Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Genes (Basel) ; 14(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38137043

RESUMO

Bacteriophage λ's CI repressor protein controls a genetic switch between the virus's lysogenic and lytic lifecycles, in part, by selectively binding to six different DNA sequences within the phage genome-collectively referred to as operator sites. However, the minimal level of information needed for CI to recognize and specifically bind these six unique-but-related sequences is unclear. In a previous study, we introduced an algorithm that extracts the minimal direct readout information needed for λ-CI to recognize and bind its six binding sites. We further revealed direct readout information shared among three evolutionarily related lambdoid phages: λ-phage, Enterobacteria phage VT2-Sakai, and Stx2 converting phage I, suggesting that the λ-CI protein could bind to the operator sites of these other phages. In this study, we show that λ-CI can indeed bind the other two phages' cognate binding sites as predicted using our algorithm, validating the hypotheses from that paper. We go on to demonstrate the importance of specific hydrogen bond donors and acceptors that are maintained despite changes to the nucleobase itself, and another that has an important role in recognition and binding. This in vitro validation of our algorithm supports its use as a tool to predict alternative binding sites for DNA-binding proteins.


Assuntos
Bacteriófago lambda , Regiões Operadoras Genéticas , Regiões Operadoras Genéticas/genética , Bacteriófago lambda/genética , Proteínas de Ligação a DNA/genética , Sítios de Ligação
2.
Nat Commun ; 12(1): 325, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436562

RESUMO

A crucial step towards engineering biological systems is the ability to precisely tune the genetic response to environmental stimuli. In the case of Escherichia coli inducible promoters, our incomplete understanding of the relationship between sequence composition and gene expression hinders our ability to predictably control transcriptional responses. Here, we profile the expression dynamics of 8269 rationally designed, IPTG-inducible promoters that collectively explore the individual and combinatorial effects of RNA polymerase and LacI repressor binding site strengths. We then fit a statistical mechanics model to measured expression that accurately models gene expression and reveals properties of theoretically optimal inducible promoters. Furthermore, we characterize three alternative promoter architectures and show that repositioning binding sites within promoters influences the types of combinatorial effects observed between promoter elements. In total, this approach enables us to deconstruct relationships between inducible promoter elements and discover practical insights for engineering inducible promoters with desirable characteristics.


Assuntos
Isopropiltiogalactosídeo/farmacologia , Lógica , Regiões Promotoras Genéticas , Sítios de Ligação , Fenômenos Biofísicos , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Fluorescência , Genes Reporter , Mutação/genética , Regiões Operadoras Genéticas/genética , Ligação Proteica , Reprodutibilidade dos Testes , Termodinâmica , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260607

RESUMO

Transcriptional repression is a mechanism which enables effective gene expression switch off. The activity of most of type II toxin-antitoxin (TA) cassettes is controlled in this way. These cassettes undergo negative autoregulation by the TA protein complex which binds to the promoter/operator sequence and blocks transcription initiation of the TA operon. Precise and tight control of this process is vital to avoid uncontrolled expression of the toxin component. Here, we employed a series of in vivo and in vitro experiments to establish the molecular basis for previously observed differences in transcriptional activity and repression levels of the pyy and pat promoters which control expression of two homologous TA systems, YefM-YoeB and Axe-Txe, respectively. Transcriptional fusions of promoters with a lux reporter, together with in vitro transcription, EMSA and footprinting assays revealed that: (1) the different sequence composition of the -35 promoter element is responsible for substantial divergence in strengths of the promoters; (2) variations in repression result from the TA repressor complex acting at different steps in the transcription initiation process; (3) transcription from an additional promoter upstream of pat also contributes to the observed inefficient repression of axe-txe module. This study provides evidence that even closely related TA cassettes with high sequence similarity in the promoter/operator region may employ diverse mechanisms for transcriptional regulation of their genes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sistemas Toxina-Antitoxina , Toxinas Bacterianas/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Modelos Biológicos , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Transcrição Gênica
4.
Nature ; 583(7818): 858-861, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581356

