Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.133
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(5): 21, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38739085

RESUMO

Purpose: Aging is a risk factor for dry eye. We sought to identify changes in the aged mouse corneal epithelial transcriptome and determine how age affects corneal sensitivity, re-epithelialization, and barrier reformation after corneal debridement. Methods: Corneal epithelium of female C57BL/6J (B6) mice of different ages (2, 12, 18, and 24 months) was collected, RNA extracted, and bulk RNA sequencing performed. Cornea sensitivity was measured with an esthesiometer in 2- to 3-month-old, 12- to 13-month-old, 18- to 19-month-old, and 22- to 25-month-old female and male mice. The 2-month-old and 18-month-old female and male mice underwent unilateral corneal debridement using a blunt blade. Wound size and fluorescein staining were visualized and photographed at different time points, and a re-epithelialization rate curve was calculated. Results: There were 157 differentially expressed genes in aged mice compared with young mice. Several pathways downregulated with age control cell migration, proteoglycan synthesis, and collagen trimerization, assembly, biosynthesis, and degradation. Male mice had decreased corneal sensitivity compared with female mice at 12 and 24 months of age. Aged mice, irrespective of sex, had delayed corneal re-epithelialization in the first 48 hours and worse corneal fluorescein staining intensity at day 14 than young mice. Conclusions: Aged corneal epithelium has an altered transcriptome. Aged mice regardless of sex heal more slowly and displayed more signs of corneal epithelial defects after wounding than young mice. These results indicate that aging significantly alters the corneal epithelium and its ability to coordinate healing.


Assuntos
Envelhecimento , Epitélio Corneano , Camundongos Endogâmicos C57BL , Transcriptoma , Cicatrização , Animais , Epitélio Corneano/metabolismo , Feminino , Camundongos , Cicatrização/genética , Cicatrização/fisiologia , Masculino , Envelhecimento/fisiologia , Reepitelização/fisiologia , Reepitelização/genética , Lesões da Córnea/genética , Lesões da Córnea/metabolismo , Desbridamento , Regulação da Expressão Gênica/fisiologia , Modelos Animais de Doenças
2.
Int Wound J ; 21(4): e14862, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572823

RESUMO

Oral mucosa is an ideal model for studying scarless wound healing. Researchers have shown that the key factors which promote scarless wound healing already exist in basal state of oral mucosa. Thus, to identify the other potential factors in basal state of oral mucosa will benefit to skin wound healing. In this study, we identified eight gene modules enriched in wound healing stages of human skin and oral mucosa through co-expression analysis, among which the module M8 was only module enriched in basal state of oral mucosa, indicating that the genes in module M8 may have key factors mediating scarless wound healing. Through bioinformatic analysis of genes in module M8, we found IGF2 may be the key factor mediating scarless wound healing of oral mucosa. Then, we purified IGF2 protein by prokaryotic expression, and we found that IGF2 could promote the proliferation and migration of HaCaT cells. Moreover, IGF2 promoted wound re-epithelialization and accelerated wound healing in a full-thickness skin wound model. Our findings identified IGF2 as a factor to promote skin wound healing which provide a potential target for wound healing therapy in clinic.


Assuntos
Pele , Cicatrização , Humanos , Pele/metabolismo , Reepitelização , Mucosa Bucal , Fibroblastos/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo
4.
ACS Appl Mater Interfaces ; 16(13): 15809-15818, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515315

RESUMO

Human amniotic membranes (hAMs) are widely used as wound management biomaterials, especially as grafts for corneal reconstruction due to the structure of the extracellular matrix and excellent biological properties. However, their fragile nature and rapid degradation rate hinder widespread clinical use. In this work, we engineered a novel self-powered electronic dress (E-dress), combining the beneficial properties of an amniotic membrane and a flexible electrical electrode to enhance wound healing. The E-dress displayed a sustained discharge capacity, leading to increased epidermal growth factor (EGF) release from amniotic mesenchymal interstitial stem cells. Live/dead staining, CCK-8, and scratch-wound-closure assays were performed in vitro. Compared with amniotic membrane treatment alone, the E-dress promoted cell proliferation and migration of mouse fibroblast cells and lower cytotoxicity. In a mouse full-skin defect model, the E-dress achieved significantly accelerated wound closure. Histological analysis revealed that E-dress treatment promoted epithelialization and neovascularization in mouse skin. The E-dress exhibited a desirable flexibility that aligned with tissue organization and displayed maximum bioactivity within a short period to overcome rapid degradation, implying great potential for clinical applications.


