Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.003
Filtrar
1.
Ann Card Anaesth ; 27(1): 43-50, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722120

RESUMO

BACKGROUND: Various forms of commonly used noninvasive respiratory support strategies have considerable effect on diaphragmatic contractile function which can be evaluated using sonographic diaphragm activity parameters. OBJECTIVE: To compare the magnitude of respiratory workload decreased as assessed by thickening fraction of the diaphragm and longitudinal diaphragmatic strain while using high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) modes [nasal intermittent positive pressure ventilation (NIPPV) and bilevel positive airway pressure (BiPAP)] in pediatric patients after cardiothoracic surgery. METHODOLOGY: This prospective randomized controlled trial was performed at a tertiary care surgical intensive care unit in postcardiac surgery patients aged between 1 and 48 months, who were randomly allocated into three groups: 1) HFNC (with flows at 2 L/kg/min), 2) NIPPV via RAMS cannula in PSV mode (pressure support 8 cmH2O, PEEP 5 cmH2O), and 3) BiPAP in nCPAP mode (CPAP of 5 cmH2O). Measurements were recorded at baseline after extubation (R0) and subsequently every 12 hourly (R1, R2, R3, R4, R5) at 12, 24, 36, 48, and 60 hours respectively until therapy was discontinued. RESULTS: Sixty patients were included, with 20 patients each in the NIPPV group, HFNC group, and BiPAP group. Longitudinal strain at crura of diaphragm was lower in the BiPAP group as compared to HFNC group at R2-R4 [R2 (-4.27± -2.73 vs - 8.40± -6.40, P = 0.031), R3 (-5.32± -2.28 vs -8.44± -5.6, P = 0.015), and R4 (-3.8± -3.42 vs -12.4± -7.12, P = 0.040)]. PFR was higher in HFNC than NIPPV group at baseline and R1-R3[R0 (323 ± 114 vs 264 ± 80, P = 0.008), R1 (311 ± 114 vs 233 ± 66, P = 0.022), R2 (328 ± 116 vs 237 ± 4, P = 0.002), R3 (346 ± 112 vs 238 ± 54, P = 0.001)]. DTF and clinical parameters of increased work of breathing remain comparable between three groups. The rate of reintubation (within 48 hours of extubation or at ICU discharge) was 0.06% (1 in NIPPV, 1 in BiPAP, 2 in HFNC) and remain comparable between groups (P = 1.0). CONCLUSION: BiPAP may provide better decrease in work of breathing compared to HFNC as reflected by lower crural diaphragmatic strain pattern. HFNC may provide better oxygenation compared to NIPPV group, as reflected by higher PFR ratio. Failure rate and safety profile are similar among different methods used.


Assuntos
Cânula , Procedimentos Cirúrgicos Cardíacos , Ventilação não Invasiva , Complicações Pós-Operatórias , Trabalho Respiratório , Humanos , Estudos Prospectivos , Masculino , Ventilação não Invasiva/métodos , Feminino , Lactente , Complicações Pós-Operatórias/terapia , Complicações Pós-Operatórias/etiologia , Procedimentos Cirúrgicos Cardíacos/métodos , Pré-Escolar , Cardiopatias Congênitas/cirurgia , Diafragma/fisiopatologia , Respiração com Pressão Positiva/métodos
2.
Ther Adv Respir Dis ; 18: 17534666241249152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726850