RESUMO

Many proteins that bind specific DNA sequences search the genome by combining three-dimensional diffusion with one-dimensional sliding on nonspecific DNA1-5. Here we combine resonance energy transfer and fluorescence correlation measurements to characterize how individual lac repressor (LacI) molecules explore the DNA surface during the one-dimensional phase of target search. To track the rotation of sliding LacI molecules on the microsecond timescale, we use real-time single-molecule confocal laser tracking combined with fluorescence correlation spectroscopy (SMCT-FCS). The fluctuations in fluorescence signal are accurately described by rotation-coupled sliding, in which LacI traverses about 40 base pairs (bp) per revolution. This distance substantially exceeds the 10.5-bp helical pitch of DNA; this suggests that the sliding protein frequently hops out of the DNA groove, which would result in the frequent bypassing of target sequences. We directly observe such bypassing using single-molecule fluorescence resonance energy transfer (smFRET). A combined analysis of the smFRET and SMCT-FCS data shows that LacI hops one or two grooves (10-20 bp) every 200-700 µs. Our data suggest a trade-off between speed and accuracy during sliding: the weak nature of nonspecific protein-DNA interactions underlies operator bypassing, but also speeds up sliding. We anticipate that SMCT-FCS, which monitors rotational diffusion on the microsecond timescale while tracking individual molecules with millisecond resolution, will be applicable to the real-time investigation of many other biological interactions and will effectively extend the accessible time regime for observing these interactions by two orders of magnitude.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Regiões Operadoras Genéticas/genética , Especificidade por Substrato , Sítios de Ligação/genética , DNA/genética , Difusão , Transferência Ressonante de Energia de Fluorescência , Cinética , Repressores Lac/metabolismo , Ligação Proteica , Rotação , Imagem Individual de Molécula , Espectrometria de Fluorescência , Especificidade por Substrato/genética
5.
Sci Rep ; 10(1): 8659, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457340

RESUMO

A functional genetic switch from the lactococcal bacteriophage TP901-1, deciding which of two divergently transcribing promoters becomes most active and allows this bi-stable decision to be inherited in future generations requires a DNA region of less than 1 kb. The fragment encodes two repressors, CI and MOR, transcribed from the PR and PL promoters respectively. CI can repress the transcription of the mor gene at three operator sites (OR, OL, and OD), leading to the immune state. Repression of the cI gene, leading to the lytic (anti-immune) state, requires interaction between CI and MOR by an unknown mechanism, but involving a CI:MOR complex. A consensus for putative MOR binding sites (OM sites), and a common topology of three OM sites adjacent to the OR motif was here identified in diverse phage switches that encode CI and MOR homologs, in a search for DNA sequences similar to the TP901-1 switch. The OR site and all putative OM sites are important for establishment of the anti-immune repression of PR, and a putative DNA binding motif in MOR is needed for establishment of the anti-immune state. Direct evidence for binding between CI and MOR is here shown by pull-down experiments, chemical crosslinking, and size exclusion chromatography. The results are consistent with two possible models for establishment of the anti-immune repression of cI expression at the PR promoter.


Assuntos
Bacteriófagos/genética , Lactococcus lactis/virologia , Regiões Promotoras Genéticas/genética , Elementos Reguladores de Transcrição/genética , Proteínas Repressoras/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/genética , Bacteriófagos/crescimento & desenvolvimento , Sítios de Ligação/genética , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Enterococcus/virologia , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , Lactococcus lactis/genética , Lisogenia/genética , Regiões Operadoras Genéticas/genética , Proteínas Repressoras/metabolismo , Staphylococcus/virologia , Streptococcus/virologia , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
6.
Genes (Basel) ; 10(7)2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252700

RESUMO

The anaerobic degradation of benzoate in bacteria involves the benzoyl-CoA central pathway. Azoarcus/Aromatoleum strains are a major group of anaerobic benzoate degraders, and the transcriptional regulation of the bzd genes was extensively studied in Azoarcus sp. CIB. In this work, we show that the bzdR regulatory gene and the PN promoter can also be identified upstream of the catabolic bzd operon in all benzoate-degrader Azoarcus/Aromatoleum strains whose genome sequences are currently available. All the PN promoters from Azoarcus/Aromatoleum strains described here show a conserved architecture including three operator regions (ORs), i.e., OR1 to OR3, for binding to the BzdR transcriptional repressor. Here, we demonstrate that, whereas OR1 is sufficient for the BzdR-mediated repression of the PN promoter, the presence of OR2 and OR3 is required for de-repression promoted by the benzoyl-CoA inducer molecule. Our results reveal that BzdR binds to the PN promoter in the form of four dimers, two of them binding to OR1. The BzdR/PN complex formed induces a DNA loop that wraps around the BzdR dimers and generates a superstructure that was observed by atomic force microscopy. This work provides further insights into the existence of a conserved BzdR-dependent mechanism to control the expression of the bzd genes in Azoarcus strains.


