Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 18(1): 223, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28274201

RESUMO

BACKGROUND: Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective. In this work, we used HMMER iterative profiling and phylogenetic and functional analyses to determine the number and sequence characteristics of algal DGAT and PDAT, as well as related sequences that constitute their corresponding superfamilies. We included most algae with available genomes, as well as representative eukaryotic and prokaryotic species. RESULTS: Amongst our main findings, we identified a novel clade of DGAT1-like proteins exclusive to red algae and glaucophyta and a previously uncharacterized subclade of DGAT2 proteins with an unusual number of transmembrane segments. Our analysis also revealed the existence of a novel DGAT exclusive to green algae with moderate similarity to plant soluble DGAT3. The DGAT3 clade shares a most recent ancestor with a group of uncharacterized proteins from cyanobacteria. Subcellular targeting prediction suggests that most green algal DGAT3 proteins are imported to the chloroplast, evidencing that the green algal chloroplast might have a soluble pathway for the de novo synthesis of TAGs. Heterologous expression of C. reinhardtii DGAT3 produces an increase in the accumulation of TAG, as evidenced by thin layer chromatography. CONCLUSIONS: Our analysis contributes to advance in the knowledge of complex superfamilies involved in lipid metabolism and provides clues to possible enzymatic players of chloroplast TAG synthesis.


Assuntos
Clorófitas/metabolismo , Cloroplastos/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Redes e Vias Metabólicas , Triglicerídeos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Clorófitas/classificação , Clorófitas/genética , Cloroplastos/genética , Biologia Computacional/métodos , Simulação por Computador , Sequência Conservada , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/genética , Evolução Molecular , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Redes e Vias Metabólicas/ética , Filogenia , Matrizes de Pontuação de Posição Específica , Triglicerídeos/biossíntese
2.
Metab Eng ; 38: 170-179, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27481676

RESUMO

Trans-acting regulators provide novel opportunities to study essential genes and regulate metabolic pathways. We have adapted the clustered regularly interspersed palindromic repeats (CRISPR) system from Streptococcus pyogenes to repress genes in trans in the cyanobacterium Synechococcus sp. strain PCC 7002 (hereafter PCC 7002). With this approach, termed CRISPR interference (CRISPRi), transcription of a specific target sequence is repressed by a catalytically inactive Cas9 protein recruited to the target DNA by base-pair interactions with a single guide RNA that is complementary to the target sequence. We adapted this system for PCC 7002 and achieved conditional and titratable repression of a heterologous reporter gene, yellow fluorescent protein. Next, we demonstrated the utility of finely tuning native gene expression by downregulating the abundance of phycobillisomes. In addition, we created a conditional auxotroph by repressing synthesis of the carboxysome, an essential component of the carbon concentrating mechanism cyanobacteria use to fix atmospheric CO2. Lastly, we demonstrated a novel strategy for increasing central carbon flux by conditionally downregulating a key node in nitrogen assimilation. The resulting cells produced 2-fold more lactate than a baseline engineered cell line, representing the highest photosynthetically generated productivity to date. This work is the first example of titratable repression in cyanobacteria using CRISPRi, enabling dynamic regulation of essential processes and manipulation of flux through central carbon metabolism. This tool facilitates the study of essential genes of unknown function and enables groundbreaking metabolic engineering capability, by providing a straightforward approach to redirect metabolism and carbon flux in the production of high-value chemicals.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Engenharia Metabólica/métodos , Streptococcus pyogenes/genética , Synechococcus/genética , Transativadores/genética , Vias Biossintéticas/genética , Simulação por Computador , Regulação Bacteriana da Expressão Gênica/genética , Inativação Gênica/fisiologia , Melhoramento Genético/métodos , Redes e Vias Metabólicas/ética , Modelos Biológicos , Transdução de Sinais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA