Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.497
Filtrar
1.
Stem Cell Res Ther ; 15(1): 129, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693588

RESUMO

BACKGROUND: Human bone marrow-derived stem cells (hBMDSCs) are well characterized mediators of tissue repair and regeneration. An increasing body of evidence indicates that these cells exert their therapeutic effects largely through their paracrine actions rather than clonal expansion and differentiation. Here we studied the role of microRNAs (miRNAs) present in extracellular vesicles (EVs) from hBMDSCs in tissue regeneration and cell differentiation targeting endometrial stromal fibroblasts (eSF). METHODS: Extracellular vesicles (EVs) are isolated from hBMDSCs, characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) techniques. Extracted total RNA from EVs was subjected to RNA seq analysis. Transfection and decidualization studies were carried out in endometrial stromal fibroblasts (eSF). Gene expression was analyzed by qRTPCR. Unpaired t-test with Welch's correction was used for data analysis between two groups. RESULTS: We identified several microRNAs (miRNAs) that were highly expressed, including miR-21-5p, miR-100-5p, miR-143-3p and let7. MiR-21 is associated with several signaling pathways involved in tissue regeneration, quiescence, cellular senescence, and fibrosis. Both miR-100-5p and miR-143-3p promoted cell proliferation. MiR-100-5p specifically promoted regenerative processes by upregulating TGF-ß3, VEGFA, MMP7, and HGF. MiR-100-5p blocked differentiation or decidualization as evidenced by morphologic changes and downregulation of decidualization mediators including HOXA10, IGFBP1, PRL, PR-B, and PR. CONCLUSION: EVs delivered to tissues by hBMDSCs contain specific miRNAs that prevent terminal differentiation and drive repair and regeneration. Delivery of microRNAs is a novel treatment paradigm with the potential to replace BMDSCs in cell-free regenerative therapies.


Assuntos
Diferenciação Celular , Proliferação de Células , Endométrio , Exossomos , Fibroblastos , Células-Tronco Mesenquimais , MicroRNAs , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Exossomos/metabolismo , Endométrio/metabolismo , Endométrio/citologia , Fibroblastos/metabolismo , Fibroblastos/citologia , Regeneração/genética , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia
2.
Mol Biol Rep ; 51(1): 604, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700644

RESUMO

BACKGROUND: The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS: This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS: Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.


Assuntos
Coração , Regeneração , Sindecana-4 , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Regeneração/genética , Coração/fisiologia , Coração/fisiopatologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Proliferação de Células/genética , Miocárdio/metabolismo , Miocárdio/patologia , Técnicas de Silenciamento de Genes
3.
Nat Commun ; 15(1): 3340, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649703

RESUMO

During organ regeneration, after the initial responses to injury, gene expression patterns similar to those in normal development are reestablished during subsequent morphogenesis phases. This supports the idea that regeneration recapitulates development and predicts the existence of genes that reboot the developmental program after the initial responses. However, such rebooting mechanisms are largely unknown. Here, we explore core rebooting factors that operate during Xenopus limb regeneration. Transcriptomic analysis of larval limb blastema reveals that hoxc12/c13 show the highest regeneration specificity in expression. Knocking out each of them through genome editing inhibits cell proliferation and expression of a group of genes that are essential for development, resulting in autopod regeneration failure, while limb development and initial blastema formation are not affected. Furthermore, the induction of hoxc12/c13 expression partially restores froglet regenerative capacity which is normally very limited compared to larval regeneration. Thus, we demonstrate the existence of genes that have a profound impact alone on rebooting of the developmental program in a regeneration-specific manner.