Assuntos
Âmnio , Cicatrização , Camundongos , Animais , Humanos , Âmnio/metabolismo , Pele , Reepitelização , Matriz Extracelular
5.
J Biomed Mater Res B Appl Biomater ; 112(4): e35399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533823

RESUMO

Deep skin burn represents a global morbidity and mortality problem, and the limitation of topical treatment agents has motivated research to development new formulations capable of preventing infections and accelerating healing. The aim of this work was to develop and characterize an emulgel based on collagen (COL) and gelatin (GEL) extracted from fish skin associated with Chlorella vulgaris extract (CE) and silver nitrate (AgNO3). COL and GEL were characterized by physicochemical and thermal analyses; and CE by electrophoresis and its antioxidant capacity. Three emulgels formulations were developed: COL (0.5%) + GEL (2.5%) (E1), COL+GEL+CE (1%) (E2), and COL+GEL+CE + AgNO3 (0.1%) (E3). All formulations were characterized by physicochemical, rheology assays, and preclinical analyses: cytotoxicity (in vitro) and healing potential using a burn model in rats. COL and GEL showed typical physicochemical characteristics, and CE presented 1.3 mg/mL of proteins and antioxidant activity of 76%. Emulgels presented a coherent physicochemical profile and pseudoplastic behavior. Preclinical analysis showed concentration-dependent cytotoxicity against fibroblast and keratinocytes. In addition, all emulgels induced similar percentages of wound contraction and complete wound closure in 28 days. The histopathological analysis showed higher scores for polymorphonuclear cells to E1 and greater neovascularization and re-epithelialization to E3. Then, E3 formulation has potential to improve burn healing, although its use in a clinical setting requires further studies.


Assuntos
Queimaduras , Chlorella vulgaris , Microalgas , Animais , Ratos , Antioxidantes , Queimaduras/terapia , Colágeno/uso terapêutico , Reepitelização , Pele/metabolismo
6.
Burns ; 50(4): 903-912, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302393

RESUMO

INTRODUCTION: Nutritional support is essential in burn care. There are few studies investigating the effect of nutrition on burn healing. The purpose of this study was to determine the relationship between perioperative serum prealbumin levels and the probability of autologous skin graft take in burned patients. MATERIALS AND METHODS: A prospective observational study was carried out with burned adults recruited consecutively from April 2019 until September 2021. Serum prealbumin was determined perioperatively. The percentage of graft take was evaluated over the first 5 postoperative dressing changes. Time until full epithelialization (absence of wounds) was also registered. RESULTS: A total of 60 patients were recruited, mostly middle-aged people with moderate flame burns. Serum prealbumin levels and graft take had a weak-moderate, nonlinear, statistically significant correlation. They were also an independent predictor of full epithelialization on the fifth dressing change, together with burn depth. Higher perioperative serum prealbumin levels were significantly associated with a reduction in time until full epithelialization. CONCLUSIONS: Perioperative serum prealbumin levels are significantly correlated with the probability of split-thickness skin autograft take in burned patients and with a reduced time to achieve complete epithelialization. They were an independent predictor of full graft take.


Assuntos
Queimaduras , Pré-Albumina , Transplante de Pele , Cicatrização , Humanos , Queimaduras/cirurgia , Queimaduras/sangue , Queimaduras/metabolismo , Pré-Albumina/metabolismo , Pré-Albumina/análise , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Transplante de Pele/métodos , Adulto , Cicatrização/fisiologia , Idoso , Sobrevivência de Enxerto , Reepitelização , Transplante Autólogo , Adulto Jovem
7.
Int J Biol Macromol ; 262(Pt 2): 130054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342258