Assuntos
Acil Coenzima A/genética , Azoarcus/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Anaerobiose , Proteínas de Bactérias/química , Benzoatos/química , Genes Reguladores , Microscopia de Força Atômica , Regiões Operadoras Genéticas/genética , Óperon/genética , Óperon/fisiologia , Regiões Promotoras Genéticas/fisiologia , Conformação Proteica , Fatores de Transcrição/genética , Transcrição Gênica
7.
BMC Evol Biol ; 18(1): 192, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545289

RESUMO

BACKGROUND: The standard genetic code (SGC) is a unique set of rules which assign amino acids to codons. Similar amino acids tend to have similar codons indicating that the code evolved to minimize the costs of amino acid replacements in proteins, caused by mutations or translational errors. However, if such optimization in fact occurred, many different properties of amino acids must have been taken into account during the code evolution. Therefore, this problem can be reformulated as a multi-objective optimization task, in which the selection constraints are represented by measures based on various amino acid properties. RESULTS: To study the optimality of the SGC we applied a multi-objective evolutionary algorithm and we used the representatives of eight clusters, which grouped over 500 indices describing various physicochemical properties of amino acids. Thanks to that we avoided an arbitrary choice of amino acid features as optimization criteria. As a consequence, we were able to conduct a more general study on the properties of the SGC than the ones presented so far in other papers on this topic. We considered two models of the genetic code, one preserving the characteristic codon blocks structure of the SGC and the other without this restriction. The results revealed that the SGC could be significantly improved in terms of error minimization, hereby it is not fully optimized. Its structure differs significantly from the structure of the codes optimized to minimize the costs of amino acid replacements. On the other hand, using newly defined quality measures that placed the SGC in the global space of theoretical genetic codes, we showed that the SGC is definitely closer to the codes that minimize the costs of amino acids replacements than those maximizing them. CONCLUSIONS: The standard genetic code represents most likely only partially optimized systems, which emerged under the influence of many different factors. Our findings can be useful to researchers involved in modifying the genetic code of the living organisms and designing artificial ones.


Assuntos
Algoritmos , Evolução Molecular , Código Genético , Aminoácidos/genética , Códon/genética , Análise Discriminante , Modelos Genéticos , Regiões Operadoras Genéticas/genética
8.
BMC Evol Biol ; 18(1): 155, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326845

RESUMO

BACKGROUND: Selection for a certain trait in microbes depends on the genetic background of the strain and the selection pressure of the environmental conditions acting on the cells. In contrast to the sessile state in the biofilm, various bacterial cells employ flagellum-dependent motility under planktonic conditions suggesting that the two phenotypes are mutually exclusive. However, flagellum dependent motility facilitates the prompt establishment of floating biofilms on the air-medium interface, called pellicles. Previously, pellicles of B. subtilis were shown to be preferably established by motile cells, causing a reduced fitness of non-motile derivatives in the presence of the wild type strain. RESULTS: Here, we show that lack of active flagella promotes the evolution of matrix overproducers that can be distinguished by the characteristic wrinkled colony morphotype. The wrinkly phenotype is associated with amino acid substitutions in the master repressor of biofilm-related genes, SinR. By analyzing one of the mutations, we show that it alters the tetramerization and DNA binding properties of SinR, allowing an increased expression of the operon responsible for exopolysaccharide production. Finally, we demonstrate that the wrinkly phenotype is advantageous when cells lack flagella, but not in the wild type background. CONCLUSIONS: Our experiments suggest that loss of function phenotypes could expose rapid evolutionary adaptation in bacterial biofilms that is otherwise not evident in the wild type strains.


