Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
2.
Int Immunol ; 36(6): 261-278, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38364321

RESUMO

Adoptive cell therapy (ACT) is an immunotherapeutic approach that involves isolating T cells from a patient, culturing them ex vivo, then reinfusing the cells back into the patient. Although this strategy has shown remarkable efficacy in hematological malignancies, the solid-tumour microenvironment (TME) has presented serious challenges for therapy efficacy. Particularly, the TME has immunosuppressive signalling and presents a metabolically challenging environment that leads to T-cell suppression. T-cell metabolism is an expanding field of research with a focus on understanding its inherent link to T-cell function. Here, we review the current model of T-cell metabolism from naïve cells through effector and memory life stages, as well as updates to the model from recent literature. These models of metabolism have provided us with the tools and understanding to explore T-cell metabolic and mitochondrial insufficiency in the TME. We discuss manipulations that can be made to these mitochondrial and metabolic pathways to enhance the persistence of infused T cells, overcome the metabolically challenging TME and improve the efficacy of therapy in ACT models. Further understanding and investigation of the impact of metabolic pathways on T-cell performance could contribute to improving therapy efficacy for patients.


Assuntos
Imunoterapia Adotiva , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Animais , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Reprogramação Celular/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Mitocôndrias/metabolismo , Mitocôndrias/imunologia
3.
Science ; 383(6679): eadf6493, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207030

RESUMO

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Assuntos
Reprogramação Celular , Neoplasias , Neovascularização Patológica , Neutrófilos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neutrófilos/imunologia , Proteômica , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Epigênese Genética , Hipóxia , Transcrição Gênica
4.
Clin Transl Med ; 11(12): e634, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965016

RESUMO

BACKGROUND: Although microbioa-based therapies have shown putative effects on the treatment of non-alcoholic fatty liver disease (NAFLD), it is not clear how microbiota-derived metabolites contribute to the prevention of NAFLD. We explored the metabolomic signature of Lactobacillus lactis and Pediococcus pentosaceus in NAFLD mice and its association in NAFLD patients. METHODS: We used Western diet-induced NAFLD mice, and L. lactis and P. pentosaceus were administered to animals in the drinking water at a concentration of 109 CFU/g for 8 weeks. NAFLD severity was determined based on liver/body weight, pathology and biochemistry markers. Caecal samples were collected for the metagenomics by 16S rRNA sequencing. Metabolite profiles were obtained from caecum, liver and serum. Human stool samples (healthy control [n = 22] and NAFLD patients [n = 23]) were collected to investigate clinical reproducibility for microbiota-derived metabolites signature and metabolomics biomarker. RESULTS: L. lactis and P. pentosaceus supplementation effectively normalized weight ratio, NAFLD activity score, biochemical markers, cytokines and gut-tight junction. While faecal microbiota varied according to the different treatments, key metabolic features including short chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites were analogously restored by both probiotic supplementations. The protective effects of indole compounds were validated with in vitro and in vivo models, including anti-inflammatory effects. The metabolomic signatures were replicated in NAFLD patients, accompanied by the comparable levels of Firmicutes/Bacteroidetes ratio, which was significantly higher (4.3) compared with control (0.6). Besides, the consequent biomarker panel with six stool metabolites (indole, BAs, and SCFAs) showed 0.922 (area under the curve) in the diagnosis of NAFLD. CONCLUSIONS: NAFLD progression was robustly associated with metabolic dys-regulations in the SCFAs, bile acid and indole compounds, and NAFLD can be accurately diagnosed using the metabolites. L. lactis and P. pentosaceus ameliorate NAFLD progression by modulating gut metagenomic and metabolic environment, particularly tryptophan pathway, of the gut-liver axis.


