Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139332

RESUMO

The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.


Assuntos
Endopeptidase Clp , Perda Auditiva , Mitocôndrias , Animais , Camundongos , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Respiração/genética , Biossíntese de Proteínas/genética
2.
Genes Brain Behav ; 21(2): e12788, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044072

RESUMO

Evidence for a cerebellar role during cardiopulmonary challenges has long been established, but studies of cerebellar involvement in eupneic breathing have been inconclusive. Here we investigated temporal aspects of eupneic respiration in the Atoh1-En1/2 mouse model of cerebellar neuropathology. Atoh1-En1/2 conditional knockout mice have conditional loss of the developmental patterning genes Engrailed1 and 2 in excitatory cerebellar nuclear neurons, which leads to loss of a subset of medial and intermediate excitatory cerebellar nuclear neurons. A sample of three Atoh1-derived extracerebellar nuclei showed no cell loss in the conditional knockout compared to control mice. We measured eupneic respiration in mutant animals and control littermates using whole-body unrestrained plethysmography and compared the average respiratory rate, coefficient of variation, and the CV2, a measure of intrinsic rhythmicity. Linear regression analyses revealed that Atoh1-En1/2 conditional knockouts have decreased overall variability (p = 0.021; b = -0.045) and increased intrinsic rhythmicity compared to their control littermates (p < 0.001; b = -0.037), but we found no effect of genotype on average respiratory rate (p = 0.064). Analysis also revealed modestly decreased respiratory rates (p = 0.025; b = -0.82), increased coefficient of variation (p = 0.0036; b = 0.060), and increased CV2 in female animals, independent of genotype (p = 0.024; b = 0.026). These results suggest a cerebellar involvement in eupneic breathing by controlling rhythmicity. We argue that the cerebellar involvement in controlling the CV2 of respiration is indicative of an involvement of coordinating respiration with other orofacial rhythms, such as swallowing.


Assuntos
Cerebelo , Respiração , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cerebelo/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso , Respiração/genética
3.
Funct Integr Genomics ; 22(1): 65-76, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839401

RESUMO

Air-breathing has evolved independently serval times with a variety of air-breathing organs (ABOs) in fish. The physiology of the air-breathing in bimodal respiration fish has been well understood, while studies on molecular mechanisms of the character are very limited. In the present study, we first determined the gill indexes of 110 fish species including 25 and 85 kinds of bimodal respiration fishes and non-air-breathing fishes, respectively. Then combined with histological observations of gills and ABOs/non-ABOs in three bimodal respiration fishes and two non-air breathing fishes, we found that the bimodal respiration fish was always of a degeneration gill and a well-vascularized ABO. Meanwhile, a comparative transcriptome analysis of posterior intestines, namely a well vascularized ABO in Misgurnus anguillicaudatus and a non-ABO in Leptobotia elongata, was performed to expound molecular variations of the air-breathing character. A total of 5,003 orthologous genes were identified. Among them, 1,189 orthologous genes were differentially expressed, which were enriched in 14 KEGG pathways. More specially, the expressions of hemoglobin genes and various HIF/VEGF signaling pathway genes were obviously upregulated in the ABO of M. anguillicaudatus. Moreover, we found that HIF-1α, VEGFAa, and MAP2K1 were co-expressed dramatically higher in ABOs of bimodal respiration fishes than those of non-ABOs of non-air-breathing fishes. These results indicated that the HIF/VEGF pathway played an important role in ABO angiogenesis/formation to promote fish to do aerial respiration. This study will contribute to our understanding of molecular mechanisms of air-breathing in fish.