Assuntos
Bacillus subtilis/fisiologia , Evolução Biológica , Bacillus subtilis/citologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Movimento , Mutação/genética , Taxa de Mutação , Regiões Operadoras Genéticas/genética , Óperon , Fenótipo , Seleção Genética
9.
Cell Stress Chaperones ; 23(4): 539-550, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29273966

RESUMO

Mycobacterium smegmatis, a rapidly growing non-pathogenic mycobacterium, is currently used as a model organism to study mycobacterial genetics. Acetamidase of M. smegmatis is the highly inducible enzyme of Mycobacteria, which utilizes several amide compounds as sole carbon and nitrogen sources. The acetamidase operon has a complex regulatory mechanism, which involves three regulatory proteins, four promoters, and three operator elements. In our previous study, we showed that over-expression of AmiA leads to a negative regulation of acetamidase by blocking the P2 promoter. In this study, we have identified a new positive regulatory protein, AmiC that interacts with AmiA through protein-protein interaction. Gel mobility shift assay showed that AmiC protein inhibits AmiA from binding to the P2 promoter. Interaction of AmiC with cis-acting elements identified its binding ability to multiple regulatory regions of the operon such as P3, OP3, and P1 promoter/operator. Consequently, the addition of inducer acetamide to AmiC complexe trips the complexes, causing AmiC to appear to be the sensory protein for the amides. Homology modeling and molecular docking studies suggest AmiC as a member of Periplasmic binding proteins, which preferentially bind to the inducers and not to the suppressor. Over-expression of AmiC leads to down-regulation of the negative regulator, amiA, and constitutive up-regulation of acetamidase. Based on these findings, we conclude that AmiC positively regulates the acetamidase operon.


Assuntos
Amidoidrolases/genética , Mycobacterium smegmatis/genética , Óperon/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/metabolismo , Fases de Leitura Aberta/genética , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas , Ligação Proteica
10.
Gene ; 641: 161-171, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29066303

RESUMO

Toxin-antitoxin (TA) systems are two component genetic modules widespread in many bacterial genomes, including Mycobacterium tuberculosis (Mtb). The TA systems play a significant role in biofilm formation, antibiotic tolerance and persistence of pathogen inside the host cells. Deciphering regulatory motifs of Mtb TA systems is the first essential step to understand their transcriptional regulation. In this study, in silico approaches, that is, the knowledge based motif discovery and de novo motif discovery were used to identify the regulatory motifs of 79 Mtb TA systems. The knowledge based motif discovery approach was used to design a Perl based bio-tool Mtb-sig-miner available at (https://github.com/zoozeal/Mtb-sig-miner), which could successfully detect sigma (σ) factor specific regulatory motifs in the promoter region of Mtb TA modules. The manual curation of Mtb-sig-miner output hits revealed that the majority of them possessed σB regulatory motif in their promoter region. On the other hand, de novo approach resulted in the identification of a novel conserved motif [(T/A)(G/T)NTA(G/C)(C/A)AT(C/A)] within the promoter region of 14 Mtb TA systems. The identified conserved motif was also validated for its activity as conserved core region of operator sequence of corresponding TA system by molecular docking studies. The strong binding of respective antitoxin/toxin with the identified novel conserved motif reflected the validation of identified motif as the core region of operator sequence of respective TA systems. These findings provide computational insight to understand the transcriptional regulation of Mtb TA systems.


Assuntos
Antitoxinas/genética , Genoma Bacteriano/genética , Mycobacterium tuberculosis/genética , Regiões Promotoras Genéticas/genética , Sistemas Toxina-Antitoxina/genética , Toxinas Bacterianas/genética , Biofilmes/crescimento & desenvolvimento , Biologia Computacional/métodos , Simulação por Computador , Farmacorresistência Bacteriana/genética , Redes Reguladoras de Genes/genética , Simulação de Acoplamento Molecular/métodos , Regiões Operadoras Genéticas/genética
11.
Sci Rep ; 7(1): 12610, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974770

