Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
1.
Mol Biol Rep ; 51(1): 632, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724827

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs), but the mechanism by which miRNAs indirectly modulate osteogenesis remains unclear. Here, we explored the mechanism by which miRNAs indirectly modulate gene expression through histone demethylases to promote bone regeneration. METHODS AND RESULTS: Bioinformatics analysis was performed on hBMSCs after 7 days of osteogenic induction. The differentially expressed miRNAs were screened, and potential target mRNAs were identified. To determine the bioactivity and stemness of hBMSCs and their potential for bone repair, we performed wound healing, Cell Counting Kit-8 (CCK-8), real-time reverse transcription quantitative polymerase chain reaction (RT‒qPCR), alkaline phosphatase activity, alizarin red S (ARS) staining and radiological and histological analyses on SD rats with calvarial bone defects. Additionally, a dual-luciferase reporter assay was utilized to investigate the interaction between miR-26b-5p and ten-eleven translocation 3 (TET3) in human embryonic kidney 293T cells. The in vitro and in vivo results suggested that miR-26b-5p effectively promoted the migration, proliferation and osteogenic differentiation of hBMSCs, as well as the bone reconstruction of calvarial defects in SD rats. Mechanistically, miR-26b-5p bound to the 3' untranslated region of TET3 mRNA to mediate gene silencing. CONCLUSIONS: MiR-26b-5p downregulated the expression of TET3 to increase the osteogenic differentiation of hBMSCs and bone repair in rat calvarial defects. MiR-26b-5p/TET3 crosstalk might be useful in large-scale critical bone defects.


Assuntos
Regeneração Óssea , Diferenciação Celular , Dioxigenases , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Ratos Sprague-Dawley , Crânio , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Humanos , Osteogênese/genética , Diferenciação Celular/genética , Ratos , Crânio/patologia , Crânio/metabolismo , Feminino , Regeneração Óssea/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Proliferação de Células/genética , Células HEK293
2.
Mol Ther ; 32(5): 1479-1496, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429926

RESUMO

Intense inflammatory response impairs bone marrow mesenchymal stem cell (BMSC)-mediated bone regeneration, with transforming growth factor (TGF)-ß1 being the most highly expressed cytokine. However, how to find effective and safe means to improve bone formation impaired by excessive TGF-ß1 remains unclear. In this study, we found that the expression of orphan nuclear receptor Nr4a1, an endogenous repressor of TGF-ß1, was suppressed directly by TGF-ß1-induced Smad3 and indirectly by Hdac4, respectively. Importantly, Nr4a1 overexpression promoted BMSC osteogenesis and reversed TGF-ß1-mediated osteogenic inhibition and pro-fibrotic effects. Transcriptomic and histologic analyses confirmed that upregulation of Nr4a1 increased the transcription of Wnt family member 4 (Wnt4) and activated Wnt pathway. Mechanistically, Nr4a1 bound to the promoter of Wnt4 and regulated its expression, thereby enhancing the osteogenic capacity of BMSCs. Moreover, treatment with Nr4a1 gene therapy or Nr4a1 agonist Csn-B could promote ectopic bone formation, defect repair, and fracture healing. Finally, we demonstrated the correlation of NR4A1 with osteogenesis and the activation of the WNT4/ß-catenin pathway in human BMSCs and fracture samples. Taken together, these findings uncover the critical role of Nr4a1 in bone formation and alleviation of inflammation-induced bone regeneration disorders, and suggest that Nr4a1 has the potential to be a therapeutic target for accelerating bone healing.


Assuntos
Regeneração Óssea , Inflamação , Células-Tronco Mesenquimais , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Osteogênese , Proteína Wnt4 , Células-Tronco Mesenquimais/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Osteogênese/genética , Regeneração Óssea/genética , Animais , Camundongos , Proteína Wnt4/metabolismo , Proteína Wnt4/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Via de Sinalização Wnt , Masculino , Transcrição Gênica , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Modelos Animais de Doenças
3.
ACS Biomater Sci Eng ; 10(4): 2337-2350, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531043

