Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Dev Biol ; 511: 63-75, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621649

RESUMO

Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.


Assuntos
Quinases Dyrk , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Proteínas de Xenopus , Xenopus laevis , Animais , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Crista Neural/embriologia , Crista Neural/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Transdução de Sinais , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/metabolismo , Região Branquial/embriologia , Região Branquial/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/embriologia
2.
Dev Dyn ; 252(12): 1462-1470, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37543988

RESUMO

BACKGROUND: FOXI3 is a forkhead family transcription factor that is expressed in the progenitors of craniofacial placodes, epidermal placodes, and the ectoderm and endoderm of the pharyngeal arch region. Loss of Foxi3 in mice and pathogenic Foxi3 variants in dogs and humans cause a variety of craniofacial defects including absence of the inner ear, severe truncations of the jaw, loss or reduction in external and middle ear structures, and defects in teeth and hair. RESULTS: To allow for the identification, isolation, and lineage tracing of Foxi3-expressing cells in developing mice, we targeted the Foxi3 locus to create Foxi3GFP and Foxi3CreER mice. We show that Foxi3GFP mice faithfully recapitulate the expression pattern of Foxi3 mRNA at all ages examined, and Foxi3CreER mice can trace the derivatives of pharyngeal arch ectoderm and endoderm, the pharyngeal pouches and clefts that separate each arch, and the derivatives of hair and tooth placodes. CONCLUSIONS: Foxi3GFP and Foxi3CreER mice are new tools that will be of use in identifying and manipulating pharyngeal arch ectoderm and endoderm and hair and tooth placodes.


Assuntos
Ectoderma , Endoderma , Humanos , Cães , Animais , Camundongos , Ectoderma/metabolismo , Endoderma/metabolismo , Região Branquial/metabolismo , Cabelo/metabolismo , Epiderme/metabolismo , Fatores de Transcrição Forkhead/genética
3.
Development ; 149(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762641

RESUMO

The pseudobranch is a gill-like epithelial elaboration that sits behind the jaw of most fishes. This structure was classically regarded as a vestige of the ancestral gill arch-like condition of the gnathostome jaw. However, more recently, hypotheses of jaw evolution by transformation of a gill arch have been challenged, and the pseudobranch has alternatively been considered a specialised derivative of the second (hyoid) pharyngeal arch. Here, we demonstrate in the skate (Leucoraja erinacea) that the pseudobranch does, in fact, derive from the mandibular arch, and that it shares gene expression features and cell types with gills. We also show that the skate mandibular arch pseudobranch is supported by a spiracular cartilage that is patterned by a shh-expressing epithelial signalling centre. This closely parallels the condition seen in the gill arches, where cartilaginous appendages called branchial rays, which support the respiratory lamellae of the gills, are patterned by a shh-expressing gill arch epithelial ridge. Together with similar discoveries in zebrafish, our findings support serial homology of the pseudobranch and gills, and an ancestral origin of gill arch-like anatomical features from the gnathostome mandibular arch.


Assuntos
Brânquias , Rajidae , Animais , Região Branquial/metabolismo , Brânquias/metabolismo , Arcada Osseodentária , Rajidae/genética , Peixe-Zebra
4.
Dev Biol ; 489: 122-133, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35732225

RESUMO

Craniofacial skeletal elements are derived from cranial neural crest cells (CNCCs), which migrate along discrete paths and populate distinct pharyngeal arches, structures that are separated by the neighboring endodermal pouches (EPs). Interactions between the CNCCs and the endoderm are critical for proper craniofacial development. In zebrafish, integrin α5 (Itga5) functions in the endoderm to regulate formation of specifically the first EP (EP1) and the development of the hyoid cartilage. Here we show that fibronectin (Fn), a major component of the extracellular matrix (ECM), is also required for these developmental processes, and that the penetrance of defects in mutants is temperature-dependent. fn1a-/- embryos exhibited defects that are similar to, but much more severe than, those of itga5-/- embryos, and a loss of integrin av (itgav) function enhanced both endoderm and cartilage defects in itga5-/- embryos, suggesting that Itga5 and Itgav cooperate to transmit signals from Fn to regulate the development of endoderm and cartilage. Whereas the endodermal defects in itga5; itga5v-/- double mutant embryos were comparable to those of fn1a-/- mutants, the cartilage defects were much milder. Furthermore, Fn assembly was detected in migrating CNCCs, and the epithelial organization and differentiation of CNCC-derived arches were impaired in fn1a-/- embryos, indicating that Fn1 exerts functions in arch development that are independent of Itga5 and Itgav. Additionally, reduction of itga5 function in fn1a-/- embryos led to profound defects in body axis elongation, as well as in endoderm and cartilage formation, suggesting that other ECM proteins signal through Itga5 to regulate development of the endoderm and cartilage. Thus, our studies reveal that Fn1a and Itga5 have both overlapping and independent functions in regulating development of the pharyngeal endoderm and cartilage.