RESUMO

From the viewpoint of thermodynamics, the formation of DNA loops and the interaction between them, which are all non-equilibrium processes, result in the change of free energy, affecting gene expression and further cell-to-cell variability as observed experimentally. However, how these processes dissipate free energy remains largely unclear. Here, by analyzing a mechanic model that maps three fundamental topologies of two interacting DNA loops into a 4-state model of gene transcription, we first show that a longer DNA loop needs more mean free energy consumption. Then, independent of the type of interacting two DNA loops (nested, side-by-side or alternating), the promotion between them always consumes less mean free energy whereas the suppression dissipates more mean free energy. More interestingly, we find that in contrast to the mechanism of direct looping between promoter and enhancer, the facilitated-tracking mechanism dissipates less mean free energy but enhances the mean mRNA expression, justifying the facilitated-tracking hypothesis, a long-standing debate in biology. Based on minimal energy principle, we thus speculate that organisms would utilize the mechanisms of loop-loop promotion and facilitated tracking to survive in complex environments. Our studies provide insights into the understanding of gene expression regulation mechanism from the view of energy consumption.


Assuntos
DNA/química , Metabolismo Energético/genética , Conformação de Ácido Nucleico , Termodinâmica , DNA/genética , Regulação da Expressão Gênica/genética , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas
12.
FEMS Microbiol Lett ; 364(20)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961814

RESUMO

Bacteriophage ф11 encodes repressors CI and Cro for executing its growth in Staphylococcus aureus, a human pathogen. There are three homologous operators O1, O2 and O3 between the repressor-expressing genes. While CI binds to O1 and O2, Cro interacts only with O3. To locate additional CI binding operators in ф11, we searched its genome using the O1/O2 sequence as a probe. The results show the presence of a putative CI binding operator (O4) at the 3΄ end of the cro. O4 differs from O2 and O1 by one base and five bases, respectively. A specific interaction was noticed between O4 and rCI, a recombinant CI. However, O4 shows no interaction with rCro, a chimeric Cro. Additionally, six guanine bases, situated in and around O4, have interacted with rCI. Interestingly, the rCI binding affinity of O4 or O1 is about 15 times higher than that of O2. A comparative study indicates that some bases and structural alteration, unique to O1 and O4, may contribute to their enhanced rCI binding affinity. Collectively, the study has not only broadened the distinct gene regulatory circuit of ф11 but also suggested that it possibly employs a complex mechanism for its development in S. aureus.


Assuntos
Regiões Operadoras Genéticas/genética , Proteínas Repressoras/metabolismo , Fagos de Staphylococcus/genética , Staphylococcus aureus/virologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sítios de Ligação , Pegada de DNA , Guanina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras/genética , Proteínas Virais/genética , Proteínas Virais Reguladoras e Acessórias/genética
13.
Methods Mol Biol ; 1599: 263-275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28477125

RESUMO

Maintaining the integrity of genetic information is essential for the survival of cells. Recent advances in cell biological and microscopy methodologies have complemented traditional genetic and biochemical approaches, and they now permit the observation of spatiotemporal aspects of damaged chromosomal loci. In one of these approaches, integrated LacO/TetO operator sequences can be used as binding sites to physically tether onto chromatin any protein of interest when genetically fused to the respective repressors (LacR/TetR). This methodology has been the basis of several models to probe the spatial dynamics of DNA repair in the eukaryotic nucleus and to visualize genomic loci in yeast, fly, nematodes, and in mammalian cells. Further applications are the induction of localized DNA damage by immobilizing endonucleases at different genome sites in vivo, the assessment of the hierarchy of protein interactions within repair complexes, and the activation of the DNA damage response (DDR) by the physical tethering of DSB-repair factors on chromatin in the absence of damage. We outline here a protocol for the quantification of DDR activation upon the prolonged immobilization of single repair factors on chromatin or upon tethering of the endonuclease FokI. The outlined protocol requires basic cell culture and microscopy skills and allows the tethering of any protein of interest within 2-3 days.