RESUMO

The fabrication of clinically relevant synthetic bone grafts relies on combining multiple biodegradable biomaterials to create a structure that supports the regeneration of defects while delivering osteogenic biomolecules that enhance regeneration. MicroRNA-200c (miR-200c) functions as a potent osteoinductive biomolecule to enhance osteogenic differentiation and bone formation; however, synthetic tissue-engineered bone grafts that sustain the delivery of miR-200c for bone regeneration have not yet been evaluated. In this study, we created novel, multimaterial, synthetic bone grafts from gelatin-coated 3D-printed polycaprolactone (PCL) scaffolds. We attempted to optimize the release of pDNA encoding miR-200c by varying gelatin types, concentrations, and polymer crosslinking materials to improve its functions for bone regeneration. We revealed that by modulating gelatin type, coating material concentration, and polymer crosslinking, we effectively altered the release rates of pDNA encoding miR-200c, which promoted osteogenic differentiation in vitro and bone regeneration in a critical-sized calvarial bone defect animal model. We also demonstrated that crosslinking the gelatin coatings on the PCL scaffolds with low-concentration glutaraldehyde was biocompatible and increased cell attachment. These results strongly indicate the potential use of gelatin-based systems for pDNA encoding microRNA delivery in gene therapy and further demonstrate the effectiveness of miR-200c for enhancing bone regeneration from synthetic bone grafts.


Assuntos
MicroRNAs , Osteogênese , Animais , Osteogênese/genética , Gelatina/farmacologia , Gelatina/química , Alicerces Teciduais/química , Regeneração Óssea/genética , MicroRNAs/genética , Polímeros , Impressão Tridimensional
4.
Adv Sci (Weinh) ; 11(17): e2309491, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38380490

RESUMO

The regeneration of bone defects in diabetic patients still faces challenges, as the intrinsic healing process is impaired by hyperglycemia. Inspired by the discovery that the endoplasmic reticulum (ER) is in a state of excessive stress and dysfunction under hyperglycemia, leading to osteogenic disorder, a novel engineered exosome is proposed to modulate ER homeostasis for restoring the function of mesenchymal stem cells (MSCs). The results indicate that the constructed engineered exosomes efficiently regulate ER homeostasis and dramatically facilitate the function of MSCs in the hyperglycemic niche. Additionally, the underlying therapeutic mechanism of exosomes is elucidated. The results reveal that exosomes can directly provide recipient cells with SHP2 for the activation of mitophagy and elimination of mtROS, which is the immediate cause of ER dysfunction. To maximize the therapeutic effect of engineered exosomes, a high-performance hydrogel with self-healing, bioadhesive, and exosome-conjugating properties is applied to encapsulate the engineered exosomes for in vivo application. In vivo, evaluation in diabetic bone defect repair models demonstrates that the engineered exosomes delivering hydrogel system intensively enhance osteogenesis. These findings provide crucial insight into the design and biological mechanism of ER homeostasis-based tissue-engineering strategies for diabetic bone regeneration.


Assuntos
Regeneração Óssea , Retículo Endoplasmático , Exossomos , Homeostase , Hidrogéis , Células-Tronco Mesenquimais , Exossomos/metabolismo , Regeneração Óssea/fisiologia , Regeneração Óssea/genética , Animais , Homeostase/fisiologia , Hidrogéis/química , Camundongos , Retículo Endoplasmático/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Osteogênese/fisiologia , Modelos Animais de Doenças , Engenharia Tecidual/métodos , Masculino , Humanos
5.
Bone Res ; 12(1): 2, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221522

RESUMO

Reconstruction of irregular oral-maxillofacial bone defects with an inflammatory microenvironment remains a challenge, as chronic local inflammation can largely impair bone healing. Here, we used magnesium silicate nanospheres (MSNs) to load microRNA-146a-5p (miR-146a) to fabricate a nanobiomaterial, MSN+miR-146a, which showed synergistic promoting effects on the osteogenic differentiation of human dental pulp stem cells (hDPSCs). In addition, miR-146a exhibited an anti-inflammatory effect on mouse bone marrow-derived macrophages (BMMs) under lipopolysaccharide (LPS) stimulation by inhibiting the NF-κB pathway via targeting tumor necrosis factor receptor-associated factor 6 (TRAF6), and MSNs could simultaneously promote M2 polarization of BMMs. MiR-146a was also found to inhibit osteoclast formation. Finally, the dual osteogenic-promoting and immunoregulatory effects of MSN+miR-146a were further validated in a stimulated infected mouse mandibular bone defect model via delivery by a photocuring hydrogel. Collectively, the MSN+miR-146a complex revealed good potential in treating inflammatory irregular oral-maxillofacial bone defects.