Assuntos
Endoderma , Integrina alfa5 , Animais , Região Branquial/metabolismo , Cartilagem/metabolismo , Endoderma/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Integrina alfa5/genética , Integrina alfa5/metabolismo , Crista Neural , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Dev Biol ; 489: 98-108, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35714752

RESUMO

During chick craniofacial development, the second (hyoid) pharyngeal arch expands to close the neck and gives rise to skeletal elements, including the columella of the middle ear (a homologue of the mammalian stapes). Sonic hedgehog (SHH) signalling has been implicated in hyoid arch expansion and columella formation, but spatial and temporal aspects of these signalling interactions within the hyoid arch remain poorly understood. Here, we show that SHH is initially expressed in the posterior endoderm of the hyoid arch, and that this domain subsequently splits into a distal domain at the site of arch expansion (the posterior epithelial margin, PEM), and a proximal domain that lines the foregut (the proximal hyoid epithelium, PHE). Pharmacological manipulations and heterotopic grafting experiments demonstrate that SHH signalling is required for hyoid arch expansion and skeletogenesis, and reveal distinct roles for the PEM and PHE in these processes. The PEM promotes mesenchymal cell proliferation during arch expansion but is not sufficient to repattern the columella. Conversely, the PHE promotes mesenchymal cell survival, and PHE grafts induce partial duplication of the columella. This work demonstrates crucial and distinct roles for endodermal SHH signalling in hyoid arch morphogenesis and patterning of the middle ear skeleton.


Assuntos
Região Branquial , Proteínas Hedgehog , Animais , Padronização Corporal , Região Branquial/metabolismo , Orelha Média , Endoderma/metabolismo , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Mamíferos/metabolismo
6.
Dev Biol ; 489: 62-75, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35697116

RESUMO

Mcrs1 is a multifunctional protein that is critical for many cellular processes in a wide range of cell types. Previously, we showed that Mcrs1 binds to the Six1 transcription factor and reduces the ability of the Six1-Eya1 complex to upregulate transcription, and that Mcrs1 loss-of-function leads to the expansion of several neural plate genes, reduction of neural border and pre-placodal ectoderm (PPR) genes, and pleiotropic effects on various neural crest (NC) genes. Because the affected embryonic structures give rise to several of the cranial tissues affected in Branchio-otic/Branchio-oto-renal (BOR) syndrome, herein we tested whether these gene expression changes subsequently alter the development of the proximate precursors of BOR affected structures - the otic vesicles (OV) and branchial arches (BA). We found that Mcrs1 is required for the expression of several OV genes involved in inner ear formation, patterning and otic capsule cartilage formation. Mcrs1 knockdown also reduced the expression domains of many genes expressed in the larval BA, derived from either NC or PPR, except for emx2, which was expanded. Reduced Mcrs1 also diminished the length of the expression domain of tbx1 in BA1 and BA2 and interfered with cranial NC migration from the dorsal neural tube; this subsequently resulted in defects in the morphology of lower jaw cartilages derived from BA1 and BA2, including the infrarostral, Meckel's, and ceratohyal as well as the otic capsule. These results demonstrate that Mcrs1 plays an important role in processes that lead to the formation of craniofacial cartilages and its loss results in phenotypes consistent with reduced Six1 activity associated with BOR.