RESUMO

Chronic wounds, especially diabetic, foot and pressure ulcers are a major health problem affecting >10 % of the world's populace. Calcium phosphate materials, particularly, bioactive glasses (BG), used as a potential material for hard and soft tissue repair. This study combines nanostructured 45S5 BG with titania (TiO2) and alumina (Al2O3) into a composite via simple sol-gel method. Prepared composites with alginate (Alg) formed a bioactive nanocomposite hydrogel membrane via freezing method. X-ray diffraction revealed formation of two phases such as Na1.8Ca1.1Si6O14 and ß-Na2Ca4(PO4)2SiO4 in the silica network. Fourier transformed InfraRed spectroscopy confirmed the network formation and cross-linking between composite and alginate. <2 % hemolysis, optimal in vitro degradation and porosity was systematically evaluated up to 7 days, resulting in increasing membrane bioactivity. Significant cytocompatibility, cell migration and proliferation and a 3-4-fold increase in Collagen (Col) and Vascular Endothelial Growth Factor (VEGF) expression were obtained. Sustained delivery of 80 % Dox in 24 h and effective growth reduction of S. aureus and destruction of biofilm development against E. coli and S. aureus within 24 h. Anatomical fin regeneration, rapid re-epithelialization and wound closure were achieved within 14 days in both zebrafish and in streptozotocin (STZ) induced rat in vivo animal models with optimal blood glucose levels. Hence, the fabricated bioactive membrane can act as effective wound dressing material, for diabetic chronic infectious wounds.


Assuntos
Diabetes Mellitus , Reepitelização , Ratos , Animais , Alginatos/farmacologia , Staphylococcus aureus , Escherichia coli , Fator A de Crescimento do Endotélio Vascular/farmacologia , Peixe-Zebra , Antibacterianos/farmacologia , Antibacterianos/química , Óxidos/farmacologia , Bandagens
8.
Int J Biol Macromol ; 263(Pt 1): 130073, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342268

RESUMO

Chronic wounds suffer from impaired healing due to microbial attack and poor vascular growth. Thermoresponsive hydrogels gained attention in wound dressing owing to their gelation at physiological temperature enabling them to take the shape of asymmetric wounds. The present study delineates the development of thermoresponsive hydrogel (MCK), from hair-derived keratin (K) and methylcellulose (MC) in the presence of sodium sulfate. The gelation temperature (Tg) of this hydrogel is in the range of 30 °C to 33 °C. Protein-polymer interaction leading to thermoreversible sol-gel transition involved in MCK blends has been analyzed and confirmed by FTIR, XRD, and thermal studies. Keratin, has introduced antioxidant properties to the hydrogel imparted cytocompatibility towards human dermal fibroblasts (HDFs) as evidenced by both MTT and live dead assays. In vitro wound healing assessment has been shown by enhanced migration of HDFs in the presence of MCK hydrogel compared to the control. Also, CAM assay and CD31 expression by the Wistar rat model has shown increased blood vessel branching after the implantation of MCK hydrogel. Further, in vivo study, demonstrated MCK efficacy of hydrogel in accelerating full-thickness wounds with minimal scarring in Wistar rats, re-epithelialization, and reinstatement of the epidermal-dermal junction thereby exhibiting clinical relevance for chronic wounds.


Assuntos
Queratinas , Reepitelização , Ratos , Animais , Humanos , Queratinas/farmacologia , Hidrogéis/farmacologia , Metilcelulose , Ratos Wistar , Cicatrização
9.
Int Wound J ; 21 Suppl 1: 4-8, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38392947

RESUMO

Chronic wounds present a prolonged burden to patients, their families and healthcare systems. There is evidence that the unique combination of hyaluronic acid (HA) and amino acids (Vulnamin®) promotes re-epithelialization of wounds and stimulates activation and proliferation of fibroblasts with a significant increase in the regeneration of epithelial cells. Tissue regeneration and tissue repair are considered to be the fundamental activities of this unique combination of HA and amino acids that distinguishes it from other wound healing products. A review of trials over the last 15 years indicates distinct advantages of the unique combination of HA and amino acids, in terms of healing rate and induction of granulation tissue production compared with HA alone.