Assuntos
MicroRNAs , Nanosferas , Camundongos , Animais , Humanos , MicroRNAs/genética , Osteogênese/genética , Inflamação/tratamento farmacológico , Regeneração Óssea/genética , Silicatos/farmacologia , Silicatos de Magnésio/farmacologia
6.
J Periodontal Res ; 59(1): 195-203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947141

RESUMO

OBJECTIVE: To investigate, in vivo, the effect of local application of Resolvin E1 (RvE1) on the bone regeneration of critical-size defects (CSDs) in Wistar rats utilizing gene expression and micro-computed tomographic (micro-CT) analysis. BACKGROUND: The inflammation-resolving actions of RvE1 are well established. The molecular mechanism of its bone-regenerative actions has been of significant interest in recent years; however, there is limited information regarding the same. MATERIALS AND METHODS: Thirty Wistar rats with a 5 mm induced critical-size calvarial defect were randomly allocated into four groups: no treatment/negative control (n = 5), treatment using bovine bone grafts/positive control (n = 5), treatment using local delivery of RvE1 (n = 11) and treatment using RvE1 mixed with bovine bone graft (n = 9). After 4 weeks, RNA isolation, complementary DNA synthesis and real-time polymerase chain reaction were used for genetic expression of alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN). The rats were sacrificed after 12 weeks and micro-CT imaging was performed to analyse the characteristics of the newly formed bone (NFB). The data were analysed using ANOVA and the least significant difference tests (α ≤ .05). RESULTS: The RvE1 + bovine graft group had statistically highest mean NFB (20.75 ± 2.67 mm3 ) compared to other groups (p < .001). Similarly, RvE1 + bovine graft group also demonstrated statistically highest mean genetic expression of ALP (31.71 ± 2.97; p = .008) and OPN (34.78 ± 3.62; p < .001) compared to negative control and RvE1 groups. CONCLUSION: Resolvin E1 with adjunct bovine bone graft demonstrated an enhanced bone regeneration compared to RvE1 or bovine graft alone in the calvarial defect of Wistar rats.


Assuntos
Regeneração Óssea , Ácido Eicosapentaenoico , Ácido Eicosapentaenoico/análogos & derivados , Ratos , Animais , Bovinos , Ratos Wistar , Microtomografia por Raio-X , Regeneração Óssea/genética , Ácido Eicosapentaenoico/farmacologia , Expressão Gênica
7.
Clin Implant Dent Relat Res ; 26(2): 266-280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37357340

RESUMO

BACKGROUND: Nonresorbable membranes promote bone formation during guided bone regeneration (GBR), yet the relationships between membrane properties and molecular changes in the surrounding tissue are largely unknown. AIM: To compare the molecular events in the overlying soft tissue, the membrane, and the underlying bone defect during GBR using dual-layered expanded membranes versus dense polytetrafluoroethylene (PTFE) membranes. MATERIALS AND METHODS: Rat femur defects were treated with either dense PTFE (d-PTFE) or dual-layered expanded PTFE (dual e-PTFE) or left untreated as a sham. Samples were collected after 6 and 28 days for gene expression, histology, and histomorphometry analyses. RESULTS: The two membranes promoted the overall bone formation compared to sham. Defects treated with dual e-PTFE exhibited a significantly higher proportion of new bone in the top central region after 28 days. Compared to that in the sham, the soft tissue in the dual e-PTFE group showed 2-fold higher expression of genes related to regeneration (FGF-2 and FOXO1) and vascularization (VEGF). Furthermore, compared to cells in the d-PTFE group, cells in the dual e-PTFE showed 2.5-fold higher expression of genes related to osteogenic differentiation (BMP-2), regeneration (FGF-2 and COL1A1), and vascularization (VEGF), in parallel with lower expression of proinflammatory cytokines (IL-6 and TNF-α). Multiple correlations were found between the molecular activities in membrane-adherent cells and those in the soft tissue. CONCLUSION: Selective surface modification of the two sides of the e-PTFE membrane constitutes a novel means of modulating the tissue response and promoting bone regeneration.