RESUMO

BACKGROUND: Ventilator-induced lung injury (VILI) presents a grave risk to acute respiratory failure patients undergoing mechanical ventilation. Low tidal volume (LTV) ventilation has been advocated as a protective strategy against VILI. However, the effectiveness of limited driving pressure (plateau pressure minus positive end-expiratory pressure) remains unclear. OBJECTIVES: This study evaluated the efficacy of LTV against limited driving pressure in preventing VILI in adults with respiratory failure. DESIGN: A single-centre, prospective, open-labelled, randomized controlled trial. METHODS: This study was executed in medical intensive care units at Siriraj Hospital, Mahidol University, Bangkok, Thailand. We enrolled acute respiratory failure patients undergoing intubation and mechanical ventilation. They were randomized in a 1:1 allocation to limited driving pressure (LDP; ⩽15 cmH2O) or LTV (⩽8 mL/kg of predicted body weight). The primary outcome was the acute lung injury (ALI) score 7 days post-enrolment. RESULTS: From July 2019 to December 2020, 126 patients participated, with 63 each in the LDP and LTV groups. The cohorts had the mean (standard deviation) ages of 60.5 (17.6) and 60.9 (17.9) years, respectively, and they exhibited comparable baseline characteristics. The primary reasons for intubation were acute hypoxic respiratory failure (LDP 49.2%, LTV 63.5%) and shock-related respiratory failure (LDP 39.7%, LTV 30.2%). No significant difference emerged in the primary outcome: the median (interquartile range) ALI scores for LDP and LTV were 1.75 (1.00-2.67) and 1.75 (1.25-2.25), respectively (p = 0.713). Twenty-eight-day mortality rates were comparable: LDP 34.9% (22/63), LTV 31.7% (20/63), relative risk (RR) 1.08, 95% confidence interval (CI) 0.74-1.57, p = 0.705. Incidences of newly developed acute respiratory distress syndrome also aligned: LDP 14.3% (9/63), LTV 20.6% (13/63), RR 0.81, 95% CI 0.55-1.22, p = 0.348. CONCLUSIONS: In adults with acute respiratory failure, the efficacy of LDP and LTV in averting lung injury 7 days post-mechanical ventilation was indistinguishable. CLINICAL TRIAL REGISTRATION: The study was registered with the ClinicalTrials.gov database (identification number NCT04035915).


Limited breathing pressure or low amount of air given to the lung; which one is better for adults who need breathing help by ventilator machineWe conducted this research at Siriraj Hospital in Bangkok, Thailand, aiming to compare two ways of helping patients with breathing problems. We studied 126 patients who were randomly put into two groups. One group received a method where the pressure during breathing was limited (limited driving pressure: LDP), and the other group got a method where the amount of air given to the lungs was kept low (low tidal volume: LTV). We checked how bad the lung injury was at seven days later. The results showed that there was no difference between the two methods. Both ways of helping patients breathe had similar outcomes, and neither was significantly better than the other in preventing lung problems. The study suggests that both approaches work about the same for patients who need help with breathing using a machine.


Assuntos
Insuficiência Respiratória , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Idoso , Insuficiência Respiratória/terapia , Insuficiência Respiratória/fisiopatologia , Tailândia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Resultado do Tratamento , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/mortalidade , Respiração Artificial/efeitos adversos , Fatores de Tempo , Respiração com Pressão Positiva/efeitos adversos , Respiração com Pressão Positiva/métodos , Pulmão/fisiopatologia , Fatores de Risco , Adulto
3.
PLoS One ; 19(5): e0302884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722838

RESUMO

Intraoperative lung-protective ventilation, including low tidal volume and positive end-expiratory pressure, reduces postoperative pulmonary complications. However, the effect and specific alveolar recruitment maneuver method are controversial. We investigated whether the intraoperative intermittent recruitment maneuver further reduced postoperative pulmonary complications while using a lung-protective ventilation strategy. Adult patients undergoing elective laparoscopic colorectal surgery were randomly allocated to the recruitment or control groups. Intraoperative ventilation was adjusted to maintain a tidal volume of 6-8 mL kg-1 and positive end-expiratory pressure of 5 cmH2O in both groups. The alveolar recruitment maneuver was applied at three time points (at the start and end of the pneumoperitoneum, and immediately before extubation) by maintaining a continuous pressure of 30 cmH2O for 30 s in the recruitment group. Clinical and radiological evidence of postoperative pulmonary complications was investigated within 7 days postoperatively. A total of 125 patients were included in the analysis. The overall incidence of postoperative pulmonary complications was not significantly different between the recruitment and control groups (28.1% vs. 31.1%, P = 0.711), while the mean ±â€…standard deviation intraoperative peak inspiratory pressure was significantly lower in the recruitment group (10.7 ±â€…3.2 vs. 13.5 ±â€…3.0 cmH2O at the time of CO2 gas-out, P < 0.001; 9.8 ±â€…2.3 vs. 12.5 ±â€…3.0 cmH2O at the time of recovery, P < 0.001). The alveolar recruitment maneuver with a pressure of 30 cmH2O for 30 s did not further reduce postoperative pulmonary complications when a low tidal volume and 5 cmH2O positive end-expiratory pressure were applied to patients undergoing laparoscopic colorectal surgery and was not associated with any significant adverse events. However, the alveolar recruitment maneuver significantly reduced intraoperative peak inspiratory pressure. Further study is needed to validate the beneficial effect of the alveolar recruitment maneuver in patients at increased risk of postoperative pulmonary complications. Trial registration: Clinicaltrials.gov (NCT03681236).


