Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Radiat Res ; 65(3): 315-322, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38648785

RESUMO

Ionizing radiation (IR) causes DNA damage, particularly DNA double-strand breaks (DSBs), which have significant implications for genome stability. The major pathways of repairing DSBs are homologous recombination (HR) and nonhomologous end joining (NHEJ). However, the repair mechanism of IR-induced DSBs in embryos is not well understood, despite extensive research in somatic cells. The externally developing aquatic organism, Xenopus tropicalis, serves as a valuable model for studying embryo development. A significant increase in zygotic transcription occurs at the midblastula transition (MBT), resulting in a longer cell cycle and asynchronous cell divisions. This study examines the impact of X-ray irradiation on Xenopus embryos before and after the MBT. The findings reveal a heightened X-ray sensitivity in embryos prior to the MBT, indicating a distinct shift in the DNA repair pathway during embryo development. Importantly, we show a transition in the dominant DSB repair pathway from NHEJ to HR before and after the MBT. These results suggest that the MBT plays a crucial role in altering DSB repair mechanisms, thereby influencing the IR sensitivity of developing embryos.


Assuntos
Blástula , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Animais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Blástula/efeitos da radiação , Blástula/metabolismo , Xenopus/embriologia , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Embrião não Mamífero/efeitos da radiação , Embrião não Mamífero/metabolismo , Raios X
2.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681628

RESUMO

The processing of DNA double-strand breaks (DSBs) depends on the dynamic characteristics of chromatin. To investigate how abrupt changes in chromatin compaction alter these dynamics and affect DSB processing and repair, we exposed irradiated cells to hypotonic stress (HypoS). Densitometric and chromosome-length analyses show that HypoS transiently decompacts chromatin without inducing histone modifications known from regulated local chromatin decondensation, or changes in Micrococcal Nuclease (MNase) sensitivity. HypoS leaves undisturbed initial stages of DNA-damage-response (DDR), such as radiation-induced ATM activation and H2AX-phosphorylation. However, detection of ATM-pS1981, γ-H2AX and 53BP1 foci is reduced in a protein, cell cycle phase and cell line dependent manner; likely secondary to chromatin decompaction that disrupts the focal organization of DDR proteins. While HypoS only exerts small effects on classical nonhomologous end-joining (c-NHEJ) and alternative end-joining (alt-EJ), it markedly suppresses homologous recombination (HR) without affecting DNA end-resection at DSBs, and clearly enhances single-strand annealing (SSA). These shifts in pathway engagement are accompanied by decreases in HR-dependent chromatid-break repair in the G2-phase, and by increases in alt-EJ and SSA-dependent chromosomal translocations. Consequently, HypoS sensitizes cells to ionizing radiation (IR)-induced killing. We conclude that HypoS-induced global chromatin decompaction compromises regulated chromatin dynamics and genomic stability by suppressing DSB-processing by HR, and allowing error-prone processing by alt-EJ and SSA.


Assuntos
Cromatina/metabolismo , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Soluções Hipotônicas/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromatina/química , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Histonas/metabolismo , Recombinação Homóloga/efeitos da radiação , Humanos , Soluções Hipotônicas/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/antagonistas & inibidores , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Radiação Ionizante
3.
Mol Carcinog ; 60(9): 627-643, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34192388

RESUMO

Nonhomologous end joining (NHEJ), one of the major DNA double-strand break repair pathways, plays a significant role in cancer cell proliferation and resistance to radio and chemotherapeutic agents. Previously, we had described a small molecule inhibitor, SCR7, which inhibited NHEJ in a DNA Ligase IV dependent manner. Here, we report that SCR7 potentiates the effect of γ-radiation (IR) that induces DNA breaks as intermediates to eradicate cancer cells. Dose fractionation studies revealed that coadministration of SCR7 and IR (0.5 Gy) in mice Dalton's lymphoma (DLA) model led to a significant reduction in mice tumor cell proliferation, which was equivalent to that observed for 2 Gy dose when both solid and liquid tumor models were used. Besides, co-treatment with SCR7 and 1 Gy of IR further improved the efficacy. Notably, there was no significant change in blood parameters, kidney and liver functions upon combinatorial treatment of SCR7 and IR. Further, the co-treatment of SCR7 and IR resulted in a significant increase in unrepaired DSBs within cancer cells compared to either of the agent alone. Anatomy, histology, and other studies in tumor models confirmed the cumulative effects of both agents in activating apoptotic pathways to induce cytotoxicity by modulating DNA damage response and repair pathways. Thus, we report that SCR7 has the potential to reduce the side effects of radiotherapy by lowering its effective dose ex vivo and in mice tumor models, with implications in cancer therapy.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Pirimidinas/farmacologia , Radiação Ionizante , Radiossensibilizantes/farmacologia , Bases de Schiff/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA Ligase Dependente de ATP/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nucleic Acids Res ; 49(12): 6817-6831, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34125900