Assuntos
Regeneração Tecidual Guiada Periodontal , Osteogênese , Ratos , Animais , Politetrafluoretileno , Fator 2 de Crescimento de Fibroblastos , Fator A de Crescimento do Endotélio Vascular , Membranas Artificiais , Regeneração Óssea/genética , Expressão Gênica
8.
Int Immunopharmacol ; 125(Pt B): 111190, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976598

RESUMO

Diabetic bone disease (DBD) is a complication of diabetes mellitus (DM) and is characterized by impaired osteocyte function and delayed bone remodeling due to high blood glucose levels and sustained release of inflammatory factors. Recent studies show that the regulation of osteoblasts (OBs) by bone marrow stromal cells (BMSCs) is an important mechanism in alleviating DBD and that exosomes are recognized as the key medium. Mesenchymal stem cell-derived exosome (MSC-Exos) therapy is a promising approach to facilitate tissue repair. However, the influence of exosomes from diabetic conditioned BMSCs on OBs and bone regeneration, as well as the underlying mechanism, are still elusive. Here, we used high-glucose medium to mimic diabetic conditions and normal-glucose medium as control to mimic nondiabetic conditions in vitro and found that microRNA-17 (miR-17) was downregulated in diabetic-conditioned BMSC-derived exosomes (HG-Exos), HG-Exo-co-cultured osteoblasts, and the skull of rats with type 2 diabetes mellitus (T2DM). Further experiment concluded that nondiabetic conditioned BMSC-Exos (NG-Exos) promoted the osteogenesis of OBs and bone regeneration of rats with T2DM via upregulation of miR-17. Compare with NG-Exos, HG-Exos impeded osteogenesis of OBs in vitro and bone regeneration of rats in vivo by downregulation of miR-17. Moreover, miR-17 promoted bone regeneration by targeting SMAD7, which was further proved to have a negative effect on osteogenesis. Taken together, nondiabetic BMSC-derived exosomes greatly foster bone regeneration, whereas diabetic BMSC-derived exosomes undermine the promotion effect of MSC-Exos by regulating the miR-17/SMAD7 axis. These findings provide support for the miR-17-5p/SMAD7 axis as a promising therapeutic target to treat DBD.


Assuntos
Diabetes Mellitus Tipo 2 , Exossomos , MicroRNAs , Animais , Ratos , Regeneração Óssea/genética , Glucose , MicroRNAs/genética
9.
Adv Sci (Weinh) ; 10(33): e2302622, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37847907

RESUMO

Regenerative medicine in tissue engineering often relies on stem cells and specific growth factors at a supraphysiological dose. These approaches are costly and may cause severe side effects. Herein, therapeutic small extracellular vesicles (t-sEVs) endogenously loaded with a cocktail of human vascular endothelial growth factor A (VEGF-A) and human bone morphogenetic protein 2 (BMP-2) mRNAs within a customized injectable PEGylated poly (glycerol sebacate) acrylate (PEGS-A) hydrogel for bone regeneration in rats with challenging femur critical-size defects are introduced. Abundant t-sEVs are produced by a facile cellular nanoelectroporation system based on a commercially available track-etched membrane (TM-nanoEP) to deliver plasmid DNAs to human adipose-derived mesenchymal stem cells (hAdMSCs). Upregulated microRNAs associated with the therapeutic mRNAs are enriched in t-sEVs for enhanced angiogenic-osteogenic regeneration. Localized and controlled release of t-sEVs within the PEGS-A hydrogel leads to the retention of therapeutics in the defect site for highly efficient bone regeneration with minimal low accumulation in other organs.