Assuntos
Extremidades , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Regeneração , Proteínas de Xenopus , Xenopus laevis , Animais , Proliferação de Células/genética , Extremidades/fisiologia , Edição de Genes , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Larva/crescimento & desenvolvimento , Larva/genética , Regeneração/genética , Regeneração/fisiologia , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Masculino , Feminino
4.
Methods Mol Biol ; 2788: 243-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656518

RESUMO

Gamma radiation (60Co)-induced mutagenesis offers an alternative to develop rice lines by accelerating the spontaneous mutation process and increasing the pool of allelic variants available for breeding. Ionizing radiation works by direct or indirect damage to DNA and subsequent mutations. The technique can take advantage of in vitro protocols to optimize resources and accelerate the development of traits. This is achieved by exposing mutants to a selection agent of interest in controlled conditions and evaluating large numbers of plants in reduced areas. This chapter describes the protocol for establishing gamma radiation dosimetry and in vitro protocols for optimization at the laboratory level using seeds as the starting material, followed by embryogenic cell cultures, somatic embryogenesis, and regeneration. The final product of the protocol is a genetically homogeneous population of Oryza sativa that can be evaluated for breeding against abiotic and biotic stresses.


Assuntos
Raios gama , Mutagênese , Oryza , Sementes , Oryza/genética , Oryza/efeitos da radiação , Oryza/crescimento & desenvolvimento , Mutagênese/efeitos da radiação , Sementes/genética , Sementes/efeitos da radiação , Sementes/crescimento & desenvolvimento , Regeneração/genética , Técnicas de Embriogênese Somática de Plantas/métodos
5.
Curr Top Dev Biol ; 158: 433-465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670715

RESUMO

In mammals, most of the genome is transcribed to generate a large and heterogeneous variety of non-protein coding RNAs, that are broadly grouped according to their size. Long noncoding RNAs include a very large and versatile group of molecules. Despite only a minority of them has been functionally characterized, there is emerging evidence indicating long noncoding RNAs as important regulators of expression at multiple levels. Several of them have been shown to be modulated during myogenic differentiation, playing important roles in the regulation of skeletal muscle development, differentiation and homeostasis, and contributing to neuromuscular diseases. In this chapter, we have summarized the current knowledge about long noncoding RNAs in skeletal muscle and discussed specific examples of long noncoding RNAs (lncRNAs and circRNAs) regulating muscle stem cell biology. We have also discussed selected long noncoding RNAs involved in the most common neuromuscular diseases.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético , RNA Longo não Codificante , Regeneração , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Regeneração/genética , Desenvolvimento Muscular/genética , Diferenciação Celular
6.
Genome Biol Evol ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38652806

RESUMO

Metazoan species depict a wide spectrum of regeneration ability which calls into question the evolutionary origins of the underlying processes. Since species with high regeneration ability are widely distributed throughout metazoans, there is a possibility that the metazoan ancestor had an underlying common molecular mechanism. Early metazoans like sponges possess high regenerative ability, but, due to the large differences they have with Cnidaria and Bilateria regarding symmetry and neuronal systems, it can be inferred that this regenerative ability is different. We hypothesized that the last common ancestor of Cnidaria and Bilateria possessed remarkable regenerative ability which was lost during evolution. We separated Cnidaria and Bilateria into three classes possessing whole-body regenerating, high regenerative ability, and low regenerative ability. Using a multiway BLAST and gene phylogeny approach, we identified genes conserved in whole-body regenerating species and lost in low regenerative ability species and labeled them Cnidaria and Bilaterian regeneration genes. Through transcription factor analysis, we identified that Cnidaria and Bilaterian regeneration genes were associated with an overabundance of homeodomain regulatory elements. RNA interference of Cnidaria and Bilaterian regeneration genes resulted in loss of regeneration phenotype for HRJDa, HRJDb, DUF21, DISP3, and ARMR genes. We observed that DUF21 knockdown was highly lethal in the early stages of regeneration indicating a potential role in wound response. Also, HRJDa, HRJDb, DISP3, and ARMR knockdown showed loss of regeneration phenotype after second amputation. The results strongly correlate with their respective RNA-seq profiles. We propose that Cnidaria and Bilaterian regeneration genes play a major role in regeneration across highly regenerative Cnidaria and Bilateria.