Assuntos
Cipriniformes , Fator 1 Induzível por Hipóxia , Neovascularização Fisiológica , Respiração , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Animais , Cipriniformes/genética , Cipriniformes/fisiologia , Fator 1 Induzível por Hipóxia/genética , Respiração/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética
4.
J Cell Physiol ; 236(12): 8082-8098, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34077559

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused mostly by mutations in the MECP2 gene. RTT patients show periodical hypoventilation attacks. The breathing disorder contributing to the high incidence of sudden death is thought to be due to depressed central inspiratory (I) activity via unknown cellular processes. Demonstration of such processes may lead to targets for pharmacological control of the RTT-type hypoventilation. We performed in vivo recordings from medullary respiratory neurons on the RTT rat model. To our surprise, both I and expiratory (E) neurons in the ventral respiratory column (VRC) increased their firing activity in Mecp2-null rats with severe hypoventilation. These I neurons including E-I phase-spanning and other I neurons remained active during apneas. Consistent with enhanced central I drive, ectopic phrenic discharges during expiration as well as apnea were observed in the Mecp2-null rats. Considering the increased I neuronal firing and ectopic phrenic activity, the RTT-type hypoventilation does not seem to be caused by depression in central I activity, neither reduced medullary I premotor output. This as well as excessive E neuronal firing as shown in our previous studies suggests inadequate synaptic inhibition for phase transition. We found that the abnormal respiratory neuronal firing, ectopic phrenic discharge as well as RTT-type hypoventilation all can be corrected by enhancing GABAergic inhibition. More strikingly, Mecp2-null rats reaching humane endpoints with severe hypoventilation can be rescued by GABAergic augmentation. Thus, defective GABAergic inhibition among respiratory neurons is likely to play a role in the RTT-type hypoventilation, which can be effectively controlled with pharmacological agents.


Assuntos
Hipoventilação/patologia , Bulbo/metabolismo , Neurônios/metabolismo , Síndrome de Rett/metabolismo , Animais , Modelos Animais de Doenças , Hipoventilação/metabolismo , Bulbo/patologia , Neurônios/efeitos dos fármacos , Ratos Nus , Respiração/efeitos dos fármacos , Respiração/genética , Síndrome de Rett/tratamento farmacológico
5.
Aging (Albany NY) ; 13(9): 13318-13332, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903282

RESUMO

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Currently, recent risk stratification has only focused on liver function and tumor characteristics. Thus, the purpose of this study was to develop a prognostic model based on genes involved in aerobic respiration. Matched tumor and normal tissues from TCGA and ICGC cohorts were analyzed to identify 15 overlapping differential expressed genes. Cox univariate analysis of the 15 genes in the TCGA cohort revealed they were all associated with disease-specific survival (DSS) in HCC patients. Using LASSO estimation and the optimal value for penalization coefficient lambda 12 genes were selected for the prognostic model, and then HCC patients in the TCGA cohort were dichotomized into low-risk and high-risk groups. Univariate and multivariate Cox analysis demonstrated patients in low-risk group had better survival. Validation of the risk score model with the ICGC cohort produces results consistent with those of the TCGA cohort. In conclusion, this study developed and validated a prognostic model of HCC through a comprehensive analysis of genes involved in aerobic respiration. This model may help develop personalized treatments for patients with HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/genética , Respiração/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias Hepáticas/diagnóstico , Prognóstico , Fatores de Risco
6.
Mol Genet Metab ; 133(1): 83-93, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33752971

RESUMO

Leigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4-/- mouse model of Leigh syndrome, continuously breathing 11% O2 (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4-/- mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood. Relatively healthy Ndufs4-/- and wildtype (WT) mice breathing air until postnatal age ~38 d were compared to Ndufs4-/- and WT mice breathing air until ~38 days old followed by 4-weeks of breathing 11% O2. Compared to WT control mice, Ndufs4-/- mice breathing air have reduced brain O2 consumption as evidenced by an elevated partial pressure of O2 in IJV blood (PijvO2) despite a normal PO2 in arterial blood, and higher lactate/pyruvate (L/P) ratios in IJV plasma revealed by metabolic profiling. In Ndufs4-/- mice, hypoxia treatment normalized the cerebral venous PijvO2 and L/P ratios, and decreased levels of nicotinate in IJV plasma. Brain concentrations of nicotinamide adenine dinucleotide (NAD+) were lower in Ndufs4-/- mice breathing air than in WT mice, but preserved at WT levels with hypoxia treatment. Although mild hypoxia (17% O2) has been shown to be an ineffective therapy for Ndufs4-/- mice, we find that when combined with nicotinic acid supplementation it provides a modest improvement in neurodegeneration and lifespan. Therapies targeting both brain hyperoxia and NAD+ deficiency may hold promise for treating Leigh syndrome.