Assuntos
Osteogênese , Fator A de Crescimento do Endotélio Vascular , Ratos , Humanos , Animais , RNA Mensageiro/genética , Regeneração Óssea/genética , Hidrogéis/farmacologia
10.
J Cell Mol Med ; 27(24): 4056-4068, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855249

RESUMO

Periodontal bone regeneration using bone marrow mesenchymal stem cell (BMMSC) transplantation is a promising method; however, the method for osteogenic differentiation of BMMSCs needs to be improved. In this research, we sought to identify the roles of let-7a in the osteogenesis of BMMSCs and to provide a potential method for periodontal bone regeneration. Our previous study revealed that Fas/FasL is a target of let-7a. In this study, we demonstrated that let-7a overexpression significantly enhanced BMMSC-CAs osteogenesis both in vitro and in vivo. Mechanistically, upregulation of Fas/FasL using the rfas/rfaslg plasmid obstructed the osteogenesis of BMMSCs by inhibiting autophagy. Furthermore, we confirmed that overexpression of let-7a activated autophagy and alleviated the inhibited osteogenesis by the autophagy inhibitor 3-MA and the rfas/rfaslg plasmid of BMMSCs. In general, our findings showed that let-7a promoted the osteogenesis of BMMSCs through the Fas/FasL-autophagy pathway, suggesting that the application of let-7a in BMMSC-CAs based periodontal bone regeneration could be a promising strategy.


Assuntos
Regeneração Óssea , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Animais , Ratos , Células da Medula Óssea/metabolismo , Regeneração Óssea/genética , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Regulação para Cima , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia/genética , Receptor fas/metabolismo , Proteína Ligante Fas/metabolismo
11.
Adv Sci (Weinh) ; 10(32): e2304111, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37775309

RESUMO

Geometry and angles play crucial roles in cellular processes; however, its mechanisms of regulation remain unclear. In this study, a series of three dimensional (3D)-printed microfibers with different geometries is constructed using a near-field electrostatic printing technique to investigate the regulatory mechanisms of geometry on stem cell function and bone regeneration. The scaffolds precisely mimicked cell dimensions with high porosity and interoperability. Compared with other spatial topography angles, microfibers with a 90° topology can significantly promote the expression of osteogenic gene proteins in bone marrow-derived mesenchymal stem cells (BMSCs). The effects of different spatial structures on the expression profiles of BMSCs differentiation genes are correlated and validated using microRNA sequencing. Enrichment analysis shows that the 90° microfibers promoted osteogenesis in BMSCs by significantly upregulating miR-222-5p/cbfb/Runx2 expression. The ability of the geometric architecture to promote bone regeneration, as assessed using the cranial defect model, demonstrates that the 90° fiber scaffolds significantly promote new bone regeneration and neovascular neural network formation. This study is the first to elucidate the relationship between angular geometry and cellular gene expression, contributing significantly to the understanding of how geometric architecture can promote stem cell differentiation, proliferation, and function for structural bone regeneration.


Assuntos
Regeneração Óssea , Osteogênese , Regeneração Óssea/genética , Osteogênese/genética , Diferenciação Celular/genética , Células-Tronco , Expressão Gênica
12.
J Periodontal Res ; 58(6): 1300-1314, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37715945

RESUMO

OBJECTIVE: This study aimed to investigate the effect of proanthocyanidin (PA) on osteogenesis mediated by periodontal ligament stem cells (PDLSCs) and endogenous alveolar bone regeneration. BACKGROUND: Leveraging the osteogenic potential of resident stem cells is a promising strategy for alveolar bone regeneration. PA has been reported to be effective in osteogenesis. However, the effect and mechanism of PA on the osteogenic differentiation of PDLSCs remain elusive. METHODS: Human PDLSCs were treated with various doses of PA to assess the cell proliferation using Cell Counting Kit-8. The osteogenic differentiation ability was detected by qRT-PCR analysis, western blot analysis, Alizarin red S staining, and Alkaline Phosphatase staining. The level of autophagy was evaluated by confocal laser scanning microscopy, transmission electron microscopy, and western blot analysis. RNA sequencing was utilized to screen the potential signaling pathway. The alveolar bone defect model of rats was created to observe endogenous bone regeneration. RESULTS: PA activated intracellular autophagy in PDLSCs, resulting in enhanced osteogenic differentiation. Moreover, this effect could be abolished by the autophagy inhibitor 3-Methyladenine. Mechanistically, the PI3K/Akt/mTOR pathway was negatively correlated with PA-mediated autophagy activation. Lastly, PA promoted the alveolar bone regeneration in vivo, and this effect was reversed when the autophagy process was blocked. CONCLUSION: PA may activate autophagy by inhibiting PI3K/Akt/mTOR signaling pathway to promote the osteogenesis of PDLSCs and enhance endogenous alveolar bone regeneration.