Assuntos
Laparoscopia , Respiração com Pressão Positiva , Complicações Pós-Operatórias , Humanos , Masculino , Feminino , Laparoscopia/métodos , Laparoscopia/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Pessoa de Meia-Idade , Idoso , Respiração com Pressão Positiva/métodos , Volume de Ventilação Pulmonar , Pneumopatias/prevenção & controle , Pneumopatias/etiologia , Alvéolos Pulmonares , Cirurgia Colorretal/efeitos adversos , Cirurgia Colorretal/métodos
4.
Crit Care Explor ; 6(5): e1088, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747691

RESUMO

IMPORTANCE: A recent study showed an association between high hospital-level noninvasive positive pressure ventilation (NIPPV) use and in-hospital cardiac arrest (IHCA) in children with bronchiolitis. OBJECTIVES: We aimed to determine if patient-level exposure to NIPPV in children with bronchiolitis was associated with IHCA. DESIGN, SETTING AND PARTICIPANTS: Retrospective cohort study at a single-center quaternary PICU in North America including children with International Classification of Diseases primary or secondary diagnoses of bronchiolitis in the Virtual Pediatric Systems database. MAIN OUTCOMES AND MEASURES: The primary exposure was NIPPV and the primary outcome was IHCA. MEASUREMENTS AND MAIN RESULTS: Of 4698 eligible ICU admissions with bronchiolitis diagnoses, IHCA occurred in 1.2% (57/4698). At IHCA onset, invasive mechanical ventilation (IMV) was the most frequent level of respiratory support (65%, 37/57), with 12% (7/57) receiving NIPPV. Patients with IHCA had higher Pediatric Risk of Mortality-III scores (3 [0-8] vs. 0 [0-2]; p < 0.001), more frequently had a complex chronic condition (94.7% vs. 46.2%; p < 0.001), and had higher mortality (21.1% vs. 1.0%; p < 0.001) compared with patients without IHCA. Return of spontaneous circulation (ROSC) was achieved in 93% (53/57) of IHCAs; 79% (45/57) survived to hospital discharge. All seven children without chronic medical conditions and with active bronchiolitis symptoms at the time of IHCA achieved ROSC, and 86% (6/7) survived to discharge. In multivariable analysis restricted to patients receiving NIPPV or IMV, NIPPV exposure was associated with lower odds of IHCA (adjusted odds ratio [aOR], 0.07; 95% CI, 0.03-0.18) compared with IMV. In secondary analysis evaluating categorical respiratory support in all patients, compared with IMV, NIPPV was associated with lower odds of IHCA (aOR, 0.35; 95% CI, 0.14-0.87), whereas no difference was found for minimal respiratory support (none/nasal cannula/humidified high-flow nasal cannula [aOR, 0.56; 95% CI, 0.23-1.36]). CONCLUSIONS AND RELEVANCE: Cardiac arrest in children with bronchiolitis is uncommon, occurring in 1.2% of bronchiolitis ICU admissions. NIPPV use in children with bronchiolitis was associated with lower odds of IHCA.