Assuntos
Cromatina/metabolismo , Dano ao DNA/genética , Repressores Lac/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Imunofluorescência , Humanos , Regiões Operadoras Genéticas/genética
14.
Biochemistry ; 56(21): 2690-2700, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28488852

RESUMO

The three-dimensional structure of a RNA hairpin containing the RNA operator binding site for bacteriophage GA coat protein is presented. The phage GA operator contains the asymmetric (A-A)-U sequence motif and is capped by a four-adenine (tetra-A) loop. The uridine of the (A-A)-U motif preferentially pairs with the 5'-proximal cross-strand adenine, and the 3'-proximal adenine stacks into the helix. The tetra-A loop is well-ordered with adenine residues 2-4 forming a 3' stack. This loop conformation stands in contrast to the structure of the 5'-AUUA loop of the related phage MS2 operator in which residues 1 and 2 form a 5' stack. The context dependence of the (A-A)-U sequence motif conformation was examined using structures of 76 unique occurrences from the Protein Data Bank. The motif almost always has one adenine bulged and the other adenine adopting an A-U base pair. In the case in which the (A-A)-U motif is flanked by only one Watson-Crick base pair, the adenine adjacent to the flanking base pair tends to bulge; 80% of motifs with a 3' flanking pair have a 3' bulged adenine, and 84% of motifs with a 5' flanking pair have a 5' bulged adenine. The frequencies of 3'- and 5'-proximal adenines bulging are 33 and 67%, respectively, when the (A-A)-U motif is flanked by base pairs on both sides. Although a 3' flanking cytidine correlates (88%) with bulging of the 5'-proximal adenine, no strict dependence on flanking nucleotide identity was identified for the 5' side.


Assuntos
Colífagos/enzimologia , Colífagos/genética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Regiões Operadoras Genéticas/genética , RNA Polimerase Dependente de RNA/metabolismo , RNA/química , Sequência de Bases , Modelos Moleculares , RNA/genética
15.
Biochem Biophys Res Commun ; 478(4): 1521-7, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27601326

RESUMO

The toxin-antitoxin system is ubiquitously existed in bacteria and archaea, performing a wide variety of functions modulating cell fitness in response to environmental cues. In this report, we solved the crystal structure of the toxin-antitoxin HigBA complex from E. coli K-12 to 2.7 Å resolution. The crystal structure of the HigBA complex displays a hetero-tetramer (HigBA)2 form comprised by two HigB and two HigA subunits. Each toxin HigB resumes a microbial RNase T1 fold, characteristic of a three antiparallel ß-sheet core shielded by a few α-helices at either side. Each antitoxin HigA composed of all α-helices resembles a "C"-shaped clamp nicely encompassing a HigB in the (HigBA)2 complex. Two HigA monomers dimerize at their N-terminal domain. We showed that HigA helix α1 was essential for HigA dimerization and the hetero-tetramer (HigBA)2 formation, but not for a hetero-dimeric HigBA formation. HigA dimerization mediated by helix α1 was dispensable for DNA-binding, as a heterodimeric HigBA complex still bound to the higBA operator in vitro. The HigA C-terminal domain with a helix-turn-helix fold was essential for DNA binding. We also defined two palindromes in higBA operator specifically recognized by HigA and HigBA in vitro.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Peso Molecular , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
16.
Proc Natl Acad Sci U S A ; 113(41): 11573-11578, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27679850

RESUMO

Copper homeostasis is essential for bacterial pathogen fitness and infection, and has been the focus of a number of recent studies. In Salmonella, envelope protection against copper overload and macrophage survival depends on CueP, a major copper-binding protein in the periplasm. This protein is also required to deliver the metal ion to the Cu/Zn superoxide dismutase SodCII. The Salmonella-specific CueP-coding gene was originally identified as part of the Cue regulon under the transcriptional control of the cytoplasmic copper sensor CueR, but its expression differs from the rest of CueR-regulated genes. Here we show that cueP expression is controlled by the concerted action of CueR, which detects the presence of copper in the cytoplasm, and by CpxR/CpxA, which monitors envelope stress. Copper-activated CueR is necessary for the appropriate spatial arrangement of the -10 and -35 elements of the cueP promoter, and CpxR is essential to recruit the RNA polymerase. The integration of two ancestral sensory systems-CueR, which provides signal specificity, and CpxR/CpxA, which detects stress in the bacterial envelope-restricts the expression of this periplasmic copper resistance protein solely to cells encountering surplus copper that disturbs envelope homeostasis, emulating the role of the CusR/CusS regulatory system present in other enteric bacteria.