Assuntos
Região Branquial , Síndrome Brânquio-Otorrenal , Região Branquial/metabolismo , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/metabolismo , Cartilagem/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Crista Neural , Placa Neural/metabolismo , Proteínas de Ligação a RNA/metabolismo
7.
Cell Rep ; 37(12): 110140, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936864

RESUMO

Neural crest (NC) cells migrate throughout vertebrate embryos to give rise to a huge variety of cell types, but when and where lineages emerge and their regulation remain unclear. We have performed single-cell RNA sequencing (RNA-seq) of cranial NC cells from the first pharyngeal arch in zebrafish over several stages during migration. Computational analysis combining pseudotime and real-time data reveals that these NC cells first adopt a transitional state, becoming specified mid-migration, with the first lineage decisions being skeletal and pigment, followed by neural and glial progenitors. In addition, by computationally integrating these data with RNA-seq data from a transgenic Wnt reporter line, we identify gene cohorts with similar temporal responses to Wnts during migration and show that one, Atp6ap2, is required for melanocyte differentiation. Together, our results show that cranial NC cell lineages arise progressively and uncover a series of spatially restricted cell interactions likely to regulate such cell-fate decisions.


Assuntos
Linhagem da Célula , Crista Neural/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Região Branquial/metabolismo , Comunicação Celular , Diferenciação Celular , Movimento Celular , Nervos Cranianos/metabolismo , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , RNA-Seq , Transdução de Sinais , Análise de Célula Única
8.
Nat Commun ; 12(1): 6645, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789765

RESUMO

The poles of the heart and branchiomeric muscles of the face and neck are formed from the cardiopharyngeal mesoderm within the pharyngeal apparatus. They are disrupted in patients with 22q11.2 deletion syndrome, due to haploinsufficiency of TBX1, encoding a T-box transcription factor. Here, using single cell RNA-sequencing, we now identify a multilineage primed population within the cardiopharyngeal mesoderm, marked by Tbx1, which has bipotent properties to form cardiac and branchiomeric muscle cells. The multilineage primed cells are localized within the nascent mesoderm of the caudal lateral pharyngeal apparatus and provide a continuous source of cardiopharyngeal mesoderm progenitors. Tbx1 regulates the maturation of multilineage primed progenitor cells to cardiopharyngeal mesoderm derivatives while restricting ectopic non-mesodermal gene expression. We further show that TBX1 confers this balance of gene expression by direct and indirect regulation of enriched genes in multilineage primed progenitors and downstream pathways, partly through altering chromatin accessibility, the perturbation of which can lead to congenital defects in individuals with 22q11.2 deletion syndrome.


Assuntos
Região Branquial/citologia , Mesoderma/citologia , Miocárdio/citologia , Proteínas com Domínio T/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Região Branquial/embriologia , Região Branquial/metabolismo , Diferenciação Celular , Linhagem da Célula , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Coração/embriologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas com Domínio T/genética
9.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34383890

RESUMO

Neural crest cells (NCCs) within the mandibular and maxillary prominences of the first pharyngeal arch are initially competent to respond to signals from either region. However, mechanisms that are only partially understood establish developmental tissue boundaries to ensure spatially correct patterning. In the 'hinge and caps' model of facial development, signals from both ventral prominences (the caps) pattern the adjacent tissues whereas the intervening region, referred to as the maxillomandibular junction (the hinge), maintains separation of the mandibular and maxillary domains. One cap signal is GATA3, a member of the GATA family of zinc-finger transcription factors with a distinct expression pattern in the ventral-most part of the mandibular and maxillary portions of the first arch. Here, we show that disruption of Gata3 in mouse embryos leads to craniofacial microsomia and syngnathia (bony fusion of the upper and lower jaws) that results from changes in BMP4 and FGF8 gene regulatory networks within NCCs near the maxillomandibular junction. GATA3 is thus a crucial component in establishing the network of factors that functionally separate the upper and lower jaws during development.


Assuntos
Padronização Corporal , Face/embriologia , Fator de Transcrição GATA3/metabolismo , Animais , Região Branquial/citologia , Região Branquial/embriologia , Região Branquial/metabolismo , Morte Celular , Proliferação de Células , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Embrião de Mamíferos , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica no Desenvolvimento , Mandíbula/citologia , Mandíbula/embriologia , Maxila/citologia , Maxila/embriologia , Camundongos , Morfogênese , Crista Neural/citologia , Crista Neural/embriologia , Crista Neural/metabolismo
10.
Cells Dev ; 167: 203725, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34324991

RESUMO

Cardiac neural crest cells arise in the caudal hindbrain and then migrate to the heart through the pharyngeal arches. These cells contribute to the formation of the heart, including the outflow tract, and are unique to this neural crest population. MafB is a transcription factor expressed specifically in early migrating cardiac neural crest cells as well as in rhombomeres (r) 5 and 6. Here, we identified the regulatory region in the chicken genome controlling the expression of endogenous MafB transcripts and used these essential elements to express MafB in the cardiac neural crest in reporter assays. A reporter driven by this regulatory region was employed to trace the migration of these cells into the pharyngeal arches. This regulatory region demonstrated transcriptional activity in the cardiac neural crest but not in other neural crest cell subpopulations, such as the cranial and trunk cells. This study provides insights into the gene regulatory mechanisms that specify cardiac neural crest cells among neural crest cell populations.