Assuntos
Aminoácidos , Ácido Hialurônico , Humanos , Ácido Hialurônico/uso terapêutico , Aminoácidos/uso terapêutico , Cicatrização , Reepitelização , Fibroblastos
10.
ACS Appl Mater Interfaces ; 16(8): 9640-9655, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364050

RESUMO

The successful treatment of diabetic wounds requires strategies that promote anti-inflammation, angiogenesis, and re-epithelialization of the wound. Excessive oxidative stress in diabetic ulcers (DUs) inhibits cell proliferation and hinders timely vascular formation and macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2, resulting in a persistent inflammatory environment and a nonhealing wound. We designed arginine-nanoenzyme (FTA) with mimic-catalase and arginine-loading. 2,3,4-trihydroxy benzaldehyde and arginine (Arg) were connected by a Schiff base bond, and the nanoassembly of Arg to FTA was driven by the coordination force between a ferric ion and polyphenol and noncovalent bond force such as a hydrogen bond. FTA could remove excess reactive oxygen species at the wound site in situ and convert it to oxygen to improve hypoxia. Meanwhile, Arg was released and catalytically metabolized by NO synthase in M1 to promote vascular repair in the early phase. In the late phase, the metabolite of Arg catalyzed by arginase in M2 was mainly ornithine, which played a vital role in promoting tissue repair, which implemented angiogenesis timely and prevented hypertrophic scars. Mechanistically, FTA activated the cAMP signaling pathway combined with reducing inflammation and ameliorating angiogenesis, which resulted in excellent therapeutic effects on a DU mice model.


Assuntos
Arginina , Diabetes Mellitus Experimental , Camundongos , Animais , Arginina/farmacologia , Arginina/uso terapêutico , Angiogênese , Diabetes Mellitus Experimental/tratamento farmacológico , Cicatrização , Reepitelização
11.
Pediatr Dermatol ; 41(3): 445-450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38409959

RESUMO

BACKGROUND: Aplasia cutis congenita (ACC) is a rare congenital skin defect characterized by a focal or extensive absence of the epidermis, dermis, and occasionally, subcutaneous tissue. When the wound caused by this defect is wide or deep, various treatments are used, including skin grafting. The amniotic membrane (AM) is a biological dressing that facilitates re-epithelialization as it contains mesenchymal cells and numerous growth factors. OBJECTIVE: To report the efficacy of AM dressings in treating the skin defects of ACC. METHOD: This study was conducted on five neonates diagnosed with ACC born between 2018 and 2022, referred to the Children's Medical Center in Tehran, Iran. AM dressings were applied on wounds larger than 1 cm2. The wounds were assessed weekly and, if required, an additional AM dressing was applied. RESULTS: The skin defects gradually re-epithelialized after application of the AM. The complete healing process took around 3.5 weeks on average. No hypertrophic scarring was observed. CONCLUSION: The application of AM dressing resulted in satisfactory cosmetic outcomes, with no hypertrophic scar formation. Complete healing occurred in all cases except one. The length of the hospital stay ranged from 2 to 6 weeks, depending on the size of the wound.


Assuntos
Âmnio , Curativos Biológicos , Displasia Ectodérmica , Humanos , Recém-Nascido , Displasia Ectodérmica/terapia , Masculino , Feminino , Âmnio/transplante , Cicatrização , Resultado do Tratamento , Reepitelização
12.
Int J Biol Macromol ; 261(Pt 1): 129300, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216016

RESUMO

Currently, there is a rising global incidence of diverse acute and chronic wounds, underscoring the immediate necessity for research and treatment advancements in wound repair. Hydrogels have emerged as promising materials for wound healing due to their unique physical and chemical properties. This review explores the classification and characteristics of hydrogel dressings, innovative preparation strategies, and advancements in delivering and releasing bioactive substances. Furthermore, it delves into the functional applications of hydrogels in wound healing, encompassing areas such as infection prevention, rapid hemostasis and adhesion adaptation, inflammation control and immune regulation, granulation tissue formation, re-epithelialization, and scar prevention and treatment. The mechanisms of action of various functional hydrogels are also discussed. Finally, this article also addresses the current limitations of hydrogels and provides insights into their potential future applications and upcoming innovative designs.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Hidrogéis/química , Cicatrização , Reepitelização
13.
Adv Mater ; 36(18): e2312740, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38272455