Assuntos
Ligamento Periodontal , Proantocianidinas , Humanos , Ratos , Animais , Osteogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proantocianidinas/farmacologia , Células-Tronco , Diferenciação Celular , Regeneração Óssea/genética , Proliferação de Células , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Células Cultivadas
13.
J Cell Mol Med ; 27(22): 3465-3477, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602966

RESUMO

Periodontal bone regeneration is a major challenge in the treatment of periodontitis. However, the regenerative vitality of periodontal ligament cells (PDLCs) declines in the environment of periodontitis and accompanying oxidative stress. This study aimed to investigate the functional mechanisms of Bach1, a transcriptional suppressor involved in oxidative stress response, and its regulation of PDLC osteogenesis under inflammatory conditions. We observed a significant elevation in Bach1 expression in periodontal tissues with periodontitis and PDLCs under inflammatory conditions. Knockdown of Bach1 alleviated the inflammation-induced oxidative stress level and partly offset the inhibitory effect of inflammatory conditions on osteogenesis, as well as the expression of osteogenic genes BMP6, OPG and RUNX2. Similarly, knockdown of Bach1 protects PDLCs from inflammatory damage to periodontal bone regeneration in vivo. Furthermore, we found that Bach1 could bind to the histone methyltransferase EZH2, and the binding increased under inflammatory conditions. Bach1 enhanced the ability of EZH2 to catalyse H3K27me3 on the promoter region of RUNX2 and BMP6, thus repressing the expression of osteoblastic genes. In conclusion, our study revealed that knockdown of Bach1 effectively rescued the osteogenesis and oxidative stress of PDLCs with inflammation. Bach1 could be a promising target for enhancing periodontal tissue regeneration under periodontitis conditions.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Periodontite , Humanos , Regeneração Óssea/genética , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Inflamação/genética , Inflamação/metabolismo , Osteogênese/genética , Ligamento Periodontal/metabolismo , Periodontite/genética , Periodontite/metabolismo
14.
ACS Biomater Sci Eng ; 9(9): 5186-5204, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37585807

RESUMO

This systematic review and meta-analysis focused on the effectiveness of biomaterials integrated with specific microRNAs (miRNAs) for bone fracture repair treatment. We conducted a comprehensive search of the PubMed, Web of Science, and Scopus databases, identifying 42 relevant papers up to March 2022. Hydrogel-based scaffolds were the most commonly used, incorporating miRNAs like miR-26a, miR-21, and miR-222, with miR-26a being the most prevalent. The meta-analysis revealed significant benefits of incorporating miRNAs into scaffolds for bone repair, particularly in hydrogel scaffolds. However, some controversies were observed among studies, presenting challenges in selecting appropriate miRNAs for this purpose. The study concludes that incorporating specific miRNAs into bone biomaterials enhances bone regeneration, but further trials comparing different biomaterials and miRNAs are necessary to validate their potential applications for bone tissue regeneration.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Regeneração Óssea/genética , Hidrogéis/uso terapêutico , Biologia Computacional
15.
Mol Biol Rep ; 50(10): 8715-8728, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642761

RESUMO

Bone regeneration is a complex process that requires not only the participation of multiple cell types, but also signal communication between cells. The two basic processes of osteogenesis and angiogenesis are closely related to bone regeneration and bone homeostasis. H-type vessels are a subtype of bone vessels characterized by high expression of CD31 and EMCN. These vessels play a key role in the regulation of bone regeneration and are important mediators of coupling between osteogenesis and angiogenesis. Molecular regulation between different cell types is important for coordination of osteogenesis and angiogenesis that promotes bone regeneration. MiRNAs are small non-coding RNAs that predominantly regulate gene expression at the post-transcriptional level and are closely related to cell communication. Specifically, miRNAs transduce external stimuli through various cell signaling pathways and cause a series of physiological and pathological effects. They are also deeply involved in the bone repair process. This review focuses on three signaling pathways related to osteogenesis-angiogenesis coupling, as well as the miRNAs involved in these pathways. Elucidation of the molecular mechanisms governing osteogenesis and angiogenesis is of great significance for bone regeneration.