Assuntos
Reprogramação Celular/imunologia , Microbioma Gastrointestinal/imunologia , Lactobacillus/metabolismo , Metaboloma/imunologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Pediococcus pentosaceus/metabolismo , Animais , Benzofuranos/metabolismo , Reprogramação Celular/fisiologia , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Lactobacillus/patogenicidade , Metaboloma/fisiologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Pediococcus pentosaceus/patogenicidade , Quinolinas/metabolismo
5.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638609

RESUMO

Immune escape is one of the hallmarks of cancer. While metabolic reprogramming provides survival advantage to tumor cancer cells, accumulating data also suggest such metabolic rewiring directly affects the activation, differentiation and function of immune cells, particularly in the tumor microenvironment. Understanding how metabolic reprogramming affects both tumor and immune cells, as well as their interplay, is therefore critical to better modulate tumor immune microenvironment in the era of cancer immunotherapy. In this review, we discuss alterations in several essential metabolic pathways in both tumor and key immune cells, provide evidence on their dynamic interaction, and propose innovative strategies to improve cancer immunotherapy via the modulation of metabolic pathways.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Animais , Reprogramação Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Progressão da Doença , Humanos , Imunoterapia/tendências , Macrófagos/imunologia , Macrófagos/metabolismo , Redes e Vias Metabólicas , Neoplasias/imunologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia
6.
Front Immunol ; 12: 706583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489958

RESUMO

The burgeoning field of innate immune training, also called trained immunity, has given immunologists new insights into the role of innate responses in protection against infection and in modulating inflammation. Moreover, it has led to a paradigm shift in the way we think about immune memory and the interplay between innate and adaptive immune systems in conferring immunity against pathogens. Trained immunity is the term used to describe the medium-term epigenetic and metabolic reprogramming of innate immune cells in peripheral tissues or in the bone marrow stem cell niche. It is elicited by an initial challenge, followed by a significant period of rest that results in an altered response to a subsequent, unrelated challenge. Trained immunity can be associated with increased production of proinflammatory mediators, such as IL-1ß, TNF and IL-6, and increased expression of markers on innate immune cells associated with antigen presentation to T cells. The microenvironment created by trained innate immune cells during the secondary challenge may have profound effects on T cell responses, such as altering the differentiation, polarisation and function of T cell subtypes, including Th17 cells. In addition, the Th1 cytokine IFN-γ plays a critical role in establishing trained immunity. In this review, we discuss the evidence that trained immunity impacts on or can be impacted by T cells. Understanding the interplay between innate immune training and how it effects adaptive immunity will give insights into how this phenomenon may affect the development or progression of disease and how it could be exploited for therapeutic interventions or to enhance vaccine efficacy.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Linfócitos T/imunologia , Animais , Reprogramação Celular/imunologia , Epigênese Genética/imunologia , Humanos
7.
Mol Ther ; 29(11): 3192-3204, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34563675

RESUMO

Cell therapies based on reprogrammed adaptive immune cells have great potential as "living drugs." As first demonstrated clinically for engineered chimeric antigen receptor (CAR) T cells, the ability of such cells to undergo clonal expansion in response to an antigen promotes both self-renewal and self-regulation in vivo. B cells also have the potential to be developed as immune cell therapies, but engineering their specificity and functionality is more challenging than for T cells. In part, this is due to the complexity of the immunoglobulin (Ig) locus, as well as the requirement for regulated expression of both cell surface B cell receptor and secreted antibody isoforms, in order to fully recapitulate the features of natural antibody production. Recent advances in genome editing are now allowing reprogramming of B cells by site-specific engineering of the Ig locus with preformed antibodies. In this review, we discuss the potential of engineered B cells as a cell therapy, the challenges involved in editing the Ig locus and the advances that are making this possible, and envision future directions for this emerging field of immune cell engineering.


Assuntos
Linfócitos B/metabolismo , Sistemas CRISPR-Cas , Terapia Baseada em Transplante de Células e Tecidos/métodos , Edição de Genes , Terapia Genética/métodos , Imunoterapia/métodos , Animais , Anticorpos/genética , Anticorpos/imunologia , Linfócitos B/imunologia , Engenharia Celular , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Regulação da Expressão Gênica , Engenharia Genética , Humanos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
8.
Immunity ; 54(9): 2024-2041.e8, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34473957

RESUMO

Sepsis results in elevated adenosine in circulation. Extracellular adenosine triggers immunosuppressive signaling via the A2a receptor (A2aR). Sepsis survivors develop persistent immunosuppression with increased risk of recurrent infections. We utilized the cecal ligation and puncture (CLP) model of sepsis and subsequent infection to assess the role of adenosine in post-sepsis immune suppression. A2aR-deficient mice showed improved resistance to post-sepsis infections. Sepsis expanded a subset of CD39hi B cells and elevated extracellular adenosine, which was absent in mice lacking CD39-expressing B cells. Sepsis-surviving B cell-deficient mice were more resistant to secondary infections. Mechanistically, metabolic reprogramming of septic B cells increased production of ATP, which was converted into adenosine by CD39 on plasmablasts. Adenosine signaling via A2aR impaired macrophage bactericidal activity and enhanced interleukin-10 production. Septic individuals exhibited expanded CD39hi plasmablasts and adenosine accumulation. Our study reveals CD39hi plasmablasts and adenosine as important drivers of sepsis-induced immunosuppression with relevance in human disease.