RESUMO

The epithelium, an essential barrier to protect organisms against infection, exists in many organs. However, rapid re-epithelialization to restore tissue integrity and function in an adverse environment is challenging. In this work, a long-term anti-inflammatory and antioxidant hydrogel with mechanical stimulation for rapid re-epithelialization, mainly composed of the small molecule thioctic acid, biocompatible glycine, and γ-Fe2O3 nanoparticles is reported. Glycine-modified supramolecular thioctic acid is stable and possesses outstanding mechanical properties. The incorporating γ-Fe2O3 providing the potential contrast function for magnetic resonance imaging observation, can propel hydrogel reconfiguration to enhance the mechanical properties of the hydrogel underwater due to water-initiated release of Fe3+. In vitro experiments show that the hydrogels effectively reduced intracellular reactive oxygen species, guided macrophages toward M2 polarization, and alleviated inflammation. The effect of rapid re-epithelialization is ultimately demonstrated in a long urethral injury model in vivo, and the mechanical stimulation of hydrogels achieves effective functional replacement and ultimately accurate remodeling of the epithelium. Notably, the proposed strategy provides an advanced alternative treatment for patients in need of large-area epithelial reconstruction.


Assuntos
Anti-Inflamatórios , Antioxidantes , Hidrogéis , Hidrogéis/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Reepitelização/efeitos dos fármacos , Células RAW 264.7 , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Glicina/química , Glicina/farmacologia , Humanos , Compostos Férricos/química
14.
Methods Mol Biol ; 2773: 87-96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236539

RESUMO

Wound healing is a complex biological response to injury characterized by a sequence of interdependent and overlapping physiological actions. To study wound healing and cutaneous regeneration processes, the complexity of wound healing requires the use of animal models. In this chapter, we describe the protocol to generate skin wounds in a mouse model. In the mouse splinted excisional wound model, two full-thickness wounds are firstly created on the mouse dorsum, which is followed by application of silicone splint around wounded area. A splinting ring tightly adheres to the skin around full-thickness wound, preventing wound contraction and replicating human processes of re-epithelialization and new tissue formation. The wound is easily accessible for treatment as well as for daily monitoring and quantifying the wound closure.This technique represents valuable approach for the study of wound healing mechanisms and for evaluation of new therapeutic modalities. In this protocol, we describe how to utilize the model to study the effect of gene electrotransfer of plasmid DNA coding for antiangiogenic molecules. Additionally, we also present how to precisely regulate electrical parameters and modify electrode composition to reach optimal therapeutic effectiveness of gene electrotransfer into skin around wounded area.


Assuntos
Pele , Cicatrização , Humanos , Animais , Camundongos , Cicatrização/genética , Reepitelização , Modelos Animais de Doenças , Eletricidade
15.
J Pharm Sci ; 113(4): 999-1006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072116

RESUMO

Chronic wounds can take months or even years to heal and require proper medical intervention. Normal wound healing processes require adequate oxygen supply. Accordingly, destroyed or inefficient vasculature leads to insufficient delivery to peripheral tissues and impair healing. Oxygen is critical for vital processes such as proliferation, collagen synthesis and antibacterial defense. Hyperbaric oxygen therapy (HBOT) is commonly used to accelerate healing however, this can be costly and requires specialized training and equipment. Efforts have turned to the development of topical oxygen delivery systems. Oxysolutions has developed oxygenated gels (P407, P407/P188, nanocellulose based gel (NCG)) with high levels of dissolved oxygen. This study aims to evaluate the efficacy of these newly developed oxygenated products by assessing their impact on healing rates in a rat perturbed wound model. Here, P407/P188 oxygenated gels demonstrated greater re-epithelialization distances compared to its controls at Day 3. In addition, all oxygenated gels had a higher proportion of wounds with complete wound closure. All three oxygenated gels also minimized further escalation in inflammation from Day 3 to Day 10. This highlights the potential of this newly-developed oxygenated gels as an alternative to existing oxygen therapies.