Assuntos
Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/genética , Doença de Leigh/metabolismo , NAD/genética , Oxigênio/metabolismo , Animais , Encéfalo/patologia , Hipóxia Celular/fisiologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/terapia , Metabolômica , Camundongos , Mitocôndrias , NAD/deficiência , Doenças Neurodegenerativas , Respiração/genética
7.
Cell Rep ; 34(5): 108714, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33535052

RESUMO

Brainstem networks that control regular tidal breathing depend on excitatory drive, including from tonically active, CO2/H+-sensitive neurons of the retrotrapezoid nucleus (RTN). Here, we examine intrinsic ionic mechanisms underlying the metronomic firing activity characteristic of RTN neurons. In mouse brainstem slices, large-amplitude membrane potential oscillations are evident in synaptically isolated RTN neurons after blocking action potentials. The voltage-dependent oscillations are abolished by sodium replacement; blocking calcium channels (primarily L-type); chelating intracellular Ca2+; and inhibiting TRPM4, a Ca2+-dependent cationic channel. Likewise, oscillation voltage waveform currents are sensitive to calcium and TRPM4 channel blockers. Extracellular acidification and serotonin (5-HT) evoke membrane depolarization that augments TRPM4-dependent oscillatory activity and action potential discharge. Finally, inhibition of TRPM4 channels in the RTN of anesthetized mice reduces central respiratory output. These data implicate TRPM4 in a subthreshold oscillation that supports the pacemaker-like firing of RTN neurons required for basal, CO2-stimulated, and state-dependent breathing.


Assuntos
Células Quimiorreceptoras/metabolismo , Potenciais da Membrana/genética , Neurônios/metabolismo , Respiração/genética , Canais de Cátion TRPM/metabolismo , Animais , Humanos , Camundongos
8.
Sci Rep ; 11(1): 3664, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574459

RESUMO

Vagus nerve stimulation has shown many benefits for disease therapies but current approaches involve imprecise electrical stimulation that gives rise to off-target effects, while the functionally relevant pathways remain poorly understood. One method to overcome these limitations is the use of optogenetic techniques, which facilitate targeted neural communication with light-sensitive actuators (opsins) and can be targeted to organs of interest based on the location of viral delivery. Here, we tested whether retrograde adeno-associated virus (rAAV2-retro) injected in the heart can be used to selectively express opsins in vagus nerve fibers controlling cardiac function. Furthermore, we investigated whether perturbations in cardiac function could be achieved with photostimulation at the cervical vagus nerve. Viral injection in the heart resulted in robust, primarily afferent, opsin reporter expression in the vagus nerve, nodose ganglion, and brainstem. Photostimulation using both one-photon stimulation and two-photon holography with a GRIN-lens incorporated nerve cuff, was tested on the pilot-cohort of injected mice. Changes in heart rate, surface electrocardiogram, and respiratory responses were observed in response to both one- and two-photon photostimulation. The results demonstrate feasibility of retrograde labeling for organ targeted optical neuromodulation.


Assuntos
Dependovirus/genética , Coração/virologia , Opsinas/genética , Nervo Vago/metabolismo , Animais , Estimulação Elétrica , Coração/fisiopatologia , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/virologia , Optogenética/métodos , Respiração/genética , Nervo Vago/fisiologia , Nervo Vago/virologia , Estimulação do Nervo Vago/métodos
9.
Int J Mol Sci ; 22(2)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430028