Assuntos
Galinhas/genética , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição MafB/genética , Miocárdio/metabolismo , Crista Neural/embriologia , Crista Neural/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Proteínas Aviárias/metabolismo , Região Branquial/metabolismo , Movimento Celular/genética , Sequência Conservada/genética , DNA Intergênico/genética , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Genoma , Proteínas de Fluorescência Verde/metabolismo , Fator de Transcrição MafB/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
11.
Dev Dyn ; 250(12): 1796-1809, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34091971

RESUMO

BACKGROUND: Hand genes are required for the development of the vertebrate jaw, heart, peripheral nervous system, limb, gut, placenta, and decidua. Two Hand paralogues, Hand1 and Hand2, are present in most vertebrates, where they mediate different functions yet overlap in expression. In ray-finned fishes, Hand gene expression and function is only known for the zebrafish, which represents the rare condition of having a single Hand gene, hand2. Here we describe the developmental expression of hand1 and hand2 in the cichlid Copadichromis azureus. RESULTS: hand1 and hand2 are expressed in the cichlid heart, paired fins, pharyngeal arches, peripheral nervous system, gut, and lateral plate mesoderm with different degrees of overlap. CONCLUSIONS: Hand gene expression in the gut, peripheral nervous system, and pharyngeal arches may have already been fixed in the lobe- and ray-finned fish common ancestor. In other embryonic regions, such as paired appendages, hand2 expression was fixed, while hand1 expression diverged in lobe- and ray-finned fish lineages. In the lateral plate mesoderm and arch associated catecholaminergic cells, hand1 and hand2 swapped expression between divergent lineages. Distinct expression of cichlid hand1 and hand2 in the epicardium and myocardium of the developing heart may represent the ancestral pattern for bony fishes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclídeos/embriologia , Desenvolvimento Embrionário/genética , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Região Branquial/embriologia , Região Branquial/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Intestinos/embriologia , Intestinos/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Miocárdio/metabolismo , Sistema Nervoso Periférico/embriologia , Sistema Nervoso Periférico/metabolismo , Homologia de Sequência , Crânio/embriologia , Crânio/metabolismo , Dente/embriologia , Dente/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Dev Dyn ; 250(7): 1036-1050, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33452727

RESUMO

BACKGROUND: Pharyngeal arches (PA) are sequentially generated in an anterior-to-posterior order. Ripply3 is essential for posterior PA development in mouse embryos and its expression is sequentially activated in ectoderm and endoderm prior to formation of each PA. Since the PA phenotype of Ripply3 knockout (KO) mice is similar to that of retinoic acid (RA) signal-deficient embryos, we investigated the relationship between RA signaling and Ripply3 in mouse embryos. RESULTS: In BMS493 (pan-RAR antagonist) treated embryos, which are defective in third and fourth PA development, Ripply3 expression is decreased in the region posterior to PA2 at E9.0. This expression remains and its distribution is expanded posteriorly at E9.5. Conversely, high dose RA exposure does not apparently change its expression at E9.0 and 9.5. Knockout of retinaldehyde dehydrogenase 2 (Raldh2), which causes more severe PA defect, attenuates sequential Ripply3 expression at PA1 and reduces its expression level. EGFP reporter expression driven by a 6 kb Ripply3 promoter fragment recapitulates the endogenous Ripply3 mRNA expression during PA development in wild-type, but its distribution is expanded posteriorly in BMS493-treated and Raldh2 KO embryos. CONCLUSION: Spatio-temporal regulation of Ripply3 expression by RA signaling is indispensable for the posterior PA development in mouse.