Assuntos
Filogenia , Planárias , Regeneração , Animais , Regeneração/genética , Planárias/genética , Planárias/fisiologia , Cnidários/genética , Cnidários/fisiologia , Evolução Molecular , Fatores de Transcrição/genética
7.
Int J Biol Macromol ; 266(Pt 2): 131049, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522687

RESUMO

Long non-coding RNAs (lncRNAs) play an essential role in vertebrate myogenesis and muscle diseases. However, the dynamic expression patterns, biological functions, and mechanisms of lncRNAs in skeletal muscle development and regeneration remain largely unknown. In this study, a novel lncRNA (named lncMGR) was differentially expressed during breast muscle development in fast- and slow-growing chickens. Functionally, lncMGR promoted myoblast differentiation, inhibited myoblast proliferation in vitro, and promoted myofiber hypertrophy and injury repair in vivo. Mechanistically, lncMGR increased the mRNA and protein expression of skeletal muscle myosin heavy chain 1 A (MYH1A) via both transcriptional and post-transcriptional regulation. Nuclear lncMGR recruited cyclin-dependent kinase 9 (CDK9) to the core transcriptional activation region of the MYH1A gene to activate MYH1A transcription. Cytoplasmic lncMGR served as a competitive endogenous RNA (ceRNA) to competitively absorb miR-2131-5p away from MYH1A and subsequently protected the MYH1A from miR-2131-5p-mediated degradation. Besides miR-2131-5p, cytoplasmic lncMGR could also sponge miR-143-3p to reconcile the antagonist between the miR-2131-5p/MYH1A-mediated inhibition effects and miR-143-3p-mediated promotion effects on myoblast proliferation, thereby inhibiting myoblast proliferation. Collectively, lncMGR could recruit CDK9 and sponge multiple miRNAs to regulate skeletal muscle development and regeneration, and could be a therapeutic target for muscle diseases.


Assuntos
Galinhas , MicroRNAs , Desenvolvimento Muscular , RNA Longo não Codificante , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Quinase 9 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Mioblastos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Regeneração/genética , RNA Longo não Codificante/genética
8.
Sci Adv ; 10(12): eadk8331, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507478

RESUMO

Appendage regeneration relies on the formation of blastema, a heterogeneous cellular structure formed at the injury site. However, little is known about the early injury-activated signaling pathways that trigger blastema formation during appendage regeneration. Here, we provide compelling evidence that the extracellular signal-regulated kinase (ERK)-activated casein kinase 2 (CK-2), which has not been previously implicated in appendage regeneration, triggers blastema formation during leg regeneration in the American cockroach, Periplaneta americana. After amputation, CK-2 undergoes rapid activation through ERK-induced phosphorylation within blastema cells. RNAi knockdown of CK-2 severely impairs blastema formation by repressing cell proliferation through down-regulating mitosis-related genes. Evolutionarily, the regenerative role of CK-2 is conserved in zebrafish caudal fin regeneration via promoting blastema cell proliferation. Together, we find and demonstrate that the ERK-activated CK-2 triggers blastema formation in both cockroach and zebrafish, helping explore initiation factors during appendage regeneration.


Assuntos
Regeneração , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Regeneração/genética , Cicatrização , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Sci Rep ; 14(1): 6670, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509148