RESUMO

Carbonic anhydrases (CAs) are essential metalloenzymes in nature, catalyzing the carbon dioxide reversible hydration into bicarbonate and proton. In humans, breathing and many other critical physiological processes depend on this enzymatic activity. The CA superfamily function and inhibition in pathogenic bacteria has recently been the object of significant advances, being demonstrated to affect microbial survival/virulence. Targeting bacterial CAs may thus be a valid alternative to expand the pharmacological arsenal against the emergence of widespread antibiotic resistance. Here, we report an extensive study on the inhibition profile of the recently discovered ι-CA class present in some bacteria, including Burkholderia territorii, namely BteCAι, using substituted benzene-sulfonamides and clinically licensed sulfonamide-, sulfamate- and sulfamide-type drugs. The BteCAι inhibition profile showed: (i) several benzene-sulfonamides with an inhibition constant lower than 100 nM; (ii) a different behavior with respect to other α, ß and γ-CAs; (iii) clinically used drugs having a micromolar affinity. This prototype study contributes to the initial recognition of compounds which efficiently and selectively inhibit a bacterial member of the ι-CA class, for which such a selective inhibition with respect to other protein isoforms present in the host is highly desired and may contribute to the development of novel antimicrobials.


Assuntos
Benzeno/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/genética , Sulfonamidas/farmacologia , Sequência de Aminoácidos/genética , Benzeno/química , Burkholderia/enzimologia , Burkholderia/genética , Anidrases Carbônicas/efeitos dos fármacos , Humanos , Estrutura Molecular , Respiração/genética , Relação Estrutura-Atividade
10.
Semin Cell Dev Biol ; 110: 61-69, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32307225

RESUMO

Cilia and centrosomes of eukaryotic cells play important roles in cell movement, fluid transport, extracellular sensing, and chromosome division. The physiological functions of cilia and centrosomes are generated by their dynamics, motions, and forces controlled by the physical, chemical, and biological environments. How an individual cilium achieves its beat pattern and induces fluid flow is governed by its ultrastructure as well as the coordination of associated molecular motors. Thus, a bottom-up understanding of the physiological functions of cilia and centrosomes from the molecular to tissue levels is required. Correlations between the structure and motion can be understood in terms of mechanics. This review first focuses on cilia and centrosomes at the molecular level, introducing their ultrastructure. We then shift to the organelle level and introduce the kinematics and mechanics of cilia and centrosomes. Next, at the tissue level, we introduce nodal ciliary dynamics and nodal flow, which play crucial roles in the organogenetic process of left-right asymmetry. We also introduce respiratory ciliary dynamics and mucous flow, which are critical for protecting the epithelium from drying and exposure to harmful particles and viruses, i.e., respiratory clearance function. Finally, we discuss the future research directions in this field.


Assuntos
Axonema/ultraestrutura , Corpos Basais/ultraestrutura , Centrossomo/ultraestrutura , Cílios/ultraestrutura , Células Epiteliais/ultraestrutura , Microtúbulos/ultraestrutura , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Axonema/metabolismo , Corpos Basais/metabolismo , Transporte Biológico , Fenômenos Biomecânicos , Centrossomo/metabolismo , Segregação de Cromossomos , Cílios/metabolismo , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Microtúbulos/metabolismo , Movimento , Organogênese/genética , Respiração/genética , Reologia
11.
Mar Biotechnol (NY) ; 23(1): 90-105, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33113010

RESUMO

The bighead catfish (Clarias macrocephalus) and channel catfish (Ictalurus punctatus) are freshwater species in the Siluriformes order. C. macrocephalus has both gills and modified gill structures serving as an air-breathing organ (ABO), while I. punctatus does not possess such an organ, and cannot breathe in air, providing an excellent model for studying the molecular basis of ABO development in teleost fish. To investigate the critical time window for the development of air-breathing function, seven development stages were selected based on hypoxia challenge results, and RNA-seq was performed upon C. macrocephalus to compare with the non-air-breathing I. punctatus. Five-hundred million reads were generated and 25,239 expressed genes were annotated in C. macrocephalus. Among those, 8675 genes were differentially expressed across developmental stages. Comparative genomic analysis identified 1458 C. macrocephalus specific genes, which were absent in I. punctatus. Gene network and protein-protein interaction analyses identified 26 key hub genes involved in the air-breathing function. Three top candidate genes, mb, ngb, hbae, are mainly associated with oxygen carrying, oxygen binding, and heme binding activities. Our study provides a rich data set for exploring the genomic basis of air-breathing function in C. macrocephalus and offers insights into the adaption to hypoxic environments.