RESUMO

Chromosome fusions threaten genome integrity and promote cancer by engaging catastrophic mutational processes, namely chromosome breakage-fusion-bridge cycles and chromothripsis. Chromosome fusions are frequent in cells incurring telomere dysfunctions or those exposed to DNA breakage. Their occurrence and therefore their contribution to genome instability in unchallenged cells is unknown. To address this issue, we constructed a genetic assay able to capture and quantify rare chromosome fusions in budding yeast. This chromosome fusion capture (CFC) assay relies on the controlled inactivation of one centromere to rescue unstable dicentric chromosome fusions. It is sensitive enough to quantify the basal rate of end-to-end chromosome fusions occurring in wild-type cells. These fusions depend on canonical nonhomologous end joining (NHEJ). Our results show that chromosome end protection results from a trade-off at telomeres between positive effectors (Rif2, Sir4, telomerase) and a negative effector partially antagonizing them (Rif1). The CFC assay also captures NHEJ-dependent chromosome fusions induced by ionizing radiation. It provides evidence for chromosomal rearrangements stemming from a single photon-matter interaction.


Assuntos
Aberrações Cromossômicas , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Telômero , Centrômero , Técnicas Genéticas , Radiação Ionizante , Saccharomyces cerevisiae/genética , Telômero/metabolismo , Homeostase do Telômero
5.
Nat Commun ; 12(1): 2187, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846346

RESUMO

The RNA-sensing pathway contributes to type I interferon (IFN) production induced by DNA damaging agents. However, the potential involvement of RNA sensors in DNA repair is unknown. Here, we found that retinoic acid-inducible gene I (RIG-I), a key cytosolic RNA sensor that recognizes RNA virus and initiates the MAVS-IRF3-type I IFN signaling cascade, is recruited to double-stranded breaks (DSBs) and suppresses non-homologous end joining (NHEJ). Mechanistically, RIG-I interacts with XRCC4, and the RIG-I/XRCC4 interaction impedes the formation of XRCC4/LIG4/XLF complex at DSBs. High expression of RIG-I compromises DNA repair and sensitizes cancer cells to irradiation treatment. In contrast, depletion of RIG-I renders cells resistant to irradiation in vitro and in vivo. In addition, this mechanism suggests a protective role of RIG-I in hindering retrovirus integration into the host genome by suppressing the NHEJ pathway. Reciprocally, XRCC4, while suppressed for its DNA repair function, has a critical role in RIG-I immune signaling through RIG-I interaction. XRCC4 promotes RIG-I signaling by enhancing oligomerization and ubiquitination of RIG-I, thereby suppressing RNA virus replication in host cells. In vivo, silencing XRCC4 in mouse lung promotes influenza virus replication in mice and these mice display faster body weight loss, poorer survival, and a greater degree of lung injury caused by influenza virus infection. This reciprocal regulation of RIG-I and XRCC4 reveals a new function of RIG-I in suppressing DNA repair and virus integration into the host genome, and meanwhile endues XRCC4 with a crucial role in potentiating innate immune response, thereby helping host to prevail in the battle against virus.


Assuntos
Proteína DEAD-box 58/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais/imunologia , Células A549 , Animais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Genoma Humano , Células HEK293 , Humanos , Camundongos , Radiação Ionizante , Retroviridae/metabolismo , Replicação Viral/efeitos da radiação
6.
Radiat Res ; 195(5): 412-426, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33755161