Assuntos
Região Branquial/embriologia , Proteínas Repressoras/genética , Tretinoína/metabolismo , Animais , Benzoatos/farmacologia , Região Branquial/efeitos dos fármacos , Região Branquial/metabolismo , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Gravidez , Proteínas Repressoras/metabolismo , Receptor alfa de Ácido Retinoico/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estilbenos/farmacologia , Tretinoína/farmacologia , Tretinoína/fisiologia
13.
Dev Biol ; 472: 52-66, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482174

RESUMO

In this study, we elucidate a single cell resolution fate map in the zebrafish in a sub-section of the anterior Lateral Plate Mesoderm (aLPM) at 18 hpf. Our results show that this tissue is not organized into segregated regions but gives rise to intermingled pericardial sac, peritoneum, pharyngeal arch and cardiac precursors. We further report upon asymmetrical contributions of lateral aLPM-derived heart precursors-specifically that twice as many heart precursors arise from the right side versus the left side of the embryo. Cell tracking analyses and large-scale cell labeling of the lateral aLPM corroborate these differences and show that the observed asymmetries are dependent upon Tbx5a expression. Previously, it was shown that cardiac looping was affected in Tbx5a knock-down and knock-out zebrafish (Garrity et al., 2002; Parrie et al., 2013); our present data also implicate tbx5a function in cell specification, establishment and maintenance of cardiac left-right asymmetry.


Assuntos
Padronização Corporal/genética , Diferenciação Celular/genética , Movimento Celular/genética , Mesoderma/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Região Branquial/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Organogênese/genética , Transdução de Sinais/genética , Peixe-Zebra/embriologia
14.
Respir Physiol Neurobiol ; 285: 103594, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33271304

RESUMO

Serotonergic neuroepithelial cells (NECs) in larval zebrafish are believed to be O2 chemoreceptors. Serotonin (5-HT) within these NECs has been implicated as a neurotransmitter mediating the hypoxic ventilatory response (HVR). Here, we use knockout approaches to discern the role of 5-HT in regulating the HVR by targeting the rate limiting enzyme for 5-HT synthesis, tryptophan hydroxylase (Tph). Using transgenic lines, we determined that Tph1a is expressed in skin and pharyngeal arch NECs, as well as in pharyngeal arch Merkel-like cells (MLCs), whereas Tph1b is expressed predominately in MLCs. Knocking out the two tph1 paralogs resulted in similar changes in detectable serotonergic cell density between the two mutants, yet their responses to hypoxia (35 mmHg) were different. Larvae lacking Tph1a (tph1a-/- mutants) displayed a higher ventilation rate when exposed to hypoxia compared to wild-types, whereas tph1b-/- mutants exhibited a lower ventilation rate suggesting that 5-HT located in locations other than NECs, may play a dominant role in regulating the HVR.


Assuntos
Células Quimiorreceptoras/metabolismo , Hipóxia/metabolismo , Larva/metabolismo , Células de Merkel/metabolismo , Células Neuroepiteliais/metabolismo , Taxa Respiratória/fisiologia , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Região Branquial/citologia , Região Branquial/metabolismo , Pele/citologia , Pele/metabolismo , Triptofano Hidroxilase/genética , Proteínas de Peixe-Zebra
15.
Fish Physiol Biochem ; 46(6): 2281-2298, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32980952

RESUMO

Cationic amino acid transporter 1 (Cat-1 alias Slc7a1) is a Na+-independent carrier system involved in transport and absorption of the cationic amino acids lysine, arginine, histidine, and ornithine and has also been shown to be indispensable in a large variety of biological processes. Starting from isolated full-length zebrafish (Danio rerio) cDNA for slc7a1a, we performed comparative and phylogenetic sequence analysis, investigated the conservation of the gene during vertebrate evolution, and defined tissue expression during zebrafish development. Whole mount in situ hybridization first detected slc7a1a transcripts in somites, eyes, and brain at 14 h post-fertilization (hpf) with additional expression in the distal nephron at 24 hpf and in branchial arches at 3 days post-fertilization (dpf), with significant increase by 5 dpf. Taken together, the expression analysis of the zebrafish Cat-1 system gene slc7a1a suggests a functional role(s) during the early development of the central nervous system, muscle, gills, and kidney. Graphical abstract.