Assuntos
Hidrogéis , Reepitelização , Ratos , Animais , Cicatrização , Oxigênio , Inflamação/tratamento farmacológico
16.
J Invest Dermatol ; 144(2): 378-386.e2, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37633457

RESUMO

Wound healing is a complex process involving phases of hemostasis, inflammation, proliferation, and remodeling. The regenerative process in the skin requires coordination between many regulators, including signaling molecules, transcription factors, and the epigenetic machinery. In this study, we show that chromatin regulators HDAC1 and LSD1, key components of the CoREST repressor complex, are upregulated in the regenerating epidermis during wound repair. We also show that corin, a synthetic dual inhibitor of the CoREST complex and HDAC1/LSD1 activities, significantly accelerates wound closure through enhanced re-epithelialization in a mouse tail wound model. Acetylated H3K9 (methylation of histone H3 at lysine 9) expression, a histone modification targeted by HDAC1, is increased in keratinocytes after topical treatment with 100 nM and 1 µM of corin. In vitro experiments demonstrate that corin promotes migration and inhibits the proliferation of human keratinocytes. Furthermore, expression levels of genes promoting keratinocyte migration, such as AREG, CD24, EPHB2, ITGAX, PTGS, SCT1, SERPINB2, SERPINE1, SLPI, SNAI2, and TWIST, increased in keratinocytes treated with corin. These data demonstrate that dual inhibition of class I histone deacetylases and LSD1 by corin may serve as a new approach for promoting wound re-epithelialization and provide a platform for further applications of corin for the treatment of chronic wounds.


Assuntos
Reepitelização , Pele , Camundongos , Animais , Humanos , Pele/lesões , Queratinócitos/metabolismo , Cicatrização/fisiologia , Modelos Animais de Doenças , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Movimento Celular
17.
Diabetes ; 73(1): 120-134, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874683

RESUMO

Wound healing is a complex, highly regulated process and is substantially disrupted by diabetes. We show here that human wound healing induces specific epigenetic changes that are exacerbated by diabetes in an animal model. We identified epigenetic changes and gene expression alterations that significantly reduce reepithelialization of skin and mucosal wounds in an in vivo model of diabetes, which were dramatically rescued in vivo by blocking these changes. We demonstrate that high glucose altered FOXO1-matrix metallopeptidase 9 (MMP9) promoter interactions through increased demethylation and reduced methylation of DNA at FOXO1 binding sites and also by promoting permissive histone-3 methylation. Mechanistically, high glucose promotes interaction between FOXO1 and RNA polymerase-II (Pol-II) to produce high expression of MMP9 that limits keratinocyte migration. The negative impact of diabetes on reepithelialization in vivo was blocked by specific DNA demethylase inhibitors in vivo and by blocking permissive histone-3 methylation, which rescues FOXO1-impaired keratinocyte migration. These studies point to novel treatment strategies for delayed wound healing in individuals with diabetes. They also indicate that FOXO1 activity can be altered by diabetes through epigenetic changes that may explain other diabetic complications linked to changes in diabetes-altered FOXO1-DNA interactions. ARTICLE HIGHLIGHTS: FOXO1 expression in keratinocytes is needed for normal wound healing. In contrast, FOXO1 expression interferes with the closure of diabetic wounds. Using matrix metallopeptidase 9 as a model system, we found that high glucose significantly increased FOXO1-matrix metallopeptidase 9 interactions via increased DNA demethylation, reduced DNA methylation, and increased permissive histone-3 methylation in vitro. Inhibitors of DNA demethylation and permissive histone-3 methylation improved the migration of keratinocytes exposed to high glucose in vitro and the closure of diabetic skin and mucosal wounds in vivo. Inhibition of epigenetic enzymes that alter FOXO1-induced gene expression dramatically improves diabetic healing and may apply to other conditions where FOXO1 has a detrimental role in diabetic complications.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Experimental , Animais , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Histonas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Queratinócitos/metabolismo , Complicações do Diabetes/metabolismo , Epigênese Genética , Glucose/metabolismo , DNA/metabolismo , Reepitelização
18.
J Invest Dermatol ; 144(4): 888-897.e6, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37979772