RESUMO

Alternative end-joining (alt-EJ) is a DNA end resection-dependent, error-prone pathway utilized by vertebrate cells to repair DNA double-strand breaks (DSBs), but its engagement is linked to chromosomal translocations and genomic instability. Here, we report that when proliferating cells are exposed to ionizing radiation, treatment with nucleoside analogs (NAs) causes strong radiosensitization by increasing engagement of alt-EJ, while at the same time suppressing homologous recombination (HR) in S- and G2phase cells. This NA-mediated pathway shift may reflect a passive compensatory engagement of alt-EJ following HR suppression that is specific for S- and G2-phase cells, and/or the direct activation of alt-EJ throughout the cell cycle. To distinguish between these possibilities, we utilize here a cell culture model that exploits genetic and cell cycle-dependent inactivation of DSB repair pathways, to exclusively study alt-EJ and its modulation by NAs in murine and human cell lines. To this end, we allow LIG4-/--deficient cells to accumulate in G1/G0 phase by transfer to serum-deprived media and obtain cells deficient in c-NHEJ owing to the genetic LIG4 knockout, deficient in HR owing to the absence of S- or G2-phase cells, and compromised in their ability to carry out alt-EJ owing to their accumulation in G0. We find that in these cells irradiation and treatment with the NA, ß-arabinofuranosyladenine (araA), and to a lesser degree with other NAs, promptly activates suppressed alt-EJ that now functions at levels approximating those of c-NHEJ in wild-type cells. Results at high dose (20 Gy) generated using pulsed-field gel electrophoresis (PFGE) are corroborated by results at low dose (1 Gy) generated by scoring 53BP1 foci. Strikingly, araA treatment activates a normally undetectable DNA-end-resection at DSBs, which requires ATR activity, but proceeds unimpeded after CtIP knockdown. Treatment with araA increases the formation of chromosomal aberrations and enhances radiation-induced cell killing. The results support direct stimulation of resection by NAs and alt-EJ as a mechanism of their documented radiosensitizing potential. We propose that this stimulation also occurs in repair-proficient cells and that it occurs throughout the cell cycle. It may therefore be harnessed to develop protocols combining NAs with radiation to treat human cancer.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Nucleosídeos/análogos & derivados , Nucleosídeos/farmacologia , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Fase de Repouso do Ciclo Celular/genética , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Camundongos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/efeitos da radiação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
7.
Radiat Res ; 195(5): 441-451, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33721021

RESUMO

We examined lethal damages of X rays induced by direct and indirect actions, in terms of double-strand break (DSB) repair susceptibility using two kinds of repair-deficient Chinese hamster ovary (CHO) cell lines. These CHO mutants (51D1 and xrs6) are genetically deficient in one of the two important DNA repair pathways after genotoxic injury [homologous recombination (HR) and non-homologous end binding (NHEJ) pathways, respectively]. The contribution of indirect action on cell killing can be estimated by applying the maximum level of dimethylsulfoxide (DMSO) to get rid of OH radicals. To control the proportion of direct and indirect actions in lethal damage, we irradiated CHO mutant cells under aerobic and anoxic conditions. The contributions of indirect action on HR-defective 51D1 cells were 76% and 57% under aerobic and anoxic conditions, respectively. Interestingly, these percentages were similar to those of the wild-type cells even if the radiosensitivity was different. However, the contributions of indirect action to cell killing on NHEJ-defective xrs6 cells were 52% and 33% under aerobic and anoxic conditions, respectively. Cell killing by indirect action was significantly affected by the oxygen concentration and the DSB repair pathways but was not correlated with radiosensitivity. These results suggest that the lethal damage induced by direct action is mostly repaired by NHEJ repair pathway since killing of NHEJ-defective cells has significantly higher contribution by the direct action. In other words, the HR repair pathway may not effectively repair the DSB by direct action in place of the NHEJ repair pathway. We conclude that the type of DSB produced by direct action is different from that of DSB induced by indirect action.


Assuntos
Dano ao DNA , Oxigênio/metabolismo , Aerobiose/genética , Aerobiose/efeitos da radiação , Animais , Células CHO , Morte Celular/genética , Morte Celular/efeitos da radiação , Cricetulus , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Recombinação Homóloga/efeitos da radiação , Raios X/efeitos adversos
8.
J Radiat Res ; 62(2): 198-205, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33372229

RESUMO

The biological effects of ionizing radiation, especially those of sparsely ionizing radiations like X-ray and γ-ray, are generally reduced as the dose rate is reduced. This phenomenon is known as 'the dose-rate effect'. The dose-rate effect is considered to be due to the repair of DNA damage during irradiation but the precise mechanisms for the dose-rate effect remain to be clarified. Ku70, Ku86 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are thought to comprise the sensor for DNA double-strand break (DSB) repair through non-homologous end joining (NHEJ). In this study, we measured the clonogenic ability of Ku70-, Ku86- or DNA-PKcs-deficient rodent cells, in parallel with respective control cells, in response to high dose-rate (HDR) and low dose-rate (LDR) γ-ray radiation (~0.9 and ~1 mGy/min, respectively). Control cells and murine embryonic fibroblasts (MEF) from a severe combined immunodeficiency (scid) mouse, which is DNA-PKcs-deficient, showed higher cell survival after LDR irradiation than after HDR irradiation at the same dose. On the other hand, MEF from Ku70-/- mice exhibited lower clonogenic cell survival after LDR irradiation than after HDR irradiation. XR-V15B and xrs-5 cells, which are Ku86-deficient, exhibited mostly identical clonogenic cell survival after LDR and HDR irradiation. Thus, the dose-rate effect in terms of clonogenic cell survival is diminished or even inversed in Ku-deficient rodent cells. These observations indicate the involvement of Ku in the dose-rate effect.