Assuntos
Adenosina/imunologia , Antígenos CD/imunologia , Apirase/imunologia , Tolerância Imunológica/imunologia , Macrófagos/imunologia , Plasmócitos/imunologia , Sepse/imunologia , Adenosina/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Reprogramação Celular/imunologia , Macrófagos/metabolismo , Camundongos , Plasmócitos/metabolismo , Receptor A2A de Adenosina/imunologia , Receptor A2A de Adenosina/metabolismo , Sepse/metabolismo
9.
Front Immunol ; 12: 717421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394124

RESUMO

Regulatory T-cells (Tregs) are important for maintaining self-tolerance and tissue homeostasis. The functional plasticity of Tregs is a key feature of this lineage, as it allows them to adapt to different microenvironments, adopt transcriptional programs reflective of their environments and tailor their suppressive capacity in a context-dependent fashion. Tregs, particularly effector Tregs (eTregs), are abundant in many types of tumors. However, the functional and transcriptional plasticity of eTregs in tumors remain largely to be explored. Although depletion or inhibition of systemic Tregs can enhance anti-tumor responses, autoimmune sequelae have diminished the enthusiasm for such approaches. A more effective approach should specifically target intratumoral Tregs or subvert local Treg-mediated suppression. This mini-review will discuss the reported mechanisms by which the stability and suppressive function of tumoral Tregs are modulated, with the focus on eTregs and a subset of eTregs, follicular regulatory T (TFR) cells, and how to harness this knowledge for the future development of new effective cancer immunotherapies that selectively target the tumor local response while sparing the systemic side effects.


Assuntos
Reprogramação Celular , Suscetibilidade a Doenças , Neoplasias/etiologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Linhagem da Célula , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Humanos , Neoplasias/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
10.
Front Immunol ; 12: 714822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367185

RESUMO

Advances in understanding how cancer cells interact with the immune system allowed the development of immunotherapeutic strategies, harnessing patients' immune system to fight cancer. Dendritic cell-based vaccines are being explored to reactivate anti-tumor adaptive immunity. Immune checkpoint inhibitors and chimeric antigen receptor T-cells (CAR T) were however the main approaches that catapulted the therapeutic success of immunotherapy. Despite their success across a broad range of human cancers, many challenges remain for basic understanding and clinical progress as only a minority of patients benefit from immunotherapy. In addition, cellular immunotherapies face important limitations imposed by the availability and quality of immune cells isolated from donors. Cell fate reprogramming is offering interesting alternatives to meet these challenges. Induced pluripotent stem cell (iPSC) technology not only enables studying immune cell specification but also serves as a platform for the differentiation of a myriad of clinically useful immune cells including T-cells, NK cells, or monocytes at scale. Moreover, the utilization of iPSCs allows introduction of genetic modifications and generation of T/NK cells with enhanced anti-tumor properties. Immune cells, such as macrophages and dendritic cells, can also be generated by direct cellular reprogramming employing lineage-specific master regulators bypassing the pluripotent stage. Thus, the cellular reprogramming toolbox is now providing the means to address the potential of patient-tailored immune cell types for cancer immunotherapy. In parallel, development of viral vectors for gene delivery has opened the door for in vivo reprogramming in regenerative medicine, an elegant strategy circumventing the current limitations of in vitro cell manipulation. An analogous paradigm has been recently developed in cancer immunotherapy by the generation of CAR T-cells in vivo. These new ideas on endogenous reprogramming, cross-fertilized from the fields of regenerative medicine and gene therapy, are opening exciting avenues for direct modulation of immune or tumor cells in situ, widening our strategies to remove cancer immunotherapy roadblocks. Here, we review current strategies for cancer immunotherapy, summarize technologies for generation of immune cells by cell fate reprogramming as well as highlight the future potential of inducing these unique cell identities in vivo, providing new and exciting tools for the fast-paced field of cancer immunotherapy.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Imunoterapia , Terapia de Alvo Molecular , Neoplasias/etiologia , Neoplasias/terapia , Animais , Antineoplásicos Imunológicos/farmacologia , Vacinas Anticâncer/uso terapêutico , Técnicas de Reprogramação Celular , Terapia Combinada , Gerenciamento Clínico , Engenharia Genética , Terapia Genética , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Imunoterapia Adotiva , Terapia de Alvo Molecular/métodos
11.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34228644
12.
Front Immunol ; 12: 609762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968014