RESUMO

Cutaneous wounds are common afflictions that follow a stereotypical healing process involving hemostasis, inflammation, proliferation, and remodeling phases. In the elderly and those suffering from vascular or metabolic diseases, poor healing after cutaneous injuries can lead to open chronic wounds susceptible to infection. The discovery of new therapeutic strategies to improve this defective wound healing requires a better understanding of the cellular behaviors and molecular mechanisms that drive the different phases of wound healing and how these are altered with age or disease. The zebrafish provides an ideal model for visualization and experimental manipulation of the cellular and molecular events during wound healing in the context of an intact, living vertebrate. To facilitate studies of cutaneous wound healing in zebrafish, we have developed an inexpensive, simple, and effective method for generating reproducible cutaneous injuries in adult zebrafish using a rotary tool. We demonstrate that our injury system can be used in combination with high-resolution live imaging to monitor skin re-epithelialization, immune cell recruitment and activation, and vessel regrowth in the same animal over time. This injury system provides a valuable experimental platform to study key cellular and molecular events during wound healing in vivo with unprecedented resolution.


Assuntos
Pele , Peixe-Zebra , Animais , Adulto , Humanos , Idoso , Pele/diagnóstico por imagem , Pele/lesões , Cicatrização/fisiologia , Reepitelização , Inflamação
19.
Clin Geriatr Med ; 40(1): 1-10, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38000854

RESUMO

Responsible for many essential functions of life, human skin is made up of many components, each of which undergoes significant functional changes with aging and photodamage. Wound healing was previously thought to be defective in the elderly given the higher presence of chronic wounds and the longer time required for re-epithelialization of acute wounds. However, these notions have been challenged in recent research, which has shown that wound healing in the elderly is delayed but not defective. Poor healing of chronic wounds in older populations is more often attributable to comorbid conditions rather than age alone.


Assuntos
Envelhecimento da Pele , Humanos , Idoso , Cicatrização , Pele , Envelhecimento , Reepitelização
20.
Gerokomos (Madr., Ed. impr.) ; 35(1): 62-66, 2024. tab
Artigo em Espanhol | IBECS | ID: ibc-231509

RESUMO

Objetivos: Revisar el uso y eficacia de la termografía infrarroja como instrumento diagnóstico y de medida de las quemaduras. Metodología: Se realizan 2 búsquedas, una general y otra específica, utilizando estrategia de búsqueda mediante un lenguaje controlado con términos MESH. Para seleccionar los artículos se filtra por título, resumen y palabras clave, además de aplicarse los criterios de inclusión y exclusión. Resultados: Durante la búsqueda general, se encontraron 165 artículos en PubMed, de los cuales 7 han sido seleccionados y 6 han sido incluidos. Mientras que con la búsqueda específica se obtienen 28 artículos, de los cuales se seleccionan 7 que no aparecían en la búsqueda general y se incluyen finalmente 6 de ellos. Conclusiones: La termografía infrarroja es un instrumento con mucho potencial y que ha mostrado buenos resultados, pero en ocasiones mucha variabilidad e inconsistencia, por lo que es necesaria la estandarización de una serie de medidas que nos permitan contrarrestar las dificultades a las que se expone y minimizar los sesgos, hecho que podrá mejorar más los resultados. Además, es necesaria una mayor investigación aplicando las variables térmicas encontradas para identificar el grado de influencia e importancia que tienen y comparar las diferentes modalidades de termografía infrarroja, estática y dinámica.(AU)


Objectives: To review the use and efficacy of infrared thermography as a diagnostic instrument and measurement of burns. Methodology: Two searches were carried out, one general and the other specific, using a controlled language search strategy with MESH terms. To select the articles we filtered them by title, abstract and key words, besides applying the inclusion and exclusion criteria. Results: During the general search, 165 articles were found in PubMed, of which 7 were selected and 6 were included. The specific search yielded 28 articles, of which 7 were selected that did not appear in the general search and 6 were finally included. Conclusions: Infrared thermography is an instrument with great potential that has shown good results but much variability and inconsistency at times, so it is necessary to standardize a series of measures that allow us to counteract the difficulties to which it is exposed and minimize biases, a fact that could further improve the results. In addition, further research is needed by applying the thermal variables found to identify the degree of influence and importance that they have and by comparing the different infrared thermography modalities, static and dynamic.(AU)


Assuntos
Humanos , Masculino , Feminino , Termografia , Queimaduras , Reepitelização , Transplante de Pele , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...