Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Exp Neurol ; 376: 114752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484863

RESUMO

Dendritic spines play a pivotal role in synaptic communication and are crucial for learning and memory processes. Abnormalities in spine morphology and plasticity are observed in neurodevelopmental and neuropsychiatric disorders, yet the underlying signaling mechanisms remain poorly understood. The microtubule affinity regulating kinase 1 (MARK1) has been implicated in neurodevelopmental disorders, and the MARK1 gene shows accelerated evolution in the human lineage suggesting a role in cognition. However, the in vivo role of MARK1 in synaptogenesis and cognitive functions remains unknown. Here we show that forebrain-specific conditional knockout (cKO) of Mark1 in mice causes defects in dendritic spine morphogenesis in hippocampal CA1 pyramidal neurons with a significant reduction in spine density. In addition, we found loss of MARK1 causes synaptic accumulation of GKAP and GluA2. Furthermore, we found that MARK1 cKO mice show defects in spatial learning in the Morris water maze and reduced anxiety-like behaviors in the elevated plus maze. Taken together, our data show a novel role for MARK1 in regulating dendritic spine morphogenesis and cognitive functions in vivo.


Assuntos
Cognição , Espinhas Dendríticas , Camundongos Knockout , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Proteínas Serina-Treonina Quinases/genética , Cognição/fisiologia , Aprendizagem em Labirinto/fisiologia , Morfogênese/fisiologia , Morfogênese/genética , Células Piramidais/metabolismo , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Masculino , Camundongos Endogâmicos C57BL
2.
Int. j. morphol ; 41(1): 59-64, feb. 2023. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1430527

RESUMO

El periodo postnatal temprano se caracteriza por rápido crecimiento cerebral, posiblemente relacionado con variaciones del oxígeno tisular. Esto ha motivado el estudio de protocolos que suministran diferentes concentraciones de oxígeno intermitentes, para observar sus efectos morfológicos y cerebrales. Se utilizaron 52 crías de ratas Sprague Dawley, distribuidas en igual número a cuatro grupos experimentales, Control (C, 21 %O2), Hipoxia Intermitente (HI, 11 %O2), Hiperoxia Intermitente (HOI, 30 %O2) e Hipoxia Hiperoxia Intermitente (HHI, 11 % -30 %O2). Los protocolos consideraron 5 ciclos de 5 minutos de dosificación, durante 50 minutos diarios. Se realizó en una cámara semihermética entre los días 5 al 11 postnatales. Las evaluaciones de crecimiento corporal y cuantificación neuronal, se realizaron en las crías macho, en el día 28 postnatal. El peso corporal en el grupo hipoxia intermitente mostró diferencias significativas respecto al grupo hiperoxia intermitente (HI vs HOI, p<0,01) y al grupo hipoxia-hiperoxia Intermitente (HI vs HHI, p< 0,001). La talla corporal disminuyó en el grupo hipoxia-hiperoxia intermitente con diferencias significativas respecto del grupo control (C vs HHI, p<0,05) y respecto del grupo hipoxia intermitente (HHI vs HI, p< 0,01). El conteo neuronal en el área CA1 del hipocampo aumentó en el grupo hipoxia intermitente con diferencias significativas respecto a los grupos control (C vs HI; p<0,05), al grupo hiperoxia intermitente (HI vs HOI; p<0,001) y al grupo hipoxia-hiperoxia intermitente (HI vs HHI; p<0,001). Finalmente, el grupo hipoxia- hiperoxia Intermitente disminuyó significativamente en la cantidad de neuronas en comparación al grupo hiperoxia intermitente (HHI vs HOI; p<0,001). La hipoxia intermitente mostró resultados beneficiosos en el crecimiento corporal y cantidad de neuronas en el área CA1 del hipocampo, en contraste, la hipoxia hiperoxia intermitente experimentó resultados adversos con disminución de estas variables, en el periodo postnatal temprano de la rata.