Assuntos
MicroRNAs , Osteogênese , Osteogênese/genética , MicroRNAs/genética , Comunicação Celular/genética , Regeneração Óssea/genética , Homeostase
16.
Cells ; 12(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37443796

RESUMO

Adenovirus-mediated gene therapy is a promising tool in bone regenerative medicine. In this work, gene-activated matrices (GAMs) composed of (1) polylactide granules (PLA), which serve as a depot for genetic constructs or matrices for cell attachment, (2) a PRP-based fibrin clot, which is a source of growth factors and a binding gel, and (3) a BMP2 gene providing osteoinductive properties were studied. The study aims to compare the effectiveness of in vivo and ex vivo gene therapy based on adenoviral constructs with the BMP2 gene, PLA particles, and a fibrin clot for bone defect healing. GAMs with Ad-BMP2 and MSC(Ad-BMP2) show osteoinductive properties both in vitro and in vivo. However, MSCs incubated with GAMs containing transduced cells showed a more significant increase in osteopontin gene expression, protein production, Alpl activity, and matrix mineralization. Implantation of the studied matrices into critical-size calvarial defects after 56 days promotes the formation of young bone. The efficiency of neoosteogenesis and the volume fraction of newly formed bone tissue are higher with PLA/PRP-MSC(Ad-BMP2) implantation (33%) than PLA/PRP-Ad-BMP2 (28%). Thus, ex vivo adenoviral gene therapy with the BMP2 gene has proven to be a more effective approach than the in vivo delivery of gene constructs for bone regeneration.


Assuntos
Adenoviridae , Osteogênese , Osteogênese/genética , Adenoviridae/genética , Regeneração Óssea/genética , Terapia Genética , Fibrina
17.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175732

RESUMO

The process of repairing significant bone defects requires the recruitment of a considerable number of cells for osteogenesis-related activities, which implies the consumption of a substantial amount of oxygen and nutrients. Therefore, the limited supply of nutrients and oxygen at the defect site is a vital constraint that affects the regenerative effect, which is closely related to the degree of a well-established vascular network. Hypoxia-inducible factor (HIF-1α), which is an essential transcription factor activated in hypoxic environments, plays a vital role in vascular network construction. HIF-1α, which plays a central role in regulating cartilage and bone formation, induces vascular invasion and differentiation of osteoprogenitor cells to promote and maintain extracellular matrix production by mediating the adaptive response of cells to changes in oxygen levels. However, the application of HIF-1α in bone tissue engineering is still controversial. As such, clarifying the function of HIF-1α in regulating the bone regeneration process is one of the urgent issues that need to be addressed. This review provides insight into the mechanisms of HIF-1α action in bone regeneration and related recent advances. It also describes current strategies for applying hypoxia induction and hypoxia mimicry in bone tissue engineering, providing theoretical support for the use of HIF-1α in establishing a novel and feasible bone repair strategy in clinical settings.


Assuntos
Regeneração Óssea , Osso e Ossos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Engenharia Tecidual , Humanos , Regeneração Óssea/genética , Regeneração Óssea/fisiologia , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio
18.
Pharmacol Res ; 192: 106798, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37211240

RESUMO

Exosomes, small extracellular vesicles that function as a key regulator of cell-to-cell communication, are emerging as a promising candidate for bone regeneration. Here, we aimed to investigate the effect of exosomes from pre-differentiated human alveolar bone-derived bone marrow mesenchymal stromal cells (AB-BMSCs) carrying specific microRNAs on bone regeneration. Exosomes secreted from AB-BMSCs pre-differentiated for 0 and 7 days were cocultured with BMSCs in vitro to investigate their effect on the differentiation of the BMSCs. MiRNAs from AB-BMSCs at different stages of osteogenic differentiation were analyzed. BMSCs seeded on poly-L-lactic acid(PLLA) scaffolds were treated with miRNA antagonist-decorated exosomes to verify their effect on new bone regeneration. Exosomes pre-differentiated for 7 days effectively promoted the differentiation of BMSCs. Bioinformatic analysis revealed that miRNAs within the exosomes were differentially expressed, including the upregulation of osteogenic miRNAs (miR-3182, miR-1468) and downregulation of anti-osteogenic miRNAs (miR-182-5p, miR-335-3p, miR-382-5p), causing activation of the PI3K/Akt signaling pathway. The treatment of BMSC-seeded scaffolds with anti-miR-182-5p decorated exosomes demonstrated enhanced osteogenic differentiation and efficient formation of new bone. In conclusion, Osteogenic exosomes secreted from pre-differentiated AB-BMSCs were identified and the gene modification of exosomes provides great potential as a bone regeneration strategy. DATA AVAILABILITY STATEMENT: Data generated or analyzed in this paper partly are available in the GEO public data repository(http://www.ncbi.nlm.nih.gov/geo).