Assuntos
Bronquiolite , Parada Cardíaca , Humanos , Bronquiolite/terapia , Bronquiolite/epidemiologia , Bronquiolite/complicações , Estudos Retrospectivos , Lactente , Feminino , Masculino , Parada Cardíaca/terapia , Parada Cardíaca/mortalidade , Parada Cardíaca/epidemiologia , Parada Cardíaca/etiologia , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Ventilação não Invasiva , Pré-Escolar , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/estatística & dados numéricos , Estudos de Coortes
5.
BMC Pulm Med ; 24(1): 212, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693506

RESUMO

BACKGROUND: Patient-ventilator asynchrony commonly occurs during pressure support ventilation (PSV). IntelliSync + software (Hamilton Medical AG, Bonaduz, Switzerland) is a new ventilation technology that continuously analyzes ventilator waveforms to detect the beginning and end of patient inspiration in real time. This study aimed to evaluate the physiological effect of IntelliSync + software on inspiratory trigger delay time, delta airway (Paw) and esophageal (Pes) pressure drop during the trigger phase, airway occlusion pressure at 0.1 s (P0.1), and hemodynamic variables. METHODS: A randomized crossover physiologic study was conducted in 14 mechanically ventilated patients under PSV. Patients were randomly assigned to receive conventional flow trigger and cycling, inspiratory trigger synchronization (I-sync), cycle synchronization (C-sync), and inspiratory trigger and cycle synchronization (I/C-sync) for 15 min at each step. Other ventilator settings were kept constant. Paw, Pes, airflow, P0.1, respiratory rate, SpO2, and hemodynamic variables were recorded. The primary outcome was inspiratory trigger and cycle delay time between each intervention. Secondary outcomes were delta Paw and Pes drop during the trigger phase, P0.1, SpO2, and hemodynamic variables. RESULTS: The time to initiate the trigger was significantly shorter with I-sync compared to baseline (208.9±91.7 vs. 301.4±131.7 msec; P = 0.002) and I/C-sync compared to baseline (222.8±94.0 vs. 301.4±131.7 msec; P = 0.005). The I/C-sync group had significantly lower delta Paw and Pes drop during the trigger phase compared to C-sync group (-0.7±0.4 vs. -1.2±0.8 cmH2O; P = 0.028 and - 1.8±2.2 vs. -2.8±3.2 cmH2O; P = 0.011, respectively). No statistically significant differences were found in cycle delay time, P0.1 and other physiological variables between the groups. CONCLUSIONS: IntelliSync + software reduced inspiratory trigger delay time compared to the conventional flow trigger system during PSV mode. However, no significant improvements in cycle delay time and other physiological variables were observed with IntelliSync + software. TRIAL REGISTRATION: This study was registered in the Thai Clinical Trial Registry (TCTR20200528003; date of registration 28/05/2020).


Assuntos
Estudos Cross-Over , Software , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Respiração com Pressão Positiva/métodos , Hemodinâmica , Respiração Artificial/métodos , Taxa Respiratória
6.
Curr Opin Anaesthesiol ; 37(3): 299-307, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573180

RESUMO

PURPOSE OF REVIEW: Surgical procedures on obese patients are dramatically increasing worldwide over the past few years. In this review, we discuss the physiopathology of predominantly respiratory system in obese patients, the importance of preoperative evaluation, preoxygenation and intraoperative positive end expiratory pressure (PEEP) titration to prevent pulmonary complications and the optimization of airway management and oxygenation to reduce or prevent postoperative respiratory complications. RECENT FINDINGS: Many patients are coming to preoperative clinic with medication history of glucagon-like-peptide 1 agonists ( GLP-1) agonists and it has raised many questions regarding Nil Per Os (NPO)/perioperative fasting guidelines due to delayed gastric emptying caused by these medications. American Society of Anesthesiologists (ASA) has come up with guiding document to help with such situations. Ambulatory surgery centers are doing more obesity cases in a safe manner which were deemed unsafe at one point . Quantitative train of four (TOF) monitoring, better neuromuscular reversal agents and gastric ultrasounds seemed to have made a significant impact in the care of obese patients in the perioperative period. SUMMARY: Obese patients are at higher risk of perioperative complications, mainly associated with those related to the respiratory function. An appropriate preoperative evaluation, intraoperative management, and postoperative support and monitoring is essential to improve outcome and increase the safety of the surgical procedure.