SUMMARY: The early postnatal period is characterized by rapid brain growth, possibly related to variations in tissue oxygen. This has motivated the study of protocols that supply different intermittent oxygen concentrations, to observe their morphological and cerebral effects. Fifty-two pups Sprague-Dawley rats were distributed in equal numbers into four experimental groups, Control (C, 21 %O), Intermittent Hypoxia (HI, 11 %O), Intermittent Hyperoxia (HOI, 30 %O2) and Intermittent Hypoxia Hyperoxia (HHI, 11 % - 30 %O2). The protocols considered 5 cycles of 5 min of dosing, for 50 min diary. It was performed in a semi- hermetic chamber between 5 to 11postnatal days. The evaluations of body growth and neuronal quantification were analyzed in male pups, on postnatal day 28. Body weight in the intermittent hypoxia group showed significant differences compared to the intermittent hyperoxia group (HI vs HOI, p<0.01) and the intermittent hypoxia- hyperoxia group (HI vs HHI, p<0.001). Body size decreased in the Intermittent hypoxia-hyperoxia group with significant differences compared to the control group (C vs HHI, p<0.05) and with respect to the intermittent hypoxia group (HHI vs HI, p<0.01). The neuronal count in the area CA1 of the hippocampus increased in the intermittent hypoxia group with significant differences compared to the control groups (C vs HI; p<0.05), to the intermittent hyperoxia group (HI vs HOI; p< 0.001) and the intermittent hypoxia-hyperoxia group (HI vs HHI; p<0.001). Finally, the intermittent hypoxia- hyperoxia group decreased significantly in the number of neurons compared with the intermittent hyperoxia group (HHI vs HOI; p<0.001). Intermittent hypoxia showed beneficial results in body growth and the number of neurons in the CA1 area of the hippocampus, in contrast, intermittent hypoxia-hyperoxia experienced adverse results with a decrease in these variables, in the early postnatal period of the rat.


Assuntos
Animais , Feminino , Ratos , Oxigênio/administração & dosagem , Região CA1 Hipocampal/crescimento & desenvolvimento , Hipóxia , Fatores de Tempo , Ratos Sprague-Dawley , Hiperóxia
3.
Mol Cell Neurosci ; 113: 103629, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34015497

RESUMO

Cognitive comorbidities often follow early-life seizures (ELS), especially in the setting of autism and other neurodevelopmental syndromes. However, there is an incomplete understanding of whether neuronal and synaptic development are concomitantly dysregulated. We have previously shown that hypoxia-induced seizures (HS) in postnatal day (P)10 rats increase acute and later-life hippocampal glutamatergic neurotransmission and spontaneous recurrent seizures, and impair cognition and behavior. As dendritic spines critically regulate synaptic function, we hypothesized that ELS can induce developmentally specific changes in dendritic spine maturation. At intervals during one month following HS in P10 rats, we assessed dendritic spine development on pyramidal neurons in the stratum radiatum of hippocampal area CA1. Compared to control rats in which spine density significantly decreased from P10 to early adulthood (P38), post-seizure rats failed to show a developmental decrease in spine density, and spines from P38 post-seizure rats appeared more immature-shaped (long, thin). In addition, compared to P38 control rats, post-seizure P38 rats expressed significantly more synaptic PSD-95, a marker of mature synapses. These changes were preceded by a transient increase in hippocampal expression of cofilin phosphorylated at Ser3, representing a decrease in cofilin activity. These results suggest that early-life seizures may impair normal dendritic spine maturation and pruning in CA1 during development, resulting in an excess of less efficient synapses, via activity-dependent modification of actin-regulating proteins such as cofilin. Given that multiple neurodevelopmental disorders show similar failures in developmental spine pruning, the current findings may represent a deficit in structural plasticity that could be a component of a mechanism leading to later-life cognitive consequences associated with early-life seizures.


Assuntos
Região CA1 Hipocampal/patologia , Espinhas Dendríticas/patologia , Hipóxia Encefálica/complicações , Convulsões/patologia , Fatores de Despolimerização de Actina/metabolismo , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Espinhas Dendríticas/metabolismo , Masculino , Ratos , Ratos Long-Evans , Convulsões/etiologia , Convulsões/metabolismo
4.
Neurobiol Learn Mem ; 181: 107445, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33895349

RESUMO

In rodent models of smoking during pregnancy, early postnatal nicotine exposure results in impaired hippocampus-dependent memory, but the underlying mechanism remains elusive. Given that hippocampal cholinergic systems modulate memory and rapid development of hippocampal cholinergic systems occurs during nicotine exposure, here we investigated its impacts on cholinergic function. Both nicotinic and muscarinic activation produce transient or long-lasting depression of excitatory synaptic transmission in the hippocampal CA1 region. We found that postnatal nicotine exposure impairs both the induction and nicotinic modulation of NMDAR-dependent long-term depression (LTD). Activation of muscarinic receptors decreases excitatory synaptic transmission and CA1 network activity in both wild-type and α2 knockout mice. These muscarinic effects are still observed in nicotine-exposed mice. M1 muscarinic receptor activity is required for mGluR-dependent LTD. Early postnatal nicotine exposure has no effect on mGluR-dependent LTD induction, suggesting that it has no effect on the function of m1 muscarinic receptors involved in this form of LTD. Our results demonstrate that early postnatal nicotine exposure has more pronounced effects on nicotinic function than muscarinic function in the hippocampal CA1 region. Thus, impaired hippocampus-dependent memory may arise from the developmental disruption of nicotinic cholinergic systems in the hippocampal CA1 region.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptor Muscarínico M1/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Fumar Cigarros , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Lactação , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Exposição Materna , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Knockout , Receptor Muscarínico M1/metabolismo , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Nicotínicos/metabolismo
5.
Aging (Albany NY) ; 13(13): 17880-17900, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33878733