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Osteogênese , Exossomos/genética , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regeneração Óssea/genética , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular
19.
J Biomed Sci ; 30(1): 26, 2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088847

RESUMO

BACKGROUND: Although mRNA dysregulation can induce changes in mesenchymal stem cell (MSC) homeostasis, the mechanisms by which post-transcriptional regulation influences MSC differentiation potential remain understudied. PUMILIO2 (PUM2) represses translation by binding target mRNAs in a sequence-specific manner. METHODS: In vitro osteogenic differentiation assays were conducted using human bone marrow-derived MSCs. Alkaline phosphatase and alizarin red S staining were used to evaluate the osteogenic potential of MSCs. A rat xenograft model featuring a calvarial defect to examine effects of MSC-driven bone regeneration. RNA-immunoprecipitation (RNA-IP) assay was used to determine the interaction between PUM2 protein and Distal-Less Homeobox 5 (DLX5) mRNA. Ovariectomized (OVX) mice were employed to evaluate the effect of gene therapy for postmenopausal osteoporosis. RESULTS: Here, we elucidated the molecular mechanism of PUM2 in MSC osteogenesis and evaluated the applicability of PUM2 knockdown (KD) as a potential cell-based or gene therapy. PUM2 level was downregulated during MSC osteogenic differentiation, and PUM2 KD enhanced MSC osteogenic potential. Following PUM2 KD, MSCs were transplanted onto calvarial defects in 12-week-old rats; after 8 weeks, transplanted MSCs promoted bone regeneration. PUM2 KD upregulated the expression of DLX5 mRNA and protein and the reporter activity of its 3'-untranslated region. RNA-IP revealed direct binding of PUM2 to DLX5 mRNA. We then evaluated the potential of adeno-associated virus serotype 9 (AAV9)-siPum2 as a gene therapy for osteoporosis in OVX mice. CONCLUSION: Our findings suggest a novel role for PUM2 in MSC osteogenesis and highlight the potential of PUM2 KD-MSCs in bone regeneration. Additionally, we showed that AAV9-siPum2 is a potential gene therapy for osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Ratos , Camundongos , Animais , Osteogênese/genética , Regulação para Baixo , Diferenciação Celular , Regeneração Óssea/genética , RNA , RNA Mensageiro/metabolismo , Células Cultivadas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
20.
Biochem Soc Trans ; 51(2): 841-854, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37073783

RESUMO

microRNAs (miRs) have been reported over the decades as important regulators in bone development and bone regeneration. They play important roles in maintaining the stem cell signature as well as regulating stem cell fate decisions. Thus, delivering miRs and miR inhibitors to the defect site is a potential treatment towards craniofacial bone defects. However, there are challenges in translation of basic research to clinics, including the efficiency, specificity, and efficacy of miR manipulation methods and the safety of miR delivery systems. In this review, we will compare miR oligonucleotides, mimics and antagomirs as therapeutic reagents to treat disease and regenerate tissues. Newer technology will be discussed as well as the efficiency and efficacy of using these technologies to express or inhibit miRs in treating and repairing oral tissues. Delivery of these molecules using extracellular vesicles and nanoparticles can achieve different results and depending on their composition will elicit specific effects. We will highlight the specificity, toxicity, stability, and effectiveness of several miR systems in regenerative medicine.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/uso terapêutico , Medicina Regenerativa , Diferenciação Celular , Células-Tronco , Regeneração Óssea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...