Assuntos
Anestesia , Obesidade , Complicações Pós-Operatórias , Humanos , Obesidade/complicações , Obesidade/fisiopatologia , Anestesia/métodos , Anestesia/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Cuidados Pré-Operatórios/métodos , Respiração com Pressão Positiva/métodos , Assistência Perioperatória/métodos , Manuseio das Vias Aéreas/métodos , Manuseio das Vias Aéreas/efeitos adversos
7.
J Clin Anesth ; 95: 111444, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38583224

RESUMO

BACKGROUND: Mechanical ventilation with variable tidal volumes (V-VCV) has the potential to improve lung function during general anesthesia. We tested the hypothesis that V-VCV compared to conventional volume-controlled ventilation (C-VCV) would improve intraoperative arterial oxygenation and respiratory system mechanics in patients undergoing thoracic surgery under one-lung ventilation (OLV). METHODS: Patients were randomized to V-VCV (n = 39) or C-VCV (n = 39). During OLV tidal volume of 5 mL/kg predicted body weight (PBW) was used. Both groups were ventilated with a positive end-expiratory pressure (PEEP) of 5 cm H2O, inspiration to expiration ratio (I:E) of 1:1 (during OLV) and 1:2 during two-lung ventilation, the respiratory rate (RR) titrated to arterial pH, inspiratory peak-pressure ≤ 40 cm H2O and an inspiratory oxygen fraction of 1.0. RESULTS: Seventy-five out of 78 Patients completed the trial and were analyzed (dropouts were excluded). The partial pressure of arterial oxygen (PaO2) 20 min after the start of OLV did not differ among groups (V-VCV: 25.8 ± 14.6 kPa vs C-VCV: 27.2 ± 15.3 kPa; mean difference [95% CI]: 1.3 [-8.2, 5.5], P = 0.700). Furthermore, intraoperative gas exchange, intraoperative adverse events, need for rescue maneuvers due to desaturation and hypercapnia, incidence of postoperative pulmonary and extra-pulmonary complications, and hospital free days at day 30 after surgery did not differ between groups. CONCLUSIONS: In thoracic surgery patients under OLV, V-VCV did not improve oxygenation or respiratory system mechanics compared to C-VCV. Ethical Committee: EK 420092019. TRIAL REGISTRATION: at the German Clinical Trials Register: DRKS00022202 (16.06.2020).


Assuntos
Ventilação Monopulmonar , Troca Gasosa Pulmonar , Mecânica Respiratória , Procedimentos Cirúrgicos Torácicos , Volume de Ventilação Pulmonar , Humanos , Ventilação Monopulmonar/métodos , Ventilação Monopulmonar/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Torácicos/efeitos adversos , Procedimentos Cirúrgicos Torácicos/métodos , Idoso , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/efeitos adversos , Anestesia Geral/métodos , Respiração Artificial/métodos , Oxigênio/sangue , Oxigênio/administração & dosagem
8.
Crit Care ; 28(1): 124, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627745

RESUMO

Extracorporeal Carbon Dioxide Removal (ECCO2R) is used in acute respiratory distress syndrome (ARDS) patients to facilitate lung-protective ventilatory strategies. Electrical Impedance Tomography (EIT) allows individual, non-invasive, real-time, bedside, radiation-free imaging of the lungs, providing global and regional dynamic lung analyses. To provide new insights for future ECCO2R research in ARDS, we propose a potential application of EIT to personalize End-Expiratory Pressure (PEEP) following each reduction in tidal volume (VT), as demonstrated in an illustrative case. A 72-year-old male with COVID-19 was admitted to the ICU for moderate ARDS. Monitoring with EIT was started to determine the optimal PEEP value (PEEPEIT), defined as the intersection of the collapse and overdistention curves, after each reduction in VT during ECCO2R. The identified PEEPEIT values were notably low (< 10 cmH2O). The decrease in VT associated with PEEPEIT levels resulted in improved lung compliance, reduced driving pressure and a more uniform ventilation pattern. Despite current Randomized Controlled Trials showing that ultra-protective ventilation with ECCO2R does not improve survival, the applicability of universal ultra-protective ventilation settings for all patients remains a subject of debate. Inappropriately set PEEP levels can lead to alveolar collapse or overdistension, potentially negating the benefits of VT reduction. EIT facilitates real-time monitoring of derecruitment associated with VT reduction, guiding physicians in determining the optimal PEEP value after each decrease in tidal volume. This original description of using EIT under ECCO2R to adjust PEEP at a level compromising between recruitability and overdistention could be a crucial element for future research on ECCO2R.