Assuntos
Adaptação Fisiológica/genética , Peixes-Gato/genética , Respiração/genética , Animais , Peixes-Gato/crescimento & desenvolvimento , Peixes-Gato/metabolismo , Perfilação da Expressão Gênica , Genômica , Brânquias/fisiologia , Hipóxia , Oxigênio/metabolismo , Análise de Sequência de RNA
12.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118863, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007329

RESUMO

Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.


Assuntos
Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , Fotossíntese/genética , Simbiose/genética , Bactérias/genética , Citosol/metabolismo , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Respiração/genética , Saccharomyces cerevisiae/genética , Enxofre/metabolismo
13.
Sci Rep ; 10(1): 22105, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328521

RESUMO

Light/dark cycle affects the physiology of vertebrates and hypothalamic orexin neurons (ORX) are involved in this function. The breathing pattern of the green iguana changes from continuous to episodic across the light/dark phases. Since the stimulatory actions of ORX on breathing are most important during arousal, we hypothesized that ORX regulates changes of breathing pattern in iguanas. Thus, we: (1) Localized ORX neurons with immunohistochemistry; (2) Quantified cyclic changes in plasma orexin-A levels by ELISA; (3) Compared breathing pattern at rest and during hypoxia and hypercarbia; (4) Evaluated the participation of the ORX receptors in ventilation with intracerebroventricular microinjections of ORX antagonists during light and dark phases. We show that the ORX neurons of I. iguana are located in the periventricular hypothalamic nucleus. Orexin-A peaks during the light/active phase and breathing parallels these cyclic changes: ventilation is higher during the light phase than during the dark phase. However, inactivation of ORX-receptors does not affect the breathing pattern. Iguanas increase ventilation during hypoxia only during the light phase. Conversely, CO2 promotes post-hypercarbic hyperpnea during both phases. We conclude that ORXs potentiate the post-hypercarbic (but not the hypoxic)-drive to breathe and are not involved in light/dark changes in the breathing pattern.


Assuntos
Iguanas/fisiologia , Orexinas/genética , Fotoperíodo , Respiração/genética , Animais , Iguanas/sangue , Iguanas/genética , Neurônios/metabolismo , Neurônios/fisiologia , Neuropeptídeos/sangue , Receptores de Orexina , Orexinas/sangue
14.
Cell Rep ; 33(6): 108358, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176139

RESUMO

Breathing is coupled to metabolism. Leptin, a peptide mainly secreted in proportion to adipose tissue mass, increases energy expenditure with a parallel increase in breathing. We demonstrate that optogenetic activation of LepRb neurons in the nucleus of the solitary tract (NTS) mimics the respiratory stimulation after systemic leptin administration. We show that leptin activates the sodium leak channel (NALCN), thereby depolarizing a subset of glutamatergic (VGluT2) LepRb NTS neurons expressing galanin. Mice with selective deletion of NALCN in LepRb neurons have increased breathing irregularity and central apneas. On a high-fat diet, these mice gain weight with an associated depression of minute ventilation and tidal volume, which are not detected in control littermates. Anatomical mapping reveals LepRb NTS-originating glutamatergic axon terminals in a brainstem inspiratory premotor region (rVRG) and dorsomedial hypothalamus. These findings directly link a defined subset of NTS LepRb cells to the matching of ventilation to energy balance.


Assuntos
Metabolismo Energético/fisiologia , Leptina/metabolismo , Metabolismo/genética , Respiração/genética , Animais , Humanos , Camundongos
15.
J Mol Biol ; 432(23): 6108-6126, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33058874