RESUMO

Age-related hearing loss (ARHL) is a debilitating disorder for millions worldwide. While there are multiple underlying causes of ARHL, one common factor is loss of sensory hair cells. In mammals, new hair cells are not produced postnatally and do not regenerate after damage, leading to permanent hearing impairment. By contrast, fish produce hair cells throughout life and robustly regenerate these cells after toxic insult. Despite these regenerative abilities, zebrafish show features of ARHL. Here, we show that aged zebrafish of both sexes exhibited significant hair cell loss and decreased cell proliferation in all inner ear epithelia (saccule, lagena, utricle). Ears from aged zebrafish had increased expression of pro-inflammatory genes and significantly more macrophages than ears from young adult animals. Aged zebrafish also had fewer lateral line hair cells and less cell proliferation than young animals, although lateral line hair cells still robustly regenerated following damage. Unlike zebrafish, African turquoise killifish (an emerging aging model) only showed hair cell loss in the saccule of aged males, but both sexes exhibit age-related changes in the lateral line. Our work demonstrates that zebrafish exhibit key features of auditory aging, including hair cell loss and increased inflammation. Further, our finding that aged zebrafish have fewer lateral line hair cells yet retain regenerative capacity, suggests a decoupling of homeostatic hair cell addition from regeneration following acute trauma. Finally, zebrafish and killifish show species-specific strategies for lateral line homeostasis that may inform further comparative research on aging in mechanosensory systems.


Assuntos
Orelha Interna , Peixes Listrados , Sistema da Linha Lateral , Perciformes , Animais , Masculino , Feminino , Peixe-Zebra/genética , Células Ciliadas Auditivas/metabolismo , Regeneração/genética , Mamíferos
10.
Proc Natl Acad Sci U S A ; 121(11): e2316544121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442155

RESUMO

Muscle regeneration is a complex process relying on precise teamwork between multiple cell types, including muscle stem cells (MuSCs) and fibroadipogenic progenitors (FAPs). FAPs are also the main source of intramuscular adipose tissue (IMAT). Muscles without FAPs exhibit decreased IMAT infiltration but also deficient muscle regeneration, indicating the importance of FAPs in the repair process. Here, we demonstrate the presence of bidirectional crosstalk between FAPs and MuSCs via their secretion of extracellular vesicles (EVs) containing distinct clusters of miRNAs that is crucial for normal muscle regeneration. Thus, after acute muscle injury, there is activation of FAPs leading to a transient rise in IMAT. These FAPs also release EVs enriched with a selected group of miRNAs, a number of which come from an imprinted region on chromosome 12. The most abundant of these is miR-127-3p, which targets the sphingosine-1-phosphate receptor S1pr3 and activates myogenesis. Indeed, intramuscular injection of EVs from immortalized FAPs speeds regeneration of injured muscle. In late stages of muscle repair, in a feedback loop, MuSCs and their derived myoblasts/myotubes secrete EVs enriched in miR-206-3p and miR-27a/b-3p. The miRNAs repress FAP adipogenesis, allowing full muscle regeneration. Together, the reciprocal communication between FAPs and muscle cells via miRNAs in their secreted EVs plays a critical role in limiting IMAT infiltration while stimulating muscle regeneration, hence providing an important mechanism for skeletal muscle repair and homeostasis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Células Satélites de Músculo Esquelético , Fibras Musculares Esqueléticas , Comunicação , MicroRNAs/genética , Regeneração/genética
11.
Dev Biol ; 509: 70-84, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373692

RESUMO

Many insects undergo the process of metamorphosis when larval precursor cells begin to differentiate to create the adult body. The larval precursor cells retain stem cell-like properties and contribute to the regenerative ability of larval appendages. Here we demonstrate that two Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (BTB) domain transcription factors, Chronologically inappropriate morphogenesis (Chinmo) and Abrupt (Ab), act cooperatively to repress metamorphosis in the flour beetle, Tribolium castaneum. Knockdown of chinmo led to precocious development of pupal legs and antennae. We show that although topical application of juvenile hormone (JH) prevents the decrease in chinmo expression in the final instar, chinmo and JH act in distinct pathways. Another gene encoding the BTB domain transcription factor, Ab, was also necessary for the suppression of broad (br) expression in T. castaneum in a chinmo RNAi background, and simultaneous knockdown of ab and chinmo led to the precocious onset of metamorphosis. Furthermore, knockdown of ab led to the loss of regenerative potential of larval legs independently of br. In contrast, chinmo knockdown larvae exhibited pupal leg regeneration when a larval leg was ablated. Taken together, our results show that both ab and chinmo are necessary for the maintenance of the larval tissue identity and, apart from its role in repressing br, ab acts as a crucial regulator of larval leg regeneration. Our findings indicate that BTB domain proteins interact in a complex manner to regulate larval and pupal tissue homeostasis.