Assuntos
Células Clonais/efeitos da radiação , Autoantígeno Ku/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Radioisótopos de Césio , Radioisótopos de Cobalto , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Proteína Quinase Ativada por DNA/metabolismo , Relação Dose-Resposta à Radiação , Raios gama , Camundongos SCID
9.
Sci Rep ; 10(1): 14455, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879366

RESUMO

DNA double-strand breaks (DSB) are formed by various exogenous and endogenous factors and are repaired by homologous recombination and non-homologous end joining (NHEJ). DNA-dependent protein kinase (DNA-PK) is the principal enzyme for NHEJ. We explored the role and the underlying mechanism of cAMP signaling in the NHEJ repair of DSBs resulted from gamma ray irradiation to non-small cell lung cancer (NSLC) cells. Activated cAMP signaling by expression of an activated stimulatory GTP-binding protein or by pretreatment with isoproterenol and prostaglandin E2, delayed the repair of DSBs resulted from gamma ray irradiation, and the delaying effects depended on protein kinase A (PKA). Activated cAMP signaling suppressed XRCC4 and DNA ligase IV recruitment into DSB foci, and reduced phosphorylation at T2609 in DNA-PK catalytic subunit (DNA-PKcs) with a concomitant increase in phosphorylation at S2056 in PKA-dependent ways following gamma ray irradiation. cAMP signaling decreased phosphorylation of T2609 by protein phosphatase 2A-dependent inhibition of ATM. We conclude that cAMP signaling delays the repair of gamma ray-induced DNA DSBs in NSLC cells by inhibiting NHEJ via PKA-dependent pathways, and that cAMP signaling differentially modulates DNA-PKcs phosphorylation at S2056 and T2609, which might contribute to the inhibition of NHEJ in NSLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Ligase Dependente de ATP/genética , Proteínas de Ligação a DNA/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Domínio Catalítico/genética , AMP Cíclico/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteína Quinase Ativada por DNA/genética , Raios gama/efeitos adversos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Fosforilação/efeitos da radiação , Transdução de Sinais/efeitos da radiação
10.
Cell Rep ; 32(8): 108068, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32846126

RESUMO

Using genome-wide radiogenetic profiling, we functionally dissect vulnerabilities of cancer cells to ionizing radiation (IR). We identify ERCC6L2 as a major determinant of IR response, together with classical DNA damage response genes and members of the recently identified shieldin and CTC1-STN1-TEN1 (CST) complexes. We show that ERCC6L2 contributes to non-homologous end joining (NHEJ), and it may exert this function through interactions with SFPQ. In addition to causing radiosensitivity, ERCC6L2 loss restores DNA end resection and partially rescues homologous recombination (HR) in BRCA1-deficient cells. As a consequence, ERCC6L2 deficiency confers resistance to poly (ADP-ribose) polymerase (PARP) inhibition in tumors deficient for both BRCA1 and p53. Moreover, we show that ERCC6L2 mutations are found in human tumors and correlate with a better overall survival in patients treated with radiotherapy (RT); this finding suggests that ERCC6L2 is a predictive biomarker of RT response.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos da radiação , DNA Helicases/metabolismo , Animais , Humanos , Camundongos
11.
J Radiat Res ; 61(5): 639-647, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32766789

RESUMO

To investigate the involvement of the non-homologous end joining (NHEJ) pathway in plant mutagenesis by ionizing radiation, we conducted a genome-wide characterization of the mutations induced by gamma rays in NHEJ-deficient Arabidopsis mutants (AtKu70-/- and AtLig4-/-). Although both mutants were more sensitive to gamma rays than the wild-type control, the AtKu70-/- mutant was slightly more sensitive than the AtLig4-/- mutant. Single-base substitutions (SBSs) were the predominant mutations in the wild-type control, whereas deletions (≥2 bp) and complex-type mutations [i.e. more than two SBSs or short insertion and deletions (InDels) separated by fewer than 10 bp] were frequently induced in the mutants. Single-base deletions were the most frequent deletions in the wild-type control, whereas the most common deletions in the mutants were 11-30 bp. The apparent microhomology at the rejoined sites of deletions peaked at 2 bp in the wild-type control, but was 3-4 bp in the mutants. This suggests the involvement of alternative end joining and single-strand annealing pathways involving increased microhomology for rejoining DNA ends. Complex-type mutations comprising short InDels were frequently detected in the mutants, but not in the wild-type control. Accordingly, NHEJ is more precise than the backup pathways, and is the main pathway for rejoining the broken DNA ends induced by ionizing radiation in plants.