RESUMO

Cancer is one of the leading causes of death and a major public health problem all over the world. Immunotherapy is becoming a revolutionary clinical management for various cancer types. Restoration of aberrant immune surveillance on cancers has achieved markable progress in the past years by either in vivo or ex vivo engineering of the immune cells. Here, we summarized the central roles of immune cells in tumor progression and regression, and the existing and emerging strategies for different immune cell-based immunotherapies. In addition, the current challenges and the potential solutions in translating the immunotherapies into the clinic are also discussed.


Assuntos
Reprogramação Celular/imunologia , Imunomodulação , Neoplasias/imunologia , Neoplasias/terapia , Animais , Reprogramação Celular/genética , Engenharia Genética , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
13.
Nat Commun ; 12(1): 2582, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976133

RESUMO

Immune checkpoint blockers (ICBs) have failed in all phase III glioblastoma (GBM) trials. Here, we show that regulatory T (Treg) cells play a key role in GBM resistance to ICBs in experimental gliomas. Targeting glucocorticoid-induced TNFR-related receptor (GITR) in Treg cells using an agonistic antibody (αGITR) promotes CD4 Treg cell differentiation into CD4 effector T cells, alleviates Treg cell-mediated suppression of anti-tumor immune response, and induces potent anti-tumor effector cells in GBM. The reprogrammed GBM-infiltrating Treg cells express genes associated with a Th1 response signature, produce IFNγ, and acquire cytotoxic activity against GBM tumor cells while losing their suppressive function. αGITR and αPD1 antibodies increase survival benefit in three experimental GBM models, with a fraction of cohorts exhibiting complete tumor eradication and immune memory upon tumor re-challenge. Moreover, αGITR and αPD1 synergize with the standard of care treatment for newly-diagnosed GBM, enhancing the cure rates in these GBM models.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Proteína Relacionada a TNFR Induzida por Glucocorticoide/agonistas , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral/transplante , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/imunologia , Modelos Animais de Doenças , Feminino , Glioblastoma/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Memória Imunológica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
14.
J Clin Invest ; 131(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34043588

RESUMO

Peripheral T cell lymphomas (PTCLs) represent a significant unmet medical need with dismal clinical outcomes. The T cell receptor (TCR) is emerging as a key driver of T lymphocyte transformation. However, the role of chronic TCR activation in lymphomagenesis and in lymphoma cell survival is still poorly understood. Using a mouse model, we report that chronic TCR stimulation drove T cell lymphomagenesis, whereas TCR signaling did not contribute to PTCL survival. The combination of kinome, transcriptome, and epigenome analyses of mouse PTCLs revealed a NK cell-like reprogramming of PTCL cells with expression of NK receptors (NKRs) and downstream signaling molecules such as Tyrobp and SYK. Activating NKRs were functional in PTCLs and dependent on SYK activity. In vivo blockade of NKR signaling prolonged mouse survival, demonstrating the addiction of PTCLs to NKRs and downstream SYK/mTOR activity for their survival. We studied a large collection of human primary samples and identified several PTCLs recapitulating the phenotype described in this model by their expression of SYK and the NKR, suggesting a similar mechanism of lymphomagenesis and establishing a rationale for clinical studies targeting such molecules.