RESUMO

The Krebs cycle enzyme fumarase is a dual-targeted protein that is located in the mitochondria and cytoplasm of eukaryotic cells. Besides being involved in the TCA cycle and primary metabolism, fumarase is a tumour suppressor that aids DNA repair in human cells. Using mass spectrometry, we identified modifications in peptides of cytosolic yeast fumarase, some of which were absent when the cells were exposed to DNA damage (using the homing endonuclease system or hydroxyurea). We show that DNA damage increased the enzymatic activity of fumarase, which we hypothesized to be affected by post-translational modifications. Succinylation and ubiquitination of fumarase at lysines 78 and 79, phosphorylation at threonine 122, serine 124 and threonine 126 as well as deamidation at arginine 239 were found to be functionally relevant. Upon homology analysis, these residues were also found to be evolutionally conserved. Serine 128, on the other hand, is not evolutionary conserved and the Fum1S128D phosphorylation mimic was able to aid DNA repair. Our molecular model is that the above modifications inhibit the enzymatic activity of cytosolic fumarase under conditions of no DNA damage induction and when there is less need for the enzyme. Upon genotoxic stress, some fumarase modifications are removed and some enzymes are degraded while unmodified proteins are synthesized. This report is the first to demonstrate how post-translational modifications influence the catalytic and DNA repair functions of fumarase in the cell.


Assuntos
Dano ao DNA/genética , Fumarato Hidratase/genética , Processamento de Proteína Pós-Traducional/genética , Respiração/genética , Citoplasma/enzimologia , Citoplasma/genética , Reparo do DNA/genética , Fumarato Hidratase/química , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Fosforilação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Ubiquitinação/genética
16.
J Rehabil Med ; 52(9): jrm00102, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32870317

RESUMO

OBJECTIVE: To propose alternative learning strategies for glossopharyngeal breathing in patients with Duchenne muscular dystrophy (DMD) and healthy men. DESIGN: A feasibility study with small case series. SUBJECTS: Five boys with DMD and 7 male physical therapists as healthy controls who had not learned glossopharyngeal breathing. METHODS: Participants were instructed in a glossopharyngeal breathing protocol, including induction methods comprising sucking motions and phonation with inhalation. The protocol consisted of 1-6 sessions (10-15 min each; total 60 min). Criteria for glossopharyngeal breathing mastery were vital capacity with glossopharyngeal insufflation (VCGI)/VC ratio > 1.10 for the DMD group and > 1.05 for the Healthy group. Feasibility outcomes were time required for mastering glossopharyngeal breathing, self-reported outcomes, adverse events and drop-outs. RESULTS: All participants learned glossopharyngeal breathing within the allocated 60 min. Mean VCGI/VC ratio was 1.31 for the DMD group and 1.09 for the Healthy group. No adverse events or drop-outs were encountered during the protocol. In most cases, self-reported outcomes showed that motivation increased and difficulty decreased. CONCLUSION: Induction methods for sucking motions and phonation with inhalation for glossopharyngeal breathing learning are feasible. This paper proposes alternative strategies for glossopharyngeal breathing learning in boys with DMD and their instructors.


Assuntos
Distrofia Muscular de Duchenne/complicações , Respiração/genética , Adulto , Estudos de Viabilidade , Humanos , Masculino , Adulto Jovem
17.
J Pharmacol Exp Ther ; 375(1): 210-222, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32661056

RESUMO

The neural control system underlying breathing is sexually dimorphic with males being more vulnerable to dysfunction. Microglia also display sex differences, and their role in the architecture of brainstem respiratory rhythm circuitry and modulation of cervical spinal cord respiratory plasticity is becoming better appreciated. To further understand the molecular underpinnings of these sex differences, we performed RNA sequencing of immunomagnetically isolated microglia from brainstem and cervical spinal cord of adult male and female rats. We used various bioinformatics tools (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Reactome, STRING, MAGICTRICKS) to functionally categorize identified gene sets, as well as to pinpoint common transcriptional gene drivers that may be responsible for the observed transcriptomic differences. We found few sex differences in the microglial transcriptomes derived from the brainstem, but several hundred genes were differentially expressed by sex in cervical spinal microglia. Comparing brainstem and spinal microglia within and between sexes, we found that the major factor guiding transcriptomic differences was central nervous system (CNS) location rather than sex. We further identified key transcriptional drivers that may be responsible for the transcriptomic differences observed between sexes and CNS regions; enhancer of zeste homolog 2 emerged as the predominant driver of the differentially downregulated genes. We suggest that functional gene alterations identified in metabolism, transcription, and intercellular communication underlie critical microglial heterogeneity and sex differences in CNS regions that contribute to respiratory disorders categorized by dysfunction in neural control. These data will also serve as an important resource data base to advance our understanding of innate immune cell contributions to sex differences and the field of respiratory neural control. SIGNIFICANCE STATEMENT: The contributions of central nervous system (CNS) innate immune cells to sexually dimorphic differences in the neural circuitry controlling breathing are poorly understood. We identify key transcriptomic differences, and their transcriptional drivers, in microglia derived from the brainstem and the C3-C6 cervical spinal cord of healthy adult male and female rats. Gene alterations identified in metabolism, gene transcription, and intercellular communication likely underlie critical microglial heterogeneity and sex differences in these key CNS regions that contribute to the neural control of breathing.