Assuntos
Transportador 1 de Aminoácidos Catiônicos/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Região Branquial/metabolismo , Transportador 1 de Aminoácidos Catiônicos/química , Embrião não Mamífero , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Néfrons/metabolismo , Filogenia , Análise de Sequência de DNA , Análise de Sequência de Proteína , Somitos/metabolismo , Proteínas de Peixe-Zebra/química
16.
Dev Growth Differ ; 62(5): 355-362, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32403166

RESUMO

The mammalian Dlx genes encode homeobox-type transcription factors and are physically organized as convergent bigene clusters. The paired Dlx genes share tissue specificity in the expression profile. Genetic regulatory mechanisms, such as intergenic enhancer sharing between paired Dlx genes, have been proposed to explain this conservation of bigene structure. All mammalian Dlx genes have expression and function in developing craniofacial structures, especially in the first and second pharyngeal arches (branchial arches). Each Dlx cluster (Dlx1/2, Dlx3/4, and Dlx5/6) has overlapping, nested expression in the branchial arches which is called the "Dlx code" and plays a key role in organizing craniofacial structure and evolution. Here we summarize cis-regulatory studies on branchial arch expression of the three Dlx bigene clusters and show some shared characteristics among the clusters, including cis-regulatory motifs, TAD (Topologically Associating Domain) boundaries, CTCF loops, and distal enhancer landscapes, together with a molecular condensate model for activation of the Dlx bigene cluster.


Assuntos
Região Branquial/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Família Multigênica/genética , Fatores de Transcrição/genética , Animais , Proteínas de Homeodomínio/metabolismo , Humanos , Fatores de Transcrição/metabolismo
17.
Sci Rep ; 10(1): 5049, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193486

RESUMO

The present study shows that the CXCR4/SDF-1 axis regulates the migration of second branchial arch-derived muscles as well as non-somitic neck muscles. Cxcr4 is expressed by skeletal muscle progenitor cells in the second branchial arch (BA2). Muscles derived from the second branchial arch, but not from the first, fail to form in Cxcr4 mutants at embryonic days E13.5 and E14.5. Cxcr4 is also required for the development of non-somitic neck muscles. In Cxcr4 mutants, non-somitic neck muscle development is severely perturbed. In vivo experiments in chicken by means of loss-of-function approach based on the application of beads loaded with the CXCR4 inhibitor AMD3100 into the cranial paraxial mesoderm resulted in decreased expression of Tbx1 in the BA2. Furthermore, disrupting this chemokine signal at a later stage by implanting these beads into the BA2 caused a reduction in MyoR, Myf5 and MyoD expression. In contrast, gain-of-function experiments based on the implantation of SDF-1 beads into BA2 resulted in an attraction of myogenic progenitor cells, which was reflected in an expansion of the expression domain of these myogenic markers towards the SDF-1 source. Thus, Cxcr4 is required for the formation of the BA2 derived muscles and non-somitic neck muscles.


Assuntos
Quimiocina CXCL12/fisiologia , Face , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Pescoço , Receptores CXCR4/fisiologia , Células-Tronco/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzilaminas , Região Branquial/citologia , Região Branquial/embriologia , Região Branquial/metabolismo , Embrião de Galinha , Ciclamos , Expressão Gênica , Compostos Heterocíclicos/farmacologia , Mutação com Perda de Função , Camundongos , Mutação , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
18.
Nucleic Acids Res ; 48(5): e27, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31974574

RESUMO

Transcription factors (TFs) can bind DNA in a cooperative manner, enabling a mutual increase in occupancy. Through this type of interaction, alternative binding sites can be preferentially bound in different tissues to regulate tissue-specific expression programmes. Recently, deep learning models have become state-of-the-art in various pattern analysis tasks, including applications in the field of genomics. We therefore investigate the application of convolutional neural network (CNN) models to the discovery of sequence features determining cooperative and differential TF binding across tissues. We analyse ChIP-seq data from MEIS, TFs which are broadly expressed across mouse branchial arches, and HOXA2, which is expressed in the second and more posterior branchial arches. By developing models predictive of MEIS differential binding in all three tissues, we are able to accurately predict HOXA2 co-binding sites. We evaluate transfer-like and multitask approaches to regularizing the high-dimensional classification task with a larger regression dataset, allowing for the creation of deeper and more accurate models. We test the performance of perturbation and gradient-based attribution methods in identifying the HOXA2 sites from differential MEIS data. Our results show that deep regularized models significantly outperform shallow CNNs as well as k-mer methods in the discovery of tissue-specific sites bound in vivo.