Assuntos
Linfoma de Células T Periférico/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Células Matadoras Naturais/imunologia , Animais , Carcinogênese/genética , Carcinogênese/imunologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genes p53 , Humanos , Células Matadoras Naturais/imunologia , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Células Matadoras Naturais/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Quinase Syk/metabolismo , Linfócitos T/imunologia
15.
Nat Med ; 27(6): 1043-1054, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34017133

RESUMO

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are prevalent liver conditions that underlie the development of life-threatening cirrhosis, liver failure and liver cancer. Chronic necro-inflammation is a critical factor in development of NASH, yet the cellular and molecular mechanisms of immune dysregulation in this disease are poorly understood. Here, using single-cell transcriptomic analysis, we comprehensively profiled the immune composition of the mouse liver during NASH. We identified a significant pathology-associated increase in hepatic conventional dendritic cells (cDCs) and further defined their source as NASH-induced boost in cycling of cDC progenitors in the bone marrow. Analysis of blood and liver from patients on the NAFLD/NASH spectrum showed that type 1 cDCs (cDC1) were more abundant and activated in disease. Sequencing of physically interacting cDC-T cell pairs from liver-draining lymph nodes revealed that cDCs in NASH promote inflammatory T cell reprogramming, previously associated with NASH worsening. Finally, depletion of cDC1 in XCR1DTA mice or using anti-XCL1-blocking antibody attenuated liver pathology in NASH mouse models. Overall, our study provides a comprehensive characterization of cDC biology in NASH and identifies XCR1+ cDC1 as an important driver of liver pathology.


Assuntos
Células Dendríticas/imunologia , Fígado Gorduroso/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Receptores de Quimiocinas/genética , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Células Dendríticas/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Humanos , Fígado/imunologia , Fígado/patologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores de Quimiocinas/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia
16.
Front Immunol ; 12: 631353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017325

RESUMO

Acute graft-vs.-host (GVHD) disease remains a common complication of allogeneic stem cell transplantation with very poor outcomes once the disease becomes steroid refractory. Mesenchymal stem cells (MSCs) represent a promising therapeutic approach for the treatment of GVHD, but so far this strategy has had equivocal clinical efficacy. Therapies using MSCs require optimization taking advantage of the plasticity of these cells in response to different microenvironments. In this study, we aimed to optimize cord blood tissue derived MSCs (CBti MSCs) by priming them using a regimen of inflammatory cytokines. This approach led to their metabolic reprogramming with enhancement of their glycolytic capacity. Metabolically reprogrammed CBti MSCs displayed a boosted immunosuppressive potential, with superior immunomodulatory and homing properties, even after cryopreservation and thawing. Mechanistically, primed CBti MSCs significantly interfered with glycolytic switching and mTOR signaling in T cells, suppressing T cell proliferation and ensuing polarizing toward T regulatory cells. Based on these data, we generated a Good Manufacturing Process (GMP) Laboratory protocol for the production and cryopreservation of primed CBti MSCs for clinical use. Following thawing, these cryopreserved GMP-compliant primed CBti MSCs significantly improved outcomes in a xenogenic mouse model of GVHD. Our data support the concept that metabolic profiling of MSCs can be used as a surrogate for their suppressive potential in conjunction with conventional functional methods to support their therapeutic use in GVHD or other autoimmune disorders.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular/fisiologia , Sangue Fetal/citologia , Doença Enxerto-Hospedeiro/prevenção & controle , Células-Tronco Mesenquimais/metabolismo , Animais , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/imunologia , Citocinas/farmacologia , Feminino , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos NOD , Controle de Qualidade
17.
Leukemia ; 35(12): 3482-3496, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34021248

RESUMO

Immunotherapies have heralded a new era in the cancer treatment. In addition to checkpoint inhibitors, agonistic antibodies against co-stimulatory immune receptors hold the potential to invoke efficient antitumor immunity. Targeting CD137 has gained momentum based on its ability to drive NK- and T-cell-based responses. CD137-engaging mAbs have already entered clinical trials for different types of tumors showing promising results. Despite the efforts to translate CD137-mediated immunotherapy into clinical practice, little remains known regarding the role of CD137 in human monocytes/macrophages.We found CD137 being expressed on monocytes of healthy controls and at even higher levels in patients with multiple myeloma or CLL. CD137HI(GH) monocytes displayed a distinct phenotypic, transcriptomic, and metabolic profile. They possessed an increased phagocytic capacity enabling superior antibody-dependent phagocytosis (ADPC) of multiple myeloma and lymphoma cells that were treated with anti-CD38 or anti-CD20 mAbs. Triggering CD137 promoted both metabolic and tumoricidal activity in an extracellular signal-regulated kinase (ERK)-dependent fashion. In addition, we observed a phenotypic, transcriptomic, and functional skewing towards a M1-like phenotype.Overall, we introduce CD137 as a positive immune checkpoint on human monocytes/macrophages, which can have therapeutic implications especially in view of synergistic effects when combining CD137 agonists with tumor-targeting antibodies.