Assuntos
Arabidopsis/genética , Arabidopsis/efeitos da radiação , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Raios gama , Mutação/genética , Pareamento de Bases/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação INDEL/genética , Taxa de Mutação , Sementes/efeitos da radiação , Deleção de Sequência/genética , Transcrição Gênica
12.
Int J Mol Sci ; 21(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397297

RESUMO

Radiation therapy is one of the main methods of treating patients with non-small cell lung cancer (NSCLC). However, the resistance of tumor cells to exposure remains the main factor that limits successful therapeutic outcome. To study the molecular/cellular mechanisms of increased resistance of NSCLC to ionizing radiation (IR) exposure, we compared A549 (p53 wild-type) and H1299 (p53-deficient) cells, the two NSCLC cell lines. Using fractionated X-ray irradiation of these cells at a total dose of 60 Gy, we obtained the survived populations and named them A549IR and H1299IR, respectively. Further characterization of these cells showed multiple alterations compared to parental NSCLC cells. The additional 2 Gy exposure led to significant changes in the kinetics of γH2AX and phosphorylated ataxia telangiectasia mutated (pATM) foci numbers in A549IR and H1299IR compared to parental NSCLC cells. Whereas A549, A549IR, and H1299 cells demonstrated clear two-component kinetics of DNA double-strand break (DSB) repair, H1299IR showed slower kinetics of γH2AX foci disappearance with the presence of around 50% of the foci 8 h post-IR. The character of H2AX phosphorylation in these cells was pATM-independent. A decrease of residual γH2AX/53BP1 foci number was observed in both A549IR and H1299IR compared to parental cells post-IR at extra doses of 2, 4, and 6 Gy. This process was accompanied with the changes in the proliferation, cell cycle, apoptosis, and the expression of ATP-binding cassette sub-family G member 2 (ABCG2, also designated as CDw338 and the breast cancer resistance protein (BCRP)) protein. Our study provides strong evidence that different DNA repair mechanisms are activated by multifraction radiotherapy (MFR), as well as single-dose IR, and that the enhanced cellular survival after MFR is reliant on both p53 and 53BP1 signaling along with non-homologous end-joining (NHEJ). Our results are of clinical significance as they can guide the choice of the most effective IR regimen by analyzing the expression status of the p53-53BP1 pathway in tumors and thereby maximize therapeutic benefits for the patients while minimizing collateral damage to normal tissue.


Assuntos
Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Reparo do DNA/genética , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Reparo do DNA/efeitos da radiação , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Proteínas de Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Raios X
13.
Cells ; 9(4)2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260562

RESUMO

Technical improvements in clinical radiotherapy for maximizing cytotoxicity to the tumor while limiting negative impact on co-irradiated healthy tissues include the increasing use of particle therapy (e.g., proton therapy) worldwide. Yet potential differences in the biology of DNA damage induction and repair between irradiation with X-ray photons and protons remain elusive. We compared the differences in DNA double strand break (DSB) repair and survival of cells compromised in non-homologous end joining (NHEJ), homologous recombination repair (HRR) or both, after irradiation with an equal dose of X-ray photons, entrance plateau (EP) protons, and mid spread-out Bragg peak (SOBP) protons. We used super-resolution microscopy to investigate potential differences in spatial distribution of DNA damage foci upon irradiation. While DNA damage foci were equally distributed throughout the nucleus after X-ray photon irradiation, we observed more clustered DNA damage foci upon proton irradiation. Furthermore, deficiency in essential NHEJ proteins delayed DNA repair kinetics and sensitized cells to both, X-ray photon and proton irradiation, whereas deficiency in HRR proteins sensitized cells only to proton irradiation. We assume that NHEJ is indispensable for processing DNA DSB independent of the irradiation source, whereas the importance of HRR rises with increasing energy of applied irradiation.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos da radiação , Prótons , Reparo de DNA por Recombinação/efeitos da radiação , Animais , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Células Clonais , Dano ao DNA , DNA Ligase Dependente de ATP/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Histonas/metabolismo , Humanos , Camundongos , Fótons , Fatores de Tempo , Raios X
14.
Nucleic Acids Res ; 48(2): 736-747, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31740976

