Golgi/metabolismo , Transporte Biológico , Actinas/metabolismo , RNA Interferente Pequeno/metabolismo , Vesículas Extracelulares/metabolismo
15.
Nat Commun ; 15(1): 220, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212328

RESUMO

Stimulator of interferon genes (STING) is critical for the type I interferon response to pathogen- or self-derived DNA in the cytosol. STING may function as a scaffold to activate TANK-binding kinase 1 (TBK1), but direct cellular evidence remains lacking. Here we show, using single-molecule imaging of STING with enhanced time resolutions down to 5 ms, that STING becomes clustered at the trans-Golgi network (about 20 STING molecules per cluster). The clustering requires STING palmitoylation and the Golgi lipid order defined by cholesterol. Single-molecule imaging of TBK1 reveals that STING clustering enhances the association with TBK1. We thus provide quantitative proof-of-principle for the signaling STING scaffold, reveal the mechanistic role of STING palmitoylation in the STING activation, and resolve the long-standing question of the requirement of STING translocation for triggering the innate immune signaling.


Assuntos
Lipoilação , Rede trans-Golgi , Rede trans-Golgi/metabolismo , Microscopia , Imagem Individual de Molécula , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Colesterol , Análise por Conglomerados , Imunidade Inata
16.
Food Chem Toxicol ; 185: 114431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176581

RESUMO

Humans are usually exposed to nicotine through the use of tobacco products. Although it is generally believed that nicotine is relatively harmless in tobacco consumption, it is, in fact, a toxic substance that warrants careful consideration of its potential toxicity. However, the current understanding of the neurotoxicity of nicotine is still very limited. In this study, we aim to reveal the toxic risk of nicotine to key target neuronal cells and its potential toxic mechanisms. The results showed that nicotine induced cell death, ROS increase, mitochondrial membrane potential decrease, and DNA damage in SH-SY5Y human neuroblastoma cells at millimolar concentrations, but did not cause toxic effects at the physiological concentration. These toxic effects were accompanied by cytoplasmic vacuolation. The inhibition of cytoplasmic vacuolation by bafilomycin A1 greatly reduced nicotine-induced cell death, indicating that cytoplasmic vacuolation is the key driving factor of cell death. These cytoplasmic vacuoles originated from the trans-Golgi network (TGN) and expressed microtubule-associated protein 1 light chain 3-II (LC3-II) and lysosomal associated membrane protein 1(LAMP1). The presence of LC3-II and LAMP1 within these vacuoles serves as evidence of compromised TGN structure and function. These findings provide valuable new insights into the potential neurotoxic risk and mechanisms of nicotine.


Assuntos
Neuroblastoma , Nicotina , Humanos , Nicotina/toxicidade , Linhagem Celular Tumoral , Rede trans-Golgi , Morte Celular
17.
Biochem Biophys Res Commun ; 695: 149480, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215552

RESUMO

Here, we report that human lactoferrin (hLF), known for its anticancer properties, induced intracellular activation of the Na+/H+ exchanger (NHE) 7 in human lung cancer PC-9 cells. Compared to non-fused hLF, the fusion of human serum albumin (HSA) with hLF (hLF-HSA) facilitated its internalization into PC-9 cells in a caveolae-mediated manner, thereby exhibiting enhanced anti-proliferative effects. Although hLF alone did not exhibit any discernible effects, hLF-HSA resulted in organelle alkalization as detected using an acidotropic pH indicator. hLF-HSA-induced elevation of organelle pH and inhibition of cancer growth were abolished by NHE7 siRNA. hLF-HSA upregulated NHE7. Thus, upon cellular uptake, hLF-HSA triggers proton leakage through the upregulation of NHE7. This process led to organelle alkalization, probably in the trans-Golgi network (TGN) as suggested by the localization of NHE7 in PC-9 cells, thereby suppressing lung cancer cell growth. Forcing the cellular uptake of hLF alone using a caveolae-mediated endocytosis activator led to an increase in organelle pH. Furthermore, cell entry of hLF also activated proton-loading NHE7, leading to organelle acidification in the pancreatic cancer cell line MIA PaCa-2. Therefore, the intracellularly delivered hLF functions as an activator of NHE7.