RESUMO

Wushen (WS) is a mixed food containing 55 natural products that is beneficial to human health. This study aimed to reveal the preventive effect of WS on aging via a combined analysis of gut microbiome and metabolome. Senescence-accelerated mouse prone 8 (SAMP8) mice were used as aging model and senescence-accelerated mouse resistant 1 (SAMR1) mice as control. The mice were fed four diet types; control diet (for SAMR1 mice), standard diet (for SAMP8 mice, as SD group), WS diet, and fecal microbiota transplantation (FMT; transplanted from aging-WS mice). Our results showed that the weight, food intake, neurological function, and general physical conditions significantly improved in WS-fed mice compared to those fed with SD. The CA1 hippocampal region in WS-fed aged mice showed fewer shriveled neurons and increased neuronal layers compared to that of the SD group. WS-fed mice showed a decrease in malondialdehyde and an increase in superoxide dismutase levels in the brain; additionally, IL-6 and TNF-α levels significantly decreased, whereas IL-2 levels and the proportion of lymphocytes, CD3+CD8+ T, and CD4+IFNγ+T cells increased in WS-fed mice. After fed with WS, the abundance of Ruminococcus and Butyrivibrio markedly increased, whereas Lachnoclostridium and Ruminiclostridium significantly decreased in the aging mice. In addition, 887 differentially expressed metabolites were identified in fecal samples, among these, Butyrivibrio was positively correlated with D-glucuronic acid and Ruminococcus was positively associated with 5-acetamidovalerate. These findings provide mechanistic insight into the impact of WS on aging, and WS may be a valuable diet for preventing aging.


Assuntos
Envelhecimento/fisiologia , Alimento Funcional , Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Envelhecimento/genética , Animais , Antioxidantes/metabolismo , Peso Corporal , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Dieta , Ingestão de Alimentos , Fezes/microbiologia , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos , Fenômenos Fisiológicos do Sistema Nervoso
6.
Neurotoxicology ; 84: 198-207, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33848561

RESUMO

Arsenic-containing hydrocarbons (AsHCs) are common constituents of marine organisms and have potential toxicity to human health. This work is to study the effect of AsHCs on long-term potentiation (LTP) for the first time. A multi-electrode array (MEA) system was used to record the field excitatory postsynaptic potential (fEPSP) of CA1 before and after treatment with AsHC 360 in hippocampal slices from infantile male rats. The element content of Na, K, Ca, Mg, Mn, Cu, Zn, and As in the hippocampal slices were analyzed by elemental mass spectrometry after the neurophysiological experiment. The results showed that low AsHC 360 (1.5 µg As L-1) had no effect on the LTP, moderate AsHC 360 (3.75-15 µg As L-1) enhanced the LTP, and high AsHC 360 (45-150 µg As L-1) inhibited the LTP. The enhancement of the LTP by promoting Ca2+ influx was proved by a Ca2+ gradient experiment. The inhibition of the LTP was likely due to damage of synaptic cell membrane integrity. This study on the neurotoxicity of AsHCs showed that high concentrations have a strong toxic effect on the LTP in hippocampus slices of the infantile male rat, which may lead to a negative effect on the development, learning, and memory.


Assuntos
Arsênio/toxicidade , Região CA1 Hipocampal/efeitos dos fármacos , Hidrocarbonetos/toxicidade , Potenciação de Longa Duração/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Arsênio/administração & dosagem , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/fisiologia , Hidrocarbonetos/administração & dosagem , Potenciação de Longa Duração/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia
7.
Neurosci Lett ; 751: 135824, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33727124

RESUMO

RNA metabolism involves complex and regulated processes, some of which include transcription, intracellular transport, translation, and degradation. The involvement of RNA binding proteins in these processes remains mostly uncharacterized regarding brain functions, especially cognition. In this study, we report that knockdown of hnRNPM in the CA1 hippocampal region of the mouse brain leads to learning and memory impairment. This finding is further supported, by the reduction of pre- and post-synaptic protein levels synaptophysin and PSD95. Notably, loss of hnRNPM affects the physiological spine in vivo by impairing the morphology of the dendritic spines. Additionally, our study demonstrates that hnRNPM directly binds to the 3'UTR of synaptophysin and PSD95 mRNAs, resulting in the stabilization of these mRNAs. Together, these findings present novel insight into the regulatory role of hnRNPM in neuronal structure and function.