Assuntos
Besouros , Metamorfose Biológica , Morfogênese , Fatores de Transcrição , Tribolium , Animais , Besouros/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hormônios Juvenis , Larva/metabolismo , Metamorfose Biológica/genética , Morfogênese/genética , Pupa/metabolismo , Fatores de Transcrição/metabolismo , Tribolium/genética , Regeneração/genética
12.
Biosci Biotechnol Biochem ; 88(4): 412-419, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412471

RESUMO

The regeneration of shoots from endosperm tissue is a highly effective method to obtain triploid plants. In this study, we elucidated the establishment of an in vitro regeneration system from endosperm culture for the production of Passiflora edulis "Mantianxing." The highest callus induction rate (83.33%) was obtained on the media supplemented with 1.0 mg/L TDZ. Meanwhile, the MS medium containing 1.0 mg/L 6-BA and 0.4 mg/L IBA gave the optimum 75% shoot bud induction. Chromosome analysis revealed that the chromosomal count of P. edulis "Mantianxing" regenerated from endosperm tissues was 27 (2n = 3x = 27), which indicated that shoots regenerated from endosperm tissues were triploids. Triploid P. edulis had more drought resistance than diploid plants. Our study provided a method for breeding of passion fruit by means of a stable and reproducible regeneration system from endosperm culture, leading to the generation of triploid plants.


Assuntos
Passiflora , Triploidia , Brotos de Planta , Endosperma , Melhoramento Vegetal , Regeneração/genética
13.
Sci Adv ; 10(8): eadk4694, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381829

RESUMO

Cardiac regeneration requires coordinated participation of multiple cell types whereby their communications result in transient activation of proregenerative cell states. Although the molecular characteristics and lineage origins of these activated cell states and their contribution to cardiac regeneration have been studied, the extracellular signaling and the intrinsic genetic program underlying the activation of the transient functional cell states remain largely unexplored. In this study, we delineated the chromatin landscapes of the noncardiomyocytes (nonCMs) of the regenerating heart at the single-cell level and inferred the cis-regulatory architectures and trans-acting factors that control cell type-specific gene expression programs. Moreover, further motif analysis and cell-specific genetic manipulations suggest that the macrophage-derived inflammatory signal tumor necrosis factor-α, acting via its downstream transcription factor complex activator protein-1, functions cooperatively with discrete transcription regulators to activate respective nonCM cell types critical for cardiac regeneration. Thus, our study defines the regulatory architectures and intercellular communication principles in zebrafish heart regeneration.


Assuntos
Cromatina , Peixe-Zebra , Animais , Cromatina/genética , Peixe-Zebra/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Regeneração/genética
14.
Nucleic Acids Res ; 52(8): 4215-4233, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38364861

RESUMO

The limited regenerative capacity of the human heart contributes to high morbidity and mortality worldwide. In contrast, zebrafish exhibit robust regenerative capacity, providing a powerful model for studying how to overcome intrinsic epigenetic barriers maintaining cardiac homeostasis and initiate regeneration. Here, we present a comprehensive analysis of the histone modifications H3K4me1, H3K4me3, H3K27me3 and H3K27ac during various stages of zebrafish heart regeneration. We found a vast gain of repressive chromatin marks one day after myocardial injury, followed by the acquisition of active chromatin characteristics on day four and a transition to a repressive state on day 14, and identified distinct transcription factor ensembles associated with these events. The rapid transcriptional response involves the engagement of super-enhancers at genes implicated in extracellular matrix reorganization and TOR signaling, while H3K4me3 breadth highly correlates with transcriptional activity and dynamic changes at genes involved in proteolysis, cell cycle activity, and cell differentiation. Using loss- and gain-of-function approaches, we identified transcription factors in cardiomyocytes and endothelial cells influencing cardiomyocyte dedifferentiation or proliferation. Finally, we detected significant evolutionary conservation between regulatory regions that drive zebrafish and neonatal mouse heart regeneration, suggesting that reactivating transcriptional and epigenetic networks converging on these regulatory elements might unlock the regenerative potential of adult human hearts.