Assuntos
Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório , Masculino , Humanos , Idoso , Impedância Elétrica , Respiração com Pressão Positiva/métodos , Pulmão , Tomografia Computadorizada por Raios X , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar , Tomografia/métodos
9.
Cardiol Clin ; 42(2): 253-271, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631793

RESUMO

This review aims to enhance the comprehension and management of cardiopulmonary interactions in critically ill patients with cardiovascular disease undergoing mechanical ventilation. Highlighting the significance of maintaining a delicate balance, this article emphasizes the crucial role of adjusting ventilation parameters based on both invasive and noninvasive monitoring. It provides recommendations for the induction and liberation from mechanical ventilation. Special attention is given to the identification of auto-PEEP (positive end-expiratory pressure) and other situations that may impact hemodynamics and patients' outcomes.


Assuntos
Emergências , Respiração Artificial , Humanos , Respiração com Pressão Positiva , Ventiladores Mecânicos , Pulmão
10.
Medicina (Kaunas) ; 60(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674312

RESUMO

Background and Objectives: The aim of this study was to examine whether the use of an alveolar recruitment maneuver (RM) leads to a significant increase in static lung compliance (Cstat) and an improvement in gas exchange in patients undergoing laparoscopic cholecystectomy. Material and Methods: A clinical prospective intervention study was conducted. Patients were divided into two groups according to their body mass index (BMI): normal-weight (group I) and pre-obese and obese grade I (group II). Lung mechanics were monitored (Cstat, dynamic compliance-Cdin, peak pressure-Ppeak, plateau pressure-Pplat, driving pressure-DP) alongside gas exchange, and hemodynamic changes (heart rate-HR, mean arterial pressure-MAP) at six time points: T1 (induction of anesthesia), T2 (formation of pneumoperitoneum), T3 (RM with a PEEP of 5 cm H2O), T4 (RM with a PEEP of 7 cm H2O), T5 (desufflation), and T6 (RM at the end). The RM was performed by increasing the peak pressure by +5 cm of H2O at an equal inspiration-to-expiration ratio (I/E = 1:1) and applying a PEEP of 5 and 7 cm of H2O. Results: Out of 96 patients, 33 belonged to group I and 63 to group II. An increase in Cstat values occurred after all three RMs. At each time point, the Cstat value was measured higher in group I than in group II. A higher increase in Cstat was observed in group II after the second and third RM. Cstat values were higher at the end of the surgical procedure compared to values after the induction of anesthesia. The RM led to a significant increase in PaO2 in both groups without changes in HR or MAP. Conclusions: During laparoscopic cholecystectomy, the application of RM leads to a significant increase in Cstat and an improvement in gas exchange. The prevention of atelectasis during anesthesia should be initiated immediately after the induction of anesthesia, using protective mechanical ventilation and RM.


Assuntos
Anestesia Geral , Colecistectomia Laparoscópica , Humanos , Colecistectomia Laparoscópica/métodos , Estudos Prospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Anestesia Geral/métodos , Complacência Pulmonar/fisiologia , Adulto , Respiração com Pressão Positiva/métodos , Troca Gasosa Pulmonar/fisiologia , Idoso
11.
Sci Rep ; 14(1): 8080, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582767