Assuntos
Disfunção Cognitiva/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , Plasticidade Neuronal , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Disfunção Cognitiva/genética , Espinhas Dendríticas/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/deficiência , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estabilidade de RNA , Sinaptofisina/genética , Sinaptofisina/metabolismo
8.
J Neurophysiol ; 125(1): 1-11, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206576

RESUMO

The Na+-K+-ATPase (Na+-K+ pump) is essential for setting resting membrane potential and restoring transmembrane Na+ and K+ gradients after neuronal firing, yet its roles in developing neurons are not well understood. This study examined the contribution of the Na+-K+ pump to resting membrane potential and membrane excitability of developing CA1 and CA3 neurons and its role in maintaining synchronous network bursting. Experiments were conducted in postnatal day (P)9 to P13 rat hippocampal slices using whole cell patch-clamp and extracellular field-potential recordings. Blockade of the Na+-K+ pump with strophanthidin caused marked depolarization (23.1 mV) in CA3 neurons but only a modest depolarization (3.3 mV) in CA1 neurons. Regarding other membrane properties, strophanthidin differentially altered the voltage-current responses, input resistance, action-potential threshold and amplitude, rheobase, and input-output relationship in CA3 vs. CA1 neurons. At the network level, strophanthidin stopped synchronous epileptiform bursting in CA3 induced by 0 Mg2+ and 4-aminopyridine. Furthermore, dual whole cell recordings revealed that strophanthidin disrupted the synchrony of CA3 neuronal firing. Finally, strophanthidin reduced spontaneous excitatory postsynaptic current (sEPSC) bursts (i.e., synchronous transmitter release) and transformed them into individual sEPSC events (i.e., nonsynchronous transmitter release). These data suggest that the Na+-K+ pump plays a more profound role in membrane excitability in developing CA3 neurons than in CA1 neurons and that the pump is essential for the maintenance of synchronous network bursting in CA3. Compromised Na+-K+ pump function leads to cessation of ongoing synchronous network activity, by desynchronizing neuronal firing and neurotransmitter release in the CA3 synaptic network. These findings have implications for the regulation of network excitability and seizure generation in the developing brain.NEW & NOTEWORTHY Despite the extensive literature showing the importance of the Na+-K+ pump in various neuronal functions, its roles in the developing brain are not well understood. This study reveals that the Na+-K+ pump differentially regulates the excitability of CA3 and CA1 neurons in the developing hippocampus, and the pump activity is crucial for maintaining network activity. Compromised Na+-K+ pump activity desynchronizes neuronal firing and transmitter release, leading to cessation of ongoing epileptiform network bursting.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Potenciais Pós-Sinápticos Excitadores , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/fisiologia , Ratos , Ratos Sprague-Dawley , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Estrofantidina/farmacologia
9.
J Neurosci ; 40(45): 8698-8714, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33046554

RESUMO

The formation of memory for a novel experience is a critical cognitive capacity. The ability to form novel memories is sensitive to age-related pathologies and disease, to which prolonged metabolic stress is a major contributing factor. Presently, we describe a dopamine-dependent redox modulation pathway within the hippocampus of male mice that promotes memory consolidation. Namely, following novel information acquisition, quinone reductase 2 (QR2) is suppressed by miRNA-182 (miR-182) in the CA1 region of the hippocampus via dopamine D1 receptor (D1R) activation, a process largely facilitated by locus coeruleus activity. This pathway activation reduces ROS generated by QR2 enzymatic activity, a process that alters the intrinsic properties of CA1 interneurons 3 h following learning, in a form of oxidative eustress. Interestingly, novel experience decreases QR2 expression predominately in inhibitory interneurons. Additionally, we find that in aged animals this newly described QR2 pathway is chronically under activated, resulting in miR-182 underexpression and QR2 overexpression. This leads to accumulative oxidative stress, which can be seen in CA1 via increased levels of oxidized, inactivated potassium channel Kv2.1, which undergoes disulfide bridge oligomerization. This newly described interneuron-specific molecular pathway lies alongside the known mRNA translation-dependent processes necessary for long-term memory formation, entrained by dopamine in CA1. It is a process crucial for the distinguishing features of novel memory, and points to a promising new target for memory enhancement in aging and age-dependent diseases.SIGNIFICANCE STATEMENT One way in which evolution dictates which sensory information will stabilize as an internal representation, relies on information novelty. Dopamine is a central neuromodulator involved in this process in the mammalian hippocampus. Here, we describe for the first time a dopamine D1 receptor-dependent quinone reductase 2 pathway in interneurons. This is a targeted redox event necessary to delineate a novel experience to a robust long-term internal representation. Activation of this pathway alone can explain the effect novelty has on "flashbulb" memories, and it can become dysfunctional with age and diseases, such as Alzheimer's disease.