Assuntos
Tronco Encefálico/metabolismo , Medula Cervical/metabolismo , Microglia/metabolismo , Respiração/genética , Caracteres Sexuais , Transcriptoma/genética , Animais , Tronco Encefálico/imunologia , Medula Cervical/imunologia , Feminino , Imunidade Inata/genética , Masculino , Microglia/imunologia , Ratos , Respiração/imunologia
18.
Hum Mol Genet ; 29(9): 1476-1488, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32307537

RESUMO

Arterial tortuosity syndrome (ATS) is a recessively inherited connective tissue disorder, mainly characterized by tortuosity and aneurysm formation of the major arteries. ATS is caused by loss-of-function mutations in SLC2A10, encoding the facilitative glucose transporter GLUT10. Former studies implicated GLUT10 in the transport of dehydroascorbic acid, the oxidized form of ascorbic acid (AA). Mouse models carrying homozygous Slc2a10 missense mutations did not recapitulate the human phenotype. Since mice, in contrast to humans, are able to intracellularly synthesize AA, we generated a novel ATS mouse model, deficient for Slc2a10 as well as Gulo, which encodes for L-gulonolactone oxidase, an enzyme catalyzing the final step in AA biosynthesis in mouse. Gulo;Slc2a10 double knock-out mice showed mild phenotypic anomalies, which were absent in single knock-out controls. While Gulo;Slc2a10 double knock-out mice did not fully phenocopy human ATS, histological and immunocytochemical analysis revealed compromised extracellular matrix formation. Transforming growth factor beta signaling remained unaltered, while mitochondrial function was compromised in smooth muscle cells derived from Gulo;Slc2a10 double knock-out mice. Altogether, our data add evidence that ATS is an ascorbate compartmentalization disorder, but additional factors underlying the observed phenotype in humans remain to be determined.


Assuntos
Artérias/anormalidades , Deficiência de Ácido Ascórbico/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Instabilidade Articular/genética , L-Gulonolactona Oxidase/genética , Dermatopatias Genéticas/genética , Malformações Vasculares/genética , Animais , Artérias/metabolismo , Artérias/patologia , Ácido Ascórbico/biossíntese , Ácido Ascórbico/genética , Deficiência de Ácido Ascórbico/metabolismo , Deficiência de Ácido Ascórbico/patologia , Modelos Animais de Doenças , Homozigoto , Humanos , Instabilidade Articular/metabolismo , Instabilidade Articular/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Respiração/genética , Transdução de Sinais/genética , Dermatopatias Genéticas/metabolismo , Dermatopatias Genéticas/patologia , Malformações Vasculares/metabolismo , Malformações Vasculares/patologia
19.
Elife ; 92020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31944180

RESUMO

The precise pattern of motor neuron (MN) activation is essential for the execution of motor actions; however, the molecular mechanisms that give rise to specific patterns of MN activity are largely unknown. Phrenic MNs integrate multiple inputs to mediate inspiratory activity during breathing and are constrained to fire in a pattern that drives efficient diaphragm contraction. We show that Hox5 transcription factors shape phrenic MN output by connecting phrenic MNs to inhibitory premotor neurons. Hox5 genes establish phrenic MN organization and dendritic topography through the regulation of phrenic-specific cell adhesion programs. In the absence of Hox5 genes, phrenic MN firing becomes asynchronous and erratic due to loss of phrenic MN inhibition. Strikingly, mice lacking Hox5 genes in MNs exhibit abnormal respiratory behavior throughout their lifetime. Our findings support a model where MN-intrinsic transcriptional programs shape the pattern of motor output by orchestrating distinct aspects of MN connectivity.