RESUMO

Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are predominantly repaired by non-homologous end joining (NHEJ). IR-induced DNA damage activates autophagy, an intracellular degradation process that delivers cytoplasmic components to the lysosome. We identified the deubiquitinase USP14 as a novel autophagy substrate and a regulator of IR-induced DNA damage response (DDR) signaling. Inhibition of autophagy increased levels and DSB recruitment of USP14. USP14 antagonized RNF168-dependent ubiquitin signaling and downstream 53BP1 chromatin recruitment. Here we show that autophagy-deficient cells are defective in NHEJ, as indicated by decreased IR-induced foci (IRIF) formation by pS2056-, pT2609-DNA-PKcs, pS1778-53BP1, RIF1 and a reporter assay activation. Moreover, chromatin recruitment of key NHEJ proteins, including, Ku70, Ku80, DNA-PKcs and XLF was diminished in autophagy-deficient cells. USP14 inhibition rescued the activity of NHEJ-DDR proteins in autophagy-deficient cells. Mass spectrometric analysis identified USP14 interaction with core NHEJ proteins, including Ku70, which was validated by co-immunoprecipitation. An in vitro assay revealed that USP14 targeted Ku70 for deubiquitination. AKT, which mediates Ser432-USP14 phosphorylation, was required for IRIF formation by USP14. Similar to USP14 block, AKT inhibition rescued the activity of NHEJ-DDR proteins in autophagy- and PTEN-deficient cells. These findings reveal a novel negative PTEN/Akt-dependent regulation of NHEJ by USP14.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos da radiação , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ubiquitina Tiolesterase/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Autofagia/efeitos da radiação , Cromatina/genética , Cromatina/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Células HEK293 , Humanos , Autoantígeno Ku/genética , PTEN Fosfo-Hidrolase/deficiência , Radiação Ionizante , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
15.
Nucleic Acids Res ; 47(17): 9410-9422, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31435651

RESUMO

DNA double-strand breaks (DSBs) resulting from reactive oxygen species generated by exposure to UV and ionizing radiation are characterized by clusters of lesions near break sites. Such complex DSBs are repaired slowly, and their persistence can have severe consequences for human health. We have therefore probed DNA break repair containing a template 8-oxo-7,8-dihydro-2'-guanosine (8OG) by Family X Polymerase µ (Pol µ) in steady-state kinetics and cell-based assays. Pol µ tolerates 8OG-containing template DNA substrates, and the filled products can be subsequently ligated by DNA Ligase IV during Nonhomologous end-joining. Furthermore, Pol µ exhibits a strong preference for mutagenic bypass of 8OG by insertion of adenine. Crystal structures reveal that the template 8OG is accommodated in the Pol µ active site with none of the DNA substrate distortions observed for Family X siblings Pols ß or λ. Kinetic characterization of template 8OG bypass indicates that Pol µ inserts adenosine nucleotides with weak sugar selectivity and, given the high cellular concentration of ATP, likely performs its role in repair of complex 8OG-containing DSBs using ribonucleotides.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/genética , DNA Polimerase Dirigida por DNA/genética , Guanosina/análogos & derivados , Trifosfato de Adenosina/genética , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , DNA Ligase Dependente de ATP/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/química , Guanosina/genética , Humanos , Mutagênese/efeitos da radiação , Radiação Ionizante , Espécies Reativas de Oxigênio/química , Raios Ultravioleta
16.
Sci Rep ; 9(1): 8255, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164689

RESUMO

Using data generated with cells exposed to ionizing-radiation (IR) in G2-phase of the cell cycle, we describe dose-dependent interactions between ATM, ATR and DNA-PKcs revealing unknown mechanistic underpinnings for two key facets of the DNA damage response: DSB end-resection and G2-checkpoint activation. At low IR-doses that induce low DSB-numbers in the genome, ATM and ATR regulate epistatically the G2-checkpoint, with ATR at the output-node, interfacing with the cell-cycle predominantly through Chk1. Strikingly, at low IR-doses, ATM and ATR epistatically regulate also resection, and inhibition of either activity fully suppresses resection. At high IR-doses that induce high DSB-numbers in the genome, the tight ATM/ATR coupling relaxes and independent outputs to G2-checkpoint and resection occur. Consequently, both kinases must be inhibited to fully suppress checkpoint activation and resection. DNA-PKcs integrates to the ATM/ATR module by regulating resection at all IR-doses, with defects in DNA-PKcs causing hyper-resection and G2-checkpoint hyper-activation. Notably, hyper-resection is absent from other c-NHEJ mutants. Thus, DNA-PKcs specifically regulates resection and adjusts the activation of the ATM/ATR module. We propose that selected DSBs are shepherd by DNA-PKcs from c-NHEJ to resection-dependent pathways for processing under the regulatory supervision of the ATM/ATR module.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína Quinase Ativada por DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Radiação Ionizante , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Divisão Celular/genética , Divisão Celular/efeitos da radiação , Quinase 1 do Ponto de Checagem/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Proteínas de Ligação a DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Fosforilação/efeitos da radiação , Transdução de Sinais/efeitos da radiação
17.
FASEB J ; 33(6): 6778-6788, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30807703