Assuntos
Região Branquial/metabolismo , Aprendizado Profundo , Proteínas de Homeodomínio/genética , Proteína Meis1/genética , RNA/genética , Animais , Sítios de Ligação , Região Branquial/crescimento & desenvolvimento , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/metabolismo , Camundongos , Modelos Genéticos , Proteína Meis1/metabolismo , Especificidade de Órgãos , Distribuição de Poisson , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA/metabolismo
19.
Mar Drugs ; 17(5)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058830

RESUMO

The secondary metabolite Tyrian purple, also known as shellfish purple and royal purple, is a dye with historical importance for humans. The biosynthetic origin of Tyrian purple in Muricidae molluscs is not currently known. A possible role for symbiotic bacteria in the production of tyrindoxyl sulphate, the precursor to Tyrian purple stored in the Australian species, Dicathais orbita, has been proposed. This study aimed to culture bacterial symbionts from the purple producing hypobranchial gland, and screen the isolates for bromoperoxidase genes using molecular methods. The ability of bromoperoxidase positive isolates to produce the brominated indole precursor to Tyrian purple was then established by extraction of the culture, and analysis by liquid chromatography-mass spectrometry (LC-MS). In total, 32 bacterial isolates were cultured from D. orbita hypobranchial glands, using marine agar, marine agar with hypobranchial gland aqueous extracts, blood agar, thiosulphate citrate bile salts sucrose agar, and cetrimide agar at pH 7.2. These included 26 Vibrio spp., two Bacillus spp., one Phaeobacter sp., one Shewanella sp., one Halobacillus sp. and one Pseudoalteromonas sp. The two Bacillus species were the only isolates found to have coding sequences for bromoperoxidase enzymes. LC-MS analysis of the supernatant and cell pellets from the bromoperoxidase producing Bacillus spp. cultured in tryptone broth, supplemented with KBr, confirmed their ability to produce the brominated precursor to Tyrian purple, tyrindoxyl sulphate. This study supports a potential role for symbiotic Bacillus spp. in the biosynthesis of Tyrian purple.


Assuntos
Bacillus/genética , Bactérias/genética , Gastrópodes/microbiologia , Peroxidases/genética , Animais , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Região Branquial/metabolismo , Região Branquial/microbiologia , Indóis/análise , Moluscos , Análise de Sequência de RNA , Simbiose
20.
Cells ; 8(5)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072010

RESUMO

Aquaporins (AQPs) facilitate transmembrane water and solute transport, and in addition to contributing to transepithelial water transport, they safeguard cell volume homeostasis. This study examined the expression and localization of AQP1 and AQP3 in the gills of Japanese medaka (Oryzias latipes) in response to osmotic challenges and osmoregulatory hormones, cortisol, and prolactin (PRL). AQP3 mRNA was inversely regulated in response to salinity with high levels in ion-poor water (IPW), intermediate levels in freshwater (FW), and low levels in seawater (SW). AQP3 protein levels decreased upon SW acclimation. By comparison, AQP1 expression was unaffected by salinity. In ex vivo gill incubation experiments, AQP3 mRNA was stimulated by PRL in a time- and dose-dependent manner but was unaffected by cortisol. In contrast, AQP1 was unaffected by both PRL and cortisol. Confocal microscopy revealed that AQP3 was abundant in the periphery of gill filament epithelial cells and co-localized at low intensity with Na+,K+-ATPase in ionocytes. AQP1 was present at a very low intensity in most filament epithelial cells and red blood cells. No epithelial cells in the gill lamellae showed immunoreactivity to AQP3 or AQP1. We suggest that both AQPs contribute to cellular volume regulation in the gill epithelium and that AQP3 is particularly important under hypo-osmotic conditions, while expression of AQP1 is constitutive.


Assuntos
Aquaporina 1/metabolismo , Aquaporina 3/metabolismo , Região Branquial/metabolismo , Oryzias/metabolismo , Animais , Aquaporina 1/genética , Aquaporina 3/genética , Região Branquial/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Água Doce , Brânquias/diagnóstico por imagem , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hidrocortisona/farmacologia , Imageamento Tridimensional , Oryzias/genética , Osmose , Prolactina/farmacologia , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água do Mar , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...