Assuntos
Lactoferrina , Neoplasias Pulmonares , Trocadores de Sódio-Hidrogênio , Humanos , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Neoplasias Pulmonares/metabolismo , Prótons , Trocadores de Sódio-Hidrogênio/metabolismo , Rede trans-Golgi/metabolismo
18.
Mol Biol Cell ; 35(4): ar50, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294859

RESUMO

Ca2+ influx into the trans-Golgi Network (TGN) promotes secretory cargo sorting by the Ca2+-ATPase SPCA1 and the luminal Ca2+ binding protein Cab45. Cab45 oligomerizes upon local Ca2+ influx, and Cab45 oligomers sequester and separate soluble secretory cargo from the bulk flow of proteins in the TGN. However, how this Ca2+ flux into the lumen of the TGN is achieved remains mysterious, as the cytosol has a nanomolar steady-state Ca2+ concentration. The TGN forms membrane contact sites (MCS) with the Endoplasmic Reticulum (ER), allowing protein-mediated exchange of molecular species such as lipids. Here, we show that the TGN export of secretory proteins requires the integrity of ER-TGN MCS and inositol 3 phosphate receptor (IP3R)-dependent Ca2+ fluxes in the MCS, suggesting Ca2+ transfer between these organelles. Using an MCS-targeted Ca2+ FRET sensor module, we measure the Ca2+ flow in these sites in real time. These data show that ER-TGN MCS facilitates the Ca2+ transfer required for Ca2+-dependent cargo sorting and export from the TGN, thus solving a fundamental question in cell biology.


Assuntos
Cálcio , Rede trans-Golgi , Cálcio/metabolismo , Rede trans-Golgi/metabolismo , Transporte Biológico , Transporte Proteico , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Proteínas de Transporte/metabolismo
19.
Plant Physiol ; 194(2): 1166-1180, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878763

RESUMO

Calcium (Ca2+) is a major ion in living organisms, where it acts as a second messenger for various biological phenomena. The Golgi apparatus retains a higher Ca2+ concentration than the cytosol and returns cytosolic Ca2+ to basal levels after transient elevation in response to environmental stimuli such as osmotic stress. However, the Ca2+ transporters localized in the Golgi apparatus of plants have not been clarified. We previously found that a wild-type (WT) salt-tolerant Arabidopsis (Arabidopsis thaliana) accession, Bu-5, showed osmotic tolerance after salt acclimatization, whereas the Col-0 WT did not. Here, we isolated a Bu-5 background mutant gene, acquired osmotolerance-defective 6 (aod6), which reduces tolerance to osmotic, salt, and oxidative stresses, with a smaller plant size than the WT. The causal gene of the aod6 mutant encodes CATION CALCIUM EXCHANGER4 (CCX4). The aod6 mutant was more sensitive than the WT to both deficient and excessive Ca2+. In addition, aod6 accumulated higher Ca2+ than the WT in the shoots, suggesting that Ca2+ homeostasis is disturbed in aod6. CCX4 expression suppressed the Ca2+ hypersensitivity of the csg2 (calcium sensitive growth 2) yeast (Saccharomyces cerevisiae) mutant under excess CaCl2 conditions. We also found that aod6 enhanced MAP kinase 3/6 (MPK3/6)-mediated immune responses under osmotic stress. Subcellular localization analysis of mGFP-CCX4 showed GFP signals adjacent to the trans-Golgi apparatus network and co-localization with Golgi apparatus-localized markers, suggesting that CCX4 localizes in the Golgi apparatus. These results suggest that CCX4 is a Golgi apparatus-localized transporter involved in the Ca2+ response and plays important roles in osmotic tolerance, shoot Ca2+ content, and normal growth of Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Rede trans-Golgi/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo
20.
PLoS Pathog ; 19(12): e1011822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38055775

RESUMO

The advances in gene editing bring unprecedented opportunities in high throughput functional genomics to animal research. Here we describe a genome wide CRISPR knockout library, btCRISPRko.v1, targeting all protein coding genes in the cattle genome. Using it, we conducted genome wide screens during Bovine Herpes Virus type 1 (BoHV-1) replication and compiled a list of pro-viral and anti-viral candidates. These candidates might influence multiple aspects of BoHV-1 biology such as viral entry, genome replication and transcription, viral protein trafficking and virion maturation in the cytoplasm. Some of the most intriguing examples are VPS51, VPS52 and VPS53 that code for subunits of two membrane tethering complexes, the endosome-associated recycling protein (EARP) complex and the Golgi-associated retrograde protein (GARP) complex. These complexes mediate endosomal recycling and retrograde trafficking to the trans Golgi Network (TGN). Simultaneous loss of both complexes in MDBKs resulted in greatly reduced production of infectious BoHV-1 virions. We also found that viruses released by these deficient cells severely lack VP8, the most abundant tegument protein of BoHV-1 that are crucial for its virulence. In combination with previous reports, our data suggest vital roles GARP and EARP play during viral protein packaging and capsid re-envelopment in the cytoplasm. It also contributes to evidence that both the TGN and the recycling endosomes are recruited in this process, mediated by these complexes. The btCRISPRko.v1 library generated here has been controlled for quality and shown to be effective in host gene discovery. We hope it will facilitate efforts in the study of other pathogens and various aspects of cell biology in cattle.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endossomos , Animais , Bovinos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...