RESUMO

Maintenance of human embryonic stem cells (hESCs) with stable genome is important for their future use in cell replacement therapy and disease modeling. Our understanding of the mechanisms maintaining genomic stability of hESC and our ability to modulate them is essential in preventing unwanted mutation accumulation during their in vitro cultivation. In this study, we show the DNA damage response mechanism in hESCs is composed of known, yet unlikely components. Clustered oxidative base damage is converted into DNA double-strand breaks (DSBs) by base excision repair (BER) and then quickly repaired by ligase (Lig)3-mediated end-joining (EJ). If there is further induction of clustered oxidative base damage by irradiation, then BER-mediated DSBs become essential in triggering the checkpoint response in hESCs. hESCs limit the mutagenic potential of Lig3-mediated EJ by DNA break end protection involving p53 binding protein 1 (53BP1), which results in fast and error-free microhomology-mediated repair and a low mutant frequency in hESCs. DSBs in hESCs are also repaired via homologous recombination (HR); however, DSB overload, together with massive end protection by 53BP1, triggers competition between error-free HR and mutagenic nonhomologous EJ.-Kohutova, A., Raska, J., Kruta, M., Seneklova, M., Barta, T., Fojtik, P., Jurakova, T., Walter, C. A., Hampl, A., Dvorak, P., Rotrekl, V. Ligase 3-mediated end-joining maintains genome stability of human embryonic stem cells.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/fisiologia , DNA Ligase Dependente de ATP/metabolismo , Reparo do DNA/fisiologia , Instabilidade Genômica , Células-Tronco Embrionárias Humanas/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Células Cultivadas , Reparo do DNA por Junção de Extremidades/efeitos da radiação , DNA Ligase Dependente de ATP/genética , Reparo do DNA/efeitos da radiação , Recombinação Homóloga , Células-Tronco Embrionárias Humanas/citologia , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética
18.
DNA Repair (Amst) ; 74: 70-79, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30606609

RESUMO

DSBs are harmful lesions produced through endogenous metabolism or by exogenous agents such as ionizing radiation, that can trigger genomic rearrangements. We have recently shown that exposure to 2 Gy of X-rays has opposite effects on the induction of Shh-dependent MB in NHEJ- and HR-deficient Ptch1+/- mice. In the current study we provide a comprehensive link on the role of HR/NHEJ at low doses (0.042 and 0.25 Gy) from the early molecular changes through DNA damage processing, up to the late consequences of their inactivation on tumorigenesis. Our data indicate a prominent role for HR in genome stability, by preventing spontaneous and radiation-induced oncogenic damage in neural precursors of the cerebellum, the cell of origin of MB. Instead, loss of DNA-PKcs function increased DSBs and apoptosis in neural precursors of the developing cerebellum, leading to killing of tumor initiating cells, and suppression of MB tumorigenesis in DNA-PKcs-/-/Ptch1+/- mice. Pathway analysis demonstrates that DNA-PKcs genetic inactivation confers a remarkable radiation hypersensitivity, as even extremely low radiation doses may deregulate many DDR genes, also triggering p53 pathway activation and cell cycle arrest. Finally, by showing that DNA-PKcs inhibition by NU7441 radiosensitizes human MB cells, our in vitro findings suggest the inclusion of MB in the list of tumors beneficiating from the combination of radiotherapy and DNA-PKcs targeting, holding promise for clinical translation.