Assuntos
Região CA1 Hipocampal/fisiologia , Dopamina/fisiologia , Interneurônios/fisiologia , Memória/fisiologia , Quinona Redutases/fisiologia , Transdução de Sinais/fisiologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Antagonistas de Dopamina/farmacologia , Medo/psicologia , Masculino , Consolidação da Memória/fisiologia , Memória de Longo Prazo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , MicroRNAs/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Reconhecimento Psicológico , Canais de Potássio Shab/metabolismo
10.
J Neurophysiol ; 124(3): 815-821, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783592

RESUMO

Chronic early life stress (ELS) increases vulnerability to psychopathologies and cognitive deficits in adulthood by disrupting the function of related neural circuits. However, whether this disruption emerges early in the developing brain remains largely unexplored. In the current study, using an established limited-bedding and nesting model of ELS in postnatal day (P)2-10 mice, we provide direct evidence that ELS caused early modification of hippocampal glutamatergic synapses in the developing brain. We demonstrated that ELS induced rapid enhancement of AMPA receptor function in hippocampal CA1 pyramidal neurons through a postsynaptic mechanism, and importantly, this was associated with premature unsilencing of NMDA receptor-only silent hippocampal synapses. These results suggest that potentiation of AMPAR function may represent an early mediator of ELS-induced alterations of neural networks in the developing brain and may potentially contribute to subsequent cognitive impairments later in life.NEW & NOTEWORTHY Early life stress (ELS) is known to increase the risk of later life cognitive deficits by disrupting neural circuit function. However, whether this disruption emerges early in the developing brain remains largely unexplored. The current study presents direct evidence that ELS prematurely unsilences hippocampal synapses to enhance AMPA receptor functions in a limited-bedding and nesting model, revealing an early mediator of ELS-induced neural circuit reorganizations.


Assuntos
Região CA1 Hipocampal , Potenciais Pós-Sinápticos Excitadores/fisiologia , Rede Nervosa , Células Piramidais/fisiologia , Receptores de AMPA/fisiologia , Estresse Psicológico/fisiopatologia , Sinapses/fisiologia , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiopatologia , Técnicas de Patch-Clamp
11.
Sci Rep ; 10(1): 11405, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647191

RESUMO

Previously, we found that in dissociated hippocampal cultures the proportion of large spines (head diameter ≥ 0.6 µm) was larger in cultures from female than from male animals. In order to rule out that this result is an in vitro phenomenon, we analyzed the density of large spines in fixed hippocampal vibratome sections of Thy1-GFP mice, in which GFP is expressed only in subpopulations of neurons. We compared spine numbers of the four estrus cycle stages in females with those of male mice. Remarkably, total spine numbers did not vary during the estrus cycle, while estrus cyclicity was evident regarding the number of large spines and was highest during diestrus, when estradiol levels start to rise. The average total spine number in females was identical with the spine number in male animals. The density of large spines, however, was significantly lower in male than in female animals in each stage of the estrus cycle. Interestingly, the number of spine apparatuses, a typical feature of large spines, did not differ between the sexes. Accordingly, NMDA-R1 and NMDA-R2A/B expression were lower in the hippocampus and in postsynaptic density fractions of adult male animals than in those of female animals. This difference could already be observed at birth for NMDA-R1, but not for NMDA-R2A/B expression. In dissociated embryonic hippocampal cultures, no difference was seen after 21 days in culture, while the difference was evident in postnatal cultures. Our data indicate that hippocampal neurons are differentiated in a sex-dependent manner, this differentiation being likely to develop during the perinatal period.


Assuntos
Região CA1 Hipocampal/citologia , Espinhas Dendríticas/ultraestrutura , Caracteres Sexuais , Envelhecimento , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/crescimento & desenvolvimento , Células Cultivadas , Estro , Feminino , Genes Reporter , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Cultura Primária de Células , Células Piramidais/ultraestrutura , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/análise
12.
Sci Rep ; 10(1): 9174, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513972

RESUMO

Physical exercise is a powerful modulator of learning and memory. Mechanisms underlying the cognitive benefits of exercise are well documented in adult rodents. Exercise studies targeting postnatal periods of hippocampal maturation (specifically targeting periods of synaptic reorganization and plasticity) are lacking. We characterize a model of early-life exercise (ELE) in male and female mice designed with the goal of identifying critical periods by which exercise may have a lasting impact on hippocampal memory and synaptic plasticity. Mice freely accessed a running wheel during three postnatal periods: the 4th postnatal week (juvenile ELE, P21-27), 6th postnatal week (adolescent ELE, P35-41), or 4th-6th postnatal weeks (juvenile-adolescent ELE, P21-41). All exercise groups increased their running distances during ELE. When exposed to a subthreshold learning stimulus, juv ELE and juv-adol ELE formed lasting long-term memory for an object location memory task, whereas sedentary and adol ELE mice did not. Electrophysiological experiments revealed enhanced long-term potentiation in hippocampal CA1 in the juvenile-adolescent ELE group. I/O curves were also significantly modulated in all mice that underwent ELE. Our results suggest that early-life exercise, specifically during the 4th postnatal week, can enable hippocampal memory, synaptic plasticity, and alter hippocampal excitability when occurring during postnatal periods of hippocampal maturation.