In mammals, air is moved in and out of the lungs by a sheet of muscle called the diaphragm. When this muscle contracts air gets drawn into the lungs and as the muscle relaxes this pushes air back out. Movement of the diaphragm is controlled by a group of nerve cells called motor neurons which are part of the phrenic motor column (or PMC for short) that sits within the spinal cord. The neurons within this column work together with nerve cells in the brain to coordinate the speed and duration of each breath. For the lungs to develop normally, the neurons that control how the diaphragm contracts need to start working before birth. During development, motor neurons in the PMC cluster together and connect with other nerve cells involved in breathing. But, despite their essential role, it is not yet clear how neurons in the PMC develop and join up with other nerve cells. Now, Vagnozzi et al. show that a set of genes which make the transcription factor Hox5 control the position and organization of motor neurons in the PMC. Transcription factors work as genetic switches, turning sets of genes on and off. Vagnozzi et al. showed that removing the Hox5 transcription factors from motor neurons in the PMC changed their activity and disordered their connections with other breathing-related nerve cells. Hox5 transcription factors regulate the production of proteins called cadherins which join together neighboring cells. Therefore, motor neurons lacking Hox5 were unable to make enough cadherins to securely stick together and connect with other nerve cells. Further experiments showed that removing the genes that code for Hox5 caused mice to have breathing difficulties in the first two weeks after birth. Although half of these mutant mice were eventually able to breathe normally, the other half died within a week. These breathing defects are reminiscent of the symptoms observed in sudden infant death syndrome (also known as SIDS). Abnormalities in breathing occur in many other diseases, including sleep apnea, muscular dystrophy and amyotrophic lateral sclerosis (ALS). A better understanding of how the connections between nerve cells involved in breathing are formed, and the role of Hox5 and cadherins, could lead to improved treatment options for these diseases.


Assuntos
Genes Homeobox , Neurônios Motores/fisiologia , Nervo Frênico/fisiologia , Respiração/genética , Transcrição Gênica , Animais , Camundongos
20.
Nucleic Acids Res ; 48(4): 2126-2143, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31863581

RESUMO

Small noncoding RNAs (sRNAs) from mRNA 3' UTRs seem to present a previously unrecognized layer of bacterial post-transcriptional control whereby mRNAs influence each other's expression, independently of transcriptional control. Studies in Escherichia coli and Salmonella enterica showed that such sRNAs are natural products of RNase E-mediated mRNA decay and associate with major RNA-binding proteins (RBPs) such as Hfq and ProQ. If so, there must be additional sRNAs from mRNAs that accumulate only under specific physiological conditions. We test this prediction by characterizing candidate NarS that represents the 3' UTR of nitrate transporter NarK whose gene is silent during standard aerobic growth. We find that NarS acts by Hfq-dependent base pairing to repress the synthesis of the nitrite transporter, NirC, resulting in mRNA cross-regulation of nitrate and nitrite transporter genes. Interestingly, the NarS-mediated repression selectively targets the nirC cistron of the long nirBDC-cysG operon, an observation that we rationalize as a mechanism to protect the bacterial cytoplasm from excessive nitrite toxicity during anaerobic respiration with abundant nitrate. Our successful functional assignment of a 3' UTR sRNA from a non-standard growth condition supports the notion that mRNA crossregulation is more pervasive than currently appreciated.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Metiltransferases/genética , Pequeno RNA não Traduzido/genética , Regiões 3' não Traduzidas/genética , Endorribonucleases/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transportadores de Nitrato , Nitratos/metabolismo , Óperon/genética , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Respiração/genética , Salmonella enterica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...