Assuntos
Neoplasias Cerebelares/genética , Reparo do DNA/efeitos da radiação , Meduloblastoma/genética , Neoplasias Induzidas por Radiação/genética , Receptor Patched-1/deficiência , Receptor Patched-1/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/efeitos da radiação , Linhagem Celular Tumoral , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/terapia , Dano ao DNA , Reparo do DNA por Junção de Extremidades/efeitos da radiação , DNA Helicases/genética , Proteína Quinase Ativada por DNA/deficiência , Proteínas de Ligação a DNA/deficiência , Relação Dose-Resposta à Radiação , Recombinação Homóloga/efeitos da radiação , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Meduloblastoma/terapia , Camundongos , Terapia de Alvo Molecular , Mutação , Neoplasias Induzidas por Radiação/metabolismo , Neoplasias Induzidas por Radiação/patologia , Neoplasias Induzidas por Radiação/terapia , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Risco , Raios X/efeitos adversos
19.
Int J Cancer ; 144(7): 1685-1696, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478958

RESUMO

Here, we present a functional assay to detect the repair switch to the alternative PARP1-dependent end joining (PARP1-EJ) pathway and the associated susceptibility to PARPi-mediated radiosensitization in freshly collected tumor samples from prostate cancer (PCa) patients, thereby facilitating the selection of patients who should benefit from combined PARPi plus radiotherapy (RT) treatment. Our optimized ex-vivo approach sustains tumor slices for up to 15 days under culture conditions that maintain proliferation and oxygenation rates, as measured by EdU incorporation and pimonidazole staining, respectively. We present a robust system to analyze DSB repair using, for the first time in an ex vivo tumor slice setting, two DSB-markers simultaneously i.e. γH2AX and 53BP1. A computer-based processing method (i) controls variations in DNA content and slicing on the number of repair foci and (ii) measures the PARPi-mediated enhancement ratio on DSB foci numbers to ensure inter-patient-comparability. We validated this approach using a PC3 xenograft model with its previously described repair switch to PARP1-EJ. More importantly, we show that approximately 30% of the analyzed tumor tissue samples collected from PCa patients display a switch to PARP1-EJ, as indicated by the enhanced number of residual γH2AX/53BP1 foci exclusively after PARPi+RT. Furthermore, normal prostatic tissues show no repair switch to PARP1-EJ, indicating that this repair switch and its associated radiosensitizing effect is tumor-specific. Collectively, we present here a predictive assay for the switch to PARP1-EJ that enables individualization of anti-cancer treatment using a combination of RT and radiosensitizing anticancer agents such as PARPi in PCa.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Neoplasias da Próstata/terapia , Radiossensibilizantes/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Histonas/metabolismo , Humanos , Masculino , Camundongos , Gradação de Tumores , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Radiossensibilizantes/farmacologia , Técnicas de Cultura de Tecidos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
20.
J Radiat Res ; 60(1): 37-50, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423138

RESUMO

Radiotherapy is a common modality for treatment of brain cancers, but it can induce long-term physiological and cognitive deficits. The responses of normal human brain cells to radiation is not well understood. Astrocytes have been shown to have a variety of protective mechanisms against oxidative stress and have been shown to protect neurons. We investigated the response of cultured normal human astrocytes (NHAs) to X-ray irradiation. Following exposure to 10 Gy X-irradiation, NHAs exhibited DNA damage as indicated by the formation of γ-H2AX foci. Western blotting showed that NHAs displayed a robust increase in expression of non-homologous end joining DNA repair enzymes within 15 min post-irradiation and increased expression of homologous recombination DNA repair enzymes ~2 h post-irradiation. The cell cycle checkpoint protein p21/waf1 was upregulated from 6-24 h, and then returned to baseline. Levels of DNA repair enzymes returned to basal ~48 h post-irradiation. NHAs re-entered the cell cycle and proliferation was observed at 6 days. In contrast, normal human mesenchymal stem cells (MSCs) failed to upregulate DNA repair enzymes and instead displayed sustained upregulation of p21/waf1, a cell cycle checkpoint marker for senescence. Ectopic overexpression of Ku70 was sufficient to protect MSCs from sustained upregulation of p21/waf1 induced by 10 Gy X-rays. These findings suggest that increased expression of Ku70 may be a key mechanism for the radioresistance of NHAs, preventing their accelerated senescence from high-dose radiation. These results may have implications for the development of novel targets for radiation countermeasure development.


Assuntos
Astrócitos/efeitos da radiação , Reparo do DNA por Junção de Extremidades , Tolerância a Radiação , Apoptose/efeitos da radiação , Astrócitos/citologia , Astrócitos/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Senescência Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citoproteção/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Células HEK293 , Recombinação Homóloga/efeitos da radiação , Humanos , Autoantígeno Ku/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos da radiação , Exposição à Radiação , Tolerância a Radiação/efeitos da radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...