Assuntos
Cromatina , Redes Reguladoras de Genes , Coração , Histonas , Miócitos Cardíacos , Regeneração , Peixe-Zebra , Peixe-Zebra/genética , Animais , Regeneração/genética , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Camundongos , Humanos , Epigênese Genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Código das Histonas , Diferenciação Celular/genética
15.
Sci Rep ; 14(1): 3679, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355764

RESUMO

In animal species that have the capability of regenerating tissues and limbs, cell proliferation is enhanced after wound healing and is essential for the reconstruction of injured tissue. Although the ability to induce cell proliferation is a common feature of such species, the molecular mechanisms that regulate the transition from wound healing to regenerative cell proliferation remain unclear. Here, we show that upon injury, InhibinßA and JunB cooperatively function for this transition during Xenopus tadpole tail regeneration. We found that the expression of inhibin subunit beta A (inhba) and junB proto-oncogene (junb) is induced by injury-activated TGF-ß/Smad and MEK/ERK signaling in regenerating tails. Similarly to junb knockout (KO) tadpoles, inhba KO tadpoles show a delay in tail regeneration, and inhba/junb double KO (DKO) tadpoles exhibit severe impairment of tail regeneration compared with either inhba KO or junb KO tadpoles. Importantly, this impairment is associated with a significant reduction of cell proliferation in regenerating tissue. Moreover, JunB regulates tail regeneration via FGF signaling, while InhibinßA likely acts through different mechanisms. These results demonstrate that the cooperation of injury-induced InhibinßA and JunB is critical for regenerative cell proliferation, which is necessary for re-outgrowth of regenerating Xenopus tadpole tails.


Assuntos
Regeneração , Transdução de Sinais , Animais , Xenopus laevis/metabolismo , Larva/genética , Regeneração/genética , Proliferação de Células , Cauda/fisiologia
16.
Plant Physiol ; 194(4): 2022-2038, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38290051

RESUMO

Plants possess remarkable capability to regenerate upon tissue damage or optimal environmental stimuli. This ability not only serves as a crucial strategy for immobile plants to survive through harsh environments, but also made numerous modern plant improvements techniques possible. At the cellular level, this biological process involves dynamic changes in gene expression that redirect cell fate transitions. It is increasingly recognized that chromatin epigenetic modifications, both activating and repressive, intricately interact to regulate this process. Moreover, the outcomes of epigenetic regulation on regeneration are influenced by factors such as the differences in regenerative plant species and donor tissue types, as well as the concentration and timing of hormone treatments. In this review, we focus on several well-characterized epigenetic modifications and their regulatory roles in the expression of widely studied morphogenic regulators, aiming to enhance our understanding of the mechanisms by which epigenetic modifications govern plant regeneration.


Assuntos
Epigênese Genética , Plantas , Plantas/genética , Plantas/metabolismo , Cromatina/metabolismo , Diferenciação Celular , Regeneração/genética , Regulação da Expressão Gênica de Plantas
17.
Plant Commun ; 5(5): 100823, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38243597

RESUMO

The inducible CRISPR activation (CRISPR-a) system offers unparalleled precision and versatility for regulating endogenous genes, making it highly sought after in plant research. In this study, we developed a chemically inducible CRISPR-a tool for plants called ER-Tag by combining the LexA-VP16-ER inducible system with the SunTag CRISPR-a system. We systematically compared different induction strategies and achieved high efficiency in target gene activation. We demonstrated that guide RNAs can be multiplexed and pooled for large-scale screening of effective morphogenic genes and gene pairs involved in plant regeneration. Further experiments showed that induced activation of these morphogenic genes can accelerate regeneration and improve regeneration efficiency in both eudicot and monocot plants, including alfalfa, woodland strawberry, and sheepgrass. Our study expands the CRISPR toolset in plants and provides a powerful new strategy for studying gene function when constitutive expression is not feasible or ideal.