Assuntos
Envelhecimento/fisiologia , Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração/fisiologia , Memória , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Modelos Animais
13.
Exp Neurol ; 323: 113095, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712124

RESUMO

Currently, molecular, electrophysiological and structural studies delineate several neural subtypes in the hippocampus. However, the precise developmental mechanisms that lead to this diversity are still unknown. Here we show that alterations in a concrete hippocampal neuronal subpopulation during development specifically affect hippocampal-dependent spatial memory. We observed that the genetic deletion of the transcription factor Helios in mice, which is specifically expressed in developing hippocampal calbindin-positive CA1 pyramidal neurons (CB-CA1-PNs), induces adult alterations affecting spatial memory. In the same mice, CA3-CA1 synaptic plasticity and spine density and morphology in adult CB-CA1-PNs were severely compromised. RNAseq experiments in developing hippocampus identified an aberrant increase on the Visinin-like protein 1 (VSNL1) expression in the hippocampi devoid of Helios. This aberrant increase on VSNL1 levels was localized in the CB-CA1-PNs. Normalization of VSNL1 levels in CB-CA1-PNs devoid of Helios rescued their spine loss in vitro. Our study identifies a novel and specific developmental molecular pathway involved in the maturation and function of a CA1 pyramidal neuronal subtype.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neurocalcina/metabolismo , Neurogênese/fisiologia , Células Piramidais/fisiologia , Memória Espacial/fisiologia , Fatores de Transcrição/metabolismo , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Células Piramidais/citologia
14.
Nutrients ; 11(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461895

RESUMO

Creatine plays a crucial role in developing the brain, so much that its genetic deficiency results in mental dysfunction and cognitive impairments. Moreover, creatine supplementation is currently under investigation as a preventive measure to protect the fetus against oxidative stress during difficult pregnancies. Although creatine use is considered safe, posing minimal risk to clinical health, we found an alteration in morpho-functional maturation of neurons when male rats were exposed to creatine loads during brain development. In particular, increased excitability and enhanced long-term potentiation (LTP) were observed in the hippocampal pyramidal neurons of weaning pups. Since these effects were observed a long time after creatine treatment had been terminated, long-lasting modifications persisting into adulthood were hypothesized. Such modifications were investigated in the present study using morphological, electrophysiological, and calcium imaging techniques applied to hippocampal Cornu Ammonis 1 (CA1) neurons of adult rats born from dams supplemented with creatine. When compared to age-matched controls, the treated adult offspring were found to retain enhanced neuron excitability and an improved LTP, the best-documented neuronal substrate for memory formation. While translating data from rats to humans does have limitations, our findings suggest that prenatal creatine supplementation could have positive effects on adult cognitive abilities.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Creatina/administração & dosagem , Suplementos Nutricionais , Plasticidade Neuronal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Células Piramidais/efeitos dos fármacos , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Comportamento Animal/efeitos dos fármacos , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cognição/efeitos dos fármacos , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Memória/efeitos dos fármacos , Gravidez , Células Piramidais/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo
15.
J Neurosci ; 39(40): 7853-7871, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31455661

RESUMO

Children who survive premature birth often exhibit reductions in hippocampal volumes and deficits in working memory. However, it is unclear whether synaptic plasticity and cellular mechanisms of learning and memory can be elicited or disrupted in the preterm fetal hippocampus. CA1 hippocampal neurons were exposed to two common insults to preterm brain: transient hypoxia-ischemia (HI) and hypoxia (Hx). We used a preterm fetal sheep model using both sexes in twin 0.65 gestation fetuses that reproduces the spectrum of injury and abnormal growth in preterm infants. Using Cavalieri measurements, hippocampal volumes were reduced in both Hx and HI fetuses compared with controls. This volume loss was not the result of neuronal cell death. Instead, morphometrics revealed alterations in both basal and apical dendritic arborization that were significantly associated with the level of systemic hypoxemia and metabolic stress regardless of etiology. Anatomical alterations of CA1 neurons were accompanied by reductions in probability of presynaptic glutamate release, long-term synaptic plasticity and intrinsic excitability. The reduction in intrinsic excitability was in part due to increased activity of the channels underlying the fast and slow component of the afterhyperpolarization in Hx and HI. Our studies suggest that even a single brief episode of hypoxemia can markedly disrupt hippocampal maturation. Hypoxemia may contribute to long-term working memory disturbances in preterm survivors by disrupting neuronal maturation with resultant functional disturbances in hippocampal action potential throughput. Strategies directed at limiting the duration or severity of hypoxemia during brain development may mitigate disturbances in hippocampal maturation.SIGNIFICANCE STATEMENT Premature infants commonly sustain hypoxia-ischemia, which results in reduced hippocampal growth and life-long disturbances in learning and memory. We demonstrate that the circuitry related to synaptic plasticity and cellular mechanisms of learning and memory (LTP) are already functional in the fetal hippocampus. Unlike adults, the fetal hippocampus is surprisingly resistant to cell death from hypoxia-ischemia. However, the hippocampus sustains robust structural and functional disturbances in the dendritic maturation of CA1 neurons that are significantly associated with the magnitude of a brief hypoxic stress. Since transient hypoxic episodes occur commonly in preterm survivors, our findings suggest that the learning problems that ensue may be related to the unique susceptibility of the hippocampus to brief episodes of hypoxemia.