Assuntos
Cobre/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase , Periplasma/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Regiões Operadoras Genéticas/genética , Periplasma/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Filogenia , Cianeto de Potássio/farmacologia , Regiões Promotoras Genéticas/genética , Regulon/genética , Salmonella typhimurium/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica/efeitos dos fármacos
17.
Nat Commun ; 7: 12593, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558202

RESUMO

Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Helicobacter pylori/metabolismo , Ferro/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Íons , Substâncias Macromoleculares/metabolismo , Microscopia de Força Atômica , Modelos Biológicos , Nucleoproteínas/metabolismo , Regiões Operadoras Genéticas/genética , Ligação Proteica , Transcrição Gênica/efeitos dos fármacos
18.
Nucleic Acids Res ; 44(14): 6981-93, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27307602

RESUMO

Pathogenic bacteria such as Haemophilus influenzae, a major cause of lower respiratory tract diseases, must cope with a range of electrophiles generated in the host or by endogenous metabolism. Formaldehyde is one such compound that can irreversibly damage proteins and DNA through alkylation and cross-linking and interfere with redox homeostasis. Its detoxification operates under the control of HiNmlR, a protein from the MerR family that lacks a specific sensor region and does not bind metal ions. We demonstrate that HiNmlR is a thiol-dependent transcription factor that modulates H. influenzae response to formaldehyde, with two cysteine residues (Cys54 and Cys71) identified to be important for its response against a formaldehyde challenge. We obtained crystal structures of HiNmlR in both the DNA-free and two DNA-bound forms, which suggest that HiNmlR enhances target gene transcription by twisting of operator DNA sequences in a two-gene operon containing overlapping promoters. Our work provides the first structural insights into the mechanism of action of MerR regulators that lack sensor regions.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Formaldeído/metabolismo , Haemophilus influenzae/metabolismo , Compostos de Sulfidrila/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus influenzae/genética , Inativação Metabólica/genética , Cinética , Modelos Moleculares , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
ACS Synth Biol ; 5(1): 36-45, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26348795

RESUMO

Expression control in synthetic genetic circuitry, for example, for construction of sensitive biosensors, is hampered by the lack of DNA parts that maintain ultralow background yet achieve high output upon signal integration by the cells. Here, we demonstrate how placement of auxiliary transcription factor binding sites within a regulatable promoter context can yield an important gain in signal-to-noise output ratios from prokaryotic biosensor circuits. As a proof of principle, we use the arsenite-responsive ArsR repressor protein from Escherichia coli and its cognate operator. Additional ArsR operators placed downstream of its target promoter can act as a transcription roadblock in a distance-dependent manner and reduce background expression of downstream-placed reporter genes. We show that the transcription roadblock functions both in cognate and heterologous promoter contexts. Secondary ArsR operators placed upstream of their promoter can also improve signal-to-noise output while maintaining effector dependency. Importantly, background control can be released through the addition of micromolar concentrations of arsenite. The ArsR-operator system thus provides a flexible system for additional gene expression control, which, given the extreme sensitivity to micrograms per liter effector concentrations, could be applicable in more general contexts.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Células Procarióticas/metabolismo , Proteínas Repressoras/metabolismo , Regiões 5' não Traduzidas/genética , Arsenitos/metabolismo , Sequência de Bases , Sítios de Ligação , Proteínas de Fluorescência Verde/metabolismo , Regiões Operadoras Genéticas/genética , Transcrição Gênica
20.
Nature ; 526(7574): 536-41, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26416754

RESUMO

Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide visualizations of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter -35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activates transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. These results expand the biological role of vitamin B12 and provide fundamental insight into a new mode of light-dependent gene regulation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cobamidas/metabolismo , Regulação Bacteriana da Expressão Gênica , Thermus thermophilus , Vitamina B 12/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cobamidas/efeitos da radiação , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escuridão , Dimerização , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Modelos Moleculares , Dados de Sequência Molecular , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas/genética , Estrutura Quaternária de Proteína/efeitos da radiação , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/efeitos da radiação , Transcrição Gênica/genética , Transcrição Gênica/efeitos da radiação , Vitamina B 12/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...