Assuntos
Regeneração , Regeneração/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas
18.
JCI Insight ; 9(4)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227372

RESUMO

Circular RNAs (circRNAs) are highly expressed in the mammalian intestinal epithelium, but their functions remain largely unknown. Here, we identified the circRNA Cdr1as as a repressor of intestinal epithelial regeneration and defense. Cdr1as levels increased in mouse intestinal mucosa after colitis and septic stress, as well as in human intestinal mucosa from patients with inflammatory bowel disease and sepsis. Ablation of the Cdr1as locus from the mouse genome enhanced renewal of the intestinal mucosa, promoted injury-induced epithelial regeneration, and protected the mucosa against colitis. We found approximately 40 microRNAs, including miR-195, differentially expressed between intestinal mucosa of Cdr1as-knockout (Cdr1as-/-) versus littermate mice. Increasing the levels of Cdr1as inhibited intestinal epithelial repair after wounding in cultured cells and repressed growth of intestinal organoids cultured ex vivo, but this inhibition was abolished by miR-195 silencing. The reduction in miR-195 levels in the Cdr1as-/- intestinal epithelium was the result of reduced stability and processing of the precursor miR-195. These findings indicate that Cdr1as reduces proliferation and repair of the intestinal epithelium at least in part via interaction with miR-195 and highlight a role for induced Cdr1as in the pathogenesis of unhealed wounds and disrupted renewal of the intestinal mucosa.


Assuntos
Colite , MicroRNAs , Animais , Humanos , Camundongos , Proliferação de Células/genética , Colite/genética , Colite/patologia , Mucosa Intestinal/patologia , Mamíferos/genética , MicroRNAs/genética , Regeneração/genética , RNA Circular/genética
19.
J Appl Genet ; 65(1): 13-30, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37962803

RESUMO

Genotype-limited plant regeneration is one of the main obstacles to the broader use of genetic transformation in barley breeding. Thus, developing new approaches that might improve responses of in vitro recalcitrant genotypes remains at the center of barley biotechnology. Here, we analyzed different barley genotypes, including "Golden Promise," a genotype commonly used in the genetic transformation, and four malting barley cultivars of poor regenerative potential. The expression of hormone-related transcription factor (TF) genes with documented roles in plant regeneration was analyzed in genotypes with various plant-regenerating capacities. The results indicated differential expression of auxin-related TF genes between the barley genotypes in both the explants and the derived cultures. In support of the role of auxin in barley regeneration, distinct differences in the accumulation of free and oxidized auxin were observed in explants and explant-derived callus cultures of barley genotypes. Following the assumption that modifying gene expression might improve plant regeneration in barley, we treated the barley explants with trichostatin A (TSA), which affects histone acetylation. The effects of TSA were genotype-dependent as TSA treatment improved plant regeneration in two barley cultivars. TSA-induced changes in plant regeneration were associated with the increased expression of auxin biosynthesis-involved TFs. The study demonstrated that explant treatment with chromatin modifiers such as TSA might provide a new and effective epigenetic approach to improving plant regeneration in recalcitrant barley genotypes.


Assuntos
Histonas , Hordeum , Ácidos Hidroxâmicos , Histonas/genética , Histonas/metabolismo , Hordeum/genética , Acetilação , Melhoramento Vegetal , Ácidos Indolacéticos/farmacologia , Regeneração/genética , Epigênese Genética
20.
Neurosci Bull ; 40(1): 113-126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787875

RESUMO

Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.


Assuntos
Orelha Interna , Células Ciliadas Auditivas Internas , Recém-Nascido , Humanos , Células Ciliadas Auditivas Internas/fisiologia , Orelha Interna/fisiologia , Células Ciliadas Auditivas/fisiologia , Regeneração/genética , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...