RESUMO

Pre-injured lungs are prone to injury progression in response to mechanical ventilation. Heterogeneous ventilation due to (micro)atelectases imparts injurious strains on open alveoli (known as volutrauma). Hence, recruitment of (micro)atelectases by positive end-expiratory pressure (PEEP) is necessary to interrupt this vicious circle of injury but needs to be balanced against acinar overdistension. In this study, the lung-protective potential of alveolar recruitment was investigated and balanced against overdistension in pre-injured lungs. Mice, treated with empty vector (AdCl) or adenoviral active TGF-ß1 (AdTGF-ß1) were subjected to lung mechanical measurements during descending PEEP ventilation from 12 to 0 cmH2O. At each PEEP level, recruitability tests consisting of two recruitment maneuvers followed by repetitive forced oscillation perturbations to determine tissue elastance (H) and damping (G) were performed. Finally, lungs were fixed by vascular perfusion at end-expiratory airway opening pressures (Pao) of 20, 10, 5 and 2 cmH2O after a recruitment maneuver, and processed for design-based stereology to quantify derecruitment and distension. H and G were significantly elevated in AdTGF-ß1 compared to AdCl across PEEP levels. H was minimized at PEEP = 5-8 cmH2O and increased at lower and higher PEEP in both groups. These findings correlated with increasing septal wall folding (= derecruitment) and reduced density of alveolar number and surface area (= distension), respectively. In AdTGF-ß1 exposed mice, 27% of alveoli remained derecruited at Pao = 20 cmH2O. A further decrease in Pao down to 2 cmH2O showed derecruitment of an additional 1.1 million alveoli (48%), which was linked with an increase in alveolar size heterogeneity at Pao = 2-5 cmH2O. In AdCl, decreased Pao resulted in septal folding with virtually no alveolar collapse. In essence, in healthy mice alveoli do not derecruit at low PEEP ventilation. The potential of alveolar recruitability in AdTGF-ß1 exposed mice is high. H is optimized at PEEP 5-8 cmH2O. Lower PEEP folds and larger PEEP stretches septa which results in higher H and is more pronounced in AdTGF-ß1 than in AdCl. The increased alveolar size heterogeneity at Pao = 5 cmH2O argues for the use of PEEP = 8 cmH2O for lung protective mechanical ventilation in this animal model.


Assuntos
Atelectasia Pulmonar , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Respiração com Pressão Positiva/métodos , Pulmão , Alvéolos Pulmonares/fisiologia
12.
Trials ; 25(1): 282, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671523

RESUMO

BACKGROUND: In patients requiring general anesthesia, lung-protective ventilation can prevent postoperative pulmonary complications, which are associated with higher morbidity, mortality, and prolonged hospital stay. Application of positive end-expiratory pressure (PEEP) is one component of lung-protective ventilation. The correct strategy for setting adequate PEEP, however, remains controversial. PEEP settings that lead to a lower pressure difference between end-inspiratory plateau pressure and end-expiratory pressure ("driving pressure," ΔP) may reduce the risk of postoperative pulmonary complications. Preliminary data suggests that the PEEP required to prevent both end-inspiratory overdistension and end-expiratory alveolar collapse, thereby reducing ΔP, correlates positively with the body mass index (BMI) of patients, with PEEP values corresponding to approximately 1/3 of patient's respective BMI. Thus, we hypothesize that adjusting PEEP according to patient BMI reduces ΔP and may result in less postoperative pulmonary complications. METHODS: Patients undergoing general anesthesia and endotracheal intubation with volume-controlled ventilation with a tidal volume of 7 ml per kg predicted body weight will be randomized and assigned to either an intervention group with PEEP adjusted according to BMI or a control group with a standardized PEEP of 5 mbar. Pre- and postoperatively, lung ultrasound will be performed to determine the lung aeration score, and hemodynamic and respiratory vital signs will be recorded for subsequent evaluation. The primary outcome is the difference in ΔP as a surrogate parameter for lung-protective ventilation. Secondary outcomes include change in lung aeration score, intraoperative occurrence of hemodynamic and respiratory events, oxygen requirements and postoperative pulmonary complications. DISCUSSION: The study results will show whether an intraoperative ventilation strategy with PEEP adjustment based on BMI has the potential of reducing the risk for postoperative pulmonary complications as an easy-to-implement intervention that does not require lengthy ventilator maneuvers nor additional equipment. TRIAL REGISTRATION: German Clinical Trials Register (DRKS), DRKS00031336. Registered 21st February 2023. TRIAL STATUS: The study protocol was approved by the ethics committee of the Christian-Albrechts-Universität Kiel, Germany, on 1st February 2023. Recruitment began in March 2023 and is expected to end in September 2023.