Assuntos
Região CA1 Hipocampal/patologia , Hipóxia/patologia , Células Piramidais/patologia , Ovinos/fisiologia , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Dendritos/patologia , Espinhas Dendríticas/patologia , Feminino , Desenvolvimento Fetal , Masculino , Memória de Longo Prazo , Memória de Curto Prazo , Plasticidade Neuronal , Gravidez , Nascimento Prematuro , Estresse Fisiológico , Transmissão Sináptica
16.
Cereb Cortex ; 29(8): 3266-3281, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30169759

RESUMO

Critical periods of synaptic plasticity facilitate the reordering and refining of neural connections during development, allowing the definitive synaptic circuits responsible for correct adult physiology to be established. Presynaptic spike timing-dependent long-term depression (t-LTD) exists in the hippocampus, which depends on the activation of NMDARs and that probably fulfills a role in synaptic refinement. This t-LTD is present until the third postnatal week in mice, disappearing in the fourth week of postnatal development. We were interested in the mechanisms underlying this maturation related loss of t-LTD and we found that at CA3-CA1 synapses, presynaptic NMDA receptors (pre-NMDARs) are tonically active between P13 and P21, mediating an increase in glutamate release during this critical period of plasticity. Conversely, at the end of this critical period (P22-P30) and coinciding with the loss of t-LTD, these pre-NMDARs are no longer tonically active. Using immunogold electron microscopy, we demonstrated the existence of pre-NMDARs at Schaffer collateral synaptic boutons, where a decrease in the number of pre-NMDARs during development coincides with the loss of both tonic pre-NMDAR activation and t-LTD. Interestingly, this t-LTD can be completely recovered by antagonizing adenosine type 1 receptors (A1R), which also recovers the tonic activation of pre-NMDARs at P22-P30. By contrast, the induction of t-LTD was prevented at P13-P21 by an agonist of A1R, as was tonic pre-NMDAR activation. Furthermore, we found that the adenosine that mediated the loss of t-LTD during the fourth week of development is supplied by astrocytes. These results provide direct evidence for the mechanism that closes the window of plasticity associated with t-LTD, revealing novel events probably involved in synaptic remodeling during development.


Assuntos
Potenciais de Ação/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Bicuculina/farmacologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/farmacologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Plasticidade Neuronal , Técnicas de Patch-Clamp , Antagonistas de Receptores Purinérgicos P1/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Teofilina/análogos & derivados , Teofilina/farmacologia
17.
Int J Neuropsychopharmacol ; 21(11): 1037-1048, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169690

RESUMO

Background: Early-life stress increases the risk for posttraumatic stress disorder. However, the epigenetic mechanism of early-life stress-induced susceptibility to posttraumatic stress disorder in adulthood remains unclear. Methods: Rat pups were exposed to maternal deprivation during postnatal days 1 to 14 for 3 hours daily and treated with the DNA methyltransferase inhibitor zebularine, L-methionine, or vehicle 7 days before contextual fear conditioning, which was used as a second stress and to mimic the reexperiencing symptom of posttraumatic stress disorder in adulthood. Long-term potentiation, dendritic spine density, DNA methyltransferase mRNA, Reelin gene methylation, and Reelin protein expression in the hippocampal CA1 were measured. Results: Maternal deprivation enhanced contextual fear memory in adulthood. Meanwhile, maternal deprivation decreased DNA methyltransferase mRNA and Reelin gene methylation in the hippocampal CA1 on postnatal days 22 and 90. Reelin protein expression was increased in the hippocampal CA1 following contextual fear conditioning in adulthood. Furthermore, compared with rats that experienced maternal deprivation alone, rats also exposed to contextual fear conditioning showed an enhanced induction of hippocampal long-term potentiation and increased dendritic spine density in the hippocampal CA1 following contextual fear conditioning in adulthood. Zebularine pretreatment led to an enhancement of contextual fear memory, hypomethylation of the Reelin gene, and increased Reelin protein expression in adult rats, while L-methionine had the opposite effects. Conclusions: Maternal deprivation can epigenetically program second-hit stress-induced Reelin expression and enhance the susceptibility to contextual fear memory in adulthood. These findings provide a new framework for understanding the cumulative stress hypothesis.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Medo/fisiologia , Privação Materna , Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Medo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/efeitos dos fármacos , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Proteína Reelina , Técnicas de Cultura de Tecidos
18.
Cereb Cortex ; 28(11): 4049-4062, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169756