Assuntos
Imunoterapia/métodos , Macrófagos/imunologia , Monócitos/imunologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Células Cultivadas , Reprogramação Celular/imunologia , Humanos , Células Matadoras Naturais/imunologia , Macrófagos/metabolismo , Monócitos/metabolismo , Mieloma Múltiplo/sangue , Mieloma Múltiplo/metabolismo , Fagocitose , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
18.
Med Sci (Paris) ; 37(4): 342-348, 2021 Apr.
Artigo em Francês | MEDLINE | ID: mdl-33908851

RESUMO

Metabolism and immunity have long been classified in distinct research fields; however, the concept of immunometabolism has recently highlighted their close relationship. Immune cells in an infectious context undergo a metabolic reprogramming that leads to the accumulation of metabolites. Some of these metabolites, called metabokines, play a crucial role in anti-infectious immunity by having immunoregulatory and antimicrobial defence properties. On the one hand, metabokines regulate the response of host immune cells by modulating intracellular signalling and/or inducing post-translational modifications of proteins. On the other hand, metabokines can directly or indirectly target pathogens by inhibiting microbial metabolic pathways, restoring the sensitivity of bacteria to antibiotics, and disrupting viral replication cycles. These discoveries on metabokine properties could pave the way for the development of innovative anti-infectious metabolic treatments.


TITLE: Les métabokines, des médiateurs essentiels de l'immunité anti-infectieuse. ABSTRACT: Longtemps cloisonnés dans des domaines de recherche distincts, métabolisme énergétique et immunité ont un lien étroit, récemment mis en exergue par le concept d'immunométabolisme. Dans un contexte infectieux, des reprogrammations métaboliques peuvent en effet survenir dans les cellules immunitaires et aboutir à l'accumulation de divers métabolites, dont certains, appelés métabokines, possèdent des propriétés inattendues d'immunorégulation et de défense antimicrobienne. Ils jouent un rôle crucial dans l'immunité anti-infectieuse, en régulant la réponse des cellules immunitaires de l'hôte, mais aussi en ciblant directement ou indirectement les microorganismes pathogènes.


Assuntos
Reprogramação Celular/imunologia , Citocinas/imunologia , Imunidade Celular , Infecções/imunologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Metabolismo Energético , Epigênese Genética , Humanos , Infecções/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Redes e Vias Metabólicas , Replicação Viral/imunologia
19.
Sci Immunol ; 6(57)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766849

RESUMO

Simian immunodeficiency virus (SIV) insert-expressing, 68-1 rhesus cytomegalovirus (RhCMV/SIV) vectors elicit major histocompatibility complex E (MHC-E)- and MHC-II-restricted, SIV-specific CD8+ T cell responses, but the basis of these unconventional responses and their contribution to demonstrated vaccine efficacy against SIV challenge in the rhesus monkeys (RMs) have not been characterized. We show that these unconventional responses resulted from a chance genetic rearrangement in 68-1 RhCMV that abrogated the function of eight distinct immunomodulatory gene products encoded in two RhCMV genomic regions (Rh157.5/Rh157.4 and Rh158-161), revealing three patterns of unconventional response inhibition. Differential repair of these genes with either RhCMV-derived or orthologous human CMV (HCMV)-derived sequences (UL128/UL130; UL146/UL147) leads to either of two distinct CD8+ T cell response types-MHC-Ia-restricted only or a mix of MHC-II- and MHC-Ia-restricted CD8+ T cells. Response magnitude and functional differentiation are similar to RhCMV 68-1, but neither alternative response type mediated protection against SIV challenge. These findings implicate MHC-E-restricted CD8+ T cell responses as mediators of anti-SIV efficacy and indicate that translation of RhCMV/SIV vector efficacy to humans will likely require deletion of all genes that inhibit these responses from the HCMV/HIV vector.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Reprogramação Celular/imunologia , Infecções por Citomegalovirus/veterinária , Citomegalovirus/imunologia , Doenças dos Macacos/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Reprogramação Celular/genética , Engenharia Genética/métodos , Vetores Genéticos/genética , Imunogenicidade da Vacina , Memória Imunológica , Macaca mulatta , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Eficácia de Vacinas
20.
Br J Cancer ; 124(12): 1897-1899, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33767421
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...