Assuntos
Anestesia Geral , Índice de Massa Corporal , Respiração com Pressão Positiva , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/efeitos adversos , Anestesia Geral/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Volume de Ventilação Pulmonar , Pulmão/fisiopatologia , Resultado do Tratamento
15.
Acta Neurochir (Wien) ; 166(1): 177, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622368

RESUMO

PURPOSE: In general, high levels of PEEP application is avoided in patients undergoing craniotomy to prevent a rise in ICP. But that approach would increase the risk of secondary brain injury especially in hypoxemic patients. Because the optic nerve sheath is distensible, a rise in ICP is associated with an increase in the optic nerve sheath diameter (ONSD). The cutoff value for elevated ICP assessed by ONSD is between 5.6 and 6.3 mm. We aimed to evaluate the effect of different PEEP levels on ONSD and compare the effect of different PEEP levels in patients with and without intracranial midline shift. METHODS: This prospective observational study was performed in aged 18-70 years, ASA I-III, 80 patients who were undergoing supratentorial craniotomy. After the induction of general anesthesia, the ONSD's were measured by the linear transducer from 3 mm below the globe at PEEP values of 0-5-10 cmH2O. The ONSD were compered between patients with (n = 7) and without midline shift (n = 73) at different PEEP values. RESULTS: The increases in ONSD due to increase in PEEP level were determined (p < 0.001). No difference was found in the comparison of ONSD between patients with and without midline shift in different PEEP values (p = 0.329, 0.535, 0.410 respectively). But application of 10 cmH2O PEEP in patients with a midline shift increased the mean ONSD value to 5.73 mm. This value is roughly 0.1 mm higher than the lower limit of the ONSD cutoff value. CONCLUSIONS: The ONSD in adults undergoing supratentorial tumor craniotomy, PEEP values up to 5 cmH2O, appears not to be associated with an ICP increase; however, the ONSD exceeded the cutoff for increased ICP when a PEEP of 10 cmH2O was applied in patients with midline shift.


Assuntos
Hipertensão Intracraniana , Adulto , Humanos , Craniotomia/efeitos adversos , Hipertensão Intracraniana/etiologia , Hipertensão Intracraniana/cirurgia , Pressão Intracraniana/fisiologia , Nervo Óptico/cirurgia , Nervo Óptico/diagnóstico por imagem , Respiração com Pressão Positiva/efeitos adversos , Ultrassonografia/efeitos adversos , Adulto Jovem , Pessoa de Meia-Idade , Idoso
17.
Intensive Care Med ; 50(5): 617-631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38512400

RESUMO

PURPOSE: Assessing efficacy of electrical impedance tomography (EIT) in optimizing positive end-expiratory pressure (PEEP) for acute respiratory distress syndrome (ARDS) patients to enhance respiratory system mechanics and prevent ventilator-induced lung injury (VILI), compared to traditional methods. METHODS: We carried out a systematic review and meta-analysis, spanning literature from January 2012 to May 2023, sourced from Scopus, PubMed, MEDLINE (Ovid), Cochrane, and LILACS, evaluated EIT-guided PEEP strategies in ARDS versus conventional methods. Thirteen studies (3 randomized, 10 non-randomized) involving 623 ARDS patients were analyzed using random-effects models for primary outcomes (respiratory mechanics and mechanical power) and secondary outcomes (PaO2/FiO2 ratio, mortality, stays in intensive care unit (ICU), ventilator-free days). RESULTS: EIT-guided PEEP significantly improved lung compliance (n = 941 cases, mean difference (MD) = 4.33, 95% confidence interval (CI) [2.94, 5.71]), reduced mechanical power (n = 148, MD = - 1.99, 95% CI [- 3.51, - 0.47]), and lowered driving pressure (n = 903, MD = - 1.20, 95% CI [- 2.33, - 0.07]) compared to traditional methods. Sensitivity analysis showed consistent positive effect of EIT-guided PEEP on lung compliance in randomized clinical trials vs. non-randomized studies pooled (MD) = 2.43 (95% CI - 0.39 to 5.26), indicating a trend towards improvement. A reduction in mortality rate (259 patients, relative risk (RR) = 0.64, 95% CI [0.45, 0.91]) was associated with modest improvements in compliance and driving pressure in three studies. CONCLUSIONS: EIT facilitates real-time, individualized PEEP adjustments, improving respiratory system mechanics. Integration of EIT as a guiding tool