RESUMO

KCC2 is the major chloride extruder in neurons. The spatiotemporal regulation of KCC2 expression orchestrates the developmental shift towards inhibitory GABAergic drive and the formation of glutamatergic synapses. Whether KCC2's role in synapse formation is similar in different brain regions is unknown. First, we found that KCC2 subcellular localization, but not overall KCC2 expression levels, differed between cortex and hippocampus during the first postnatal week. We performed site-specific in utero electroporation of KCC2 cDNA to target either hippocampal CA1 or somatosensory cortical pyramidal neurons. We found that a premature expression of KCC2 significantly decreased spine density in CA1 neurons, while it had the opposite effect in cortical neurons. These effects were cell autonomous, because single-cell biolistic overexpression of KCC2 in hippocampal and cortical organotypic cultures also induced a reduction and an increase of dendritic spine density, respectively. In addition, we found that the effects of its premature expression on spine density were dependent on BDNF levels. Finally, we showed that the effects of KCC2 on dendritic spine were dependent on its chloride transporter function in the hippocampus, contrary to what was observed in cortex. Altogether, these results demonstrate that KCC2 regulation of dendritic spine development, and its underlying mechanisms, are brain-region specific.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Espinhas Dendríticas/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Simportadores/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células Piramidais/fisiologia , Ratos Sprague-Dawley , Simportadores/metabolismo , Cotransportadores de K e Cl-
19.
J Neurochem ; 147(4): 514-525, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30187927

RESUMO

Activation of the N-methyl-D-aspartate subtype of glutamate receptor (NMDA-R) represents a key functional process for memory formation. A decreased synthesis of the NMDA-R co-agonist d-serine was recently proposed to contribute to alterations of hippocampus-dependent memory mechanisms with ageing. Nevertheless, other pathways could also be involved and thus considered to be targets of interest to prevent cognitive ageing. Herein, we demonstrate that the Asc-1 subtype of neutral amino acid (nAA) transporters that regulates d-serine and glycine release from neurons could be viewed as one of these targets. At CA3/CA1 hippocampal synapses, Asc-1 activation did not modify basal glutamate neurotransmission either in adult or aged rats. In contrast, Asc-1 activation significantly increased NMDA-R-dependent long-term potentiation (LTP) in both groups of animals and fully rescued the age-related LTP deficits. This rescue in aged animals was observed only when Asc-1 activation was selectively managed by d-Isoleucine (d-Ile), but not when less specifically driven by a mixture of nAA. Similarly, while any activation of Asc-1 improved the isolated NMDA-R-induced synaptic potentials in adult rats, only d-Ile was efficient in aged animals. Taken together, these results strengthen the interest in specifically targeting Asc-1 transporters to better cure age-associated memory decline. OPEN PRACTICES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/crescimento & desenvolvimento , Plasticidade Neuronal/fisiologia , Envelhecimento/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Fenômenos Eletrofisiológicos , Glicina/metabolismo , Potenciação de Longa Duração , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Transmissão Sináptica/fisiologia
20.
Neuroscience ; 388: 474-485, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29964157

RESUMO

Whereas environmental challenges during gestation have been repeatedly shown to alter offspring brain architecture and behavior, exploration examining the consequences of paternal preconception experience on offspring outcome is limited. The goal of this study was to examine the effects of preconception paternal stress (PPS) on cerebral plasticity and behavior in the offspring. Several behavioral assays were performed on offspring between postnatal days 33 (P33) and 101 (P101). Following behavioral testing, the brains were harvested and dendritic morphology (dendritic complexity, length, and spine density) were examined on cortical pyramidal cells in medial prefrontal cortex (mPFC), orbital frontal cortex (OFC), parietal cortex (Par1), and the CA1 area of the hippocampus. As anticipated, behavior was altered on both the activity box assay and elevated plus maze and performance was impaired in the Whishaw tray reaching task. Neuroanatomical measures revealed a heavier brain in stressed animals and dendritic changes in all regions measured, the precise effect varying with the measure and cerebral region. Thus, PPS impacted both behavior and neuronal morphology of offspring. These effects likely have an epigenetic basis given that in a parallel study of littermates of the current animals we found extensive epigenetic changes at P21.


Assuntos
Comportamento Animal , Região CA1 Hipocampal/crescimento & desenvolvimento , Pai/psicologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Células Piramidais/patologia , Estresse Psicológico , Animais , Região CA1 Hipocampal/patologia , Feminino , Masculino , Lobo Parietal/crescimento & desenvolvimento , Lobo Parietal/patologia , Córtex Pré-Frontal/patologia , Ratos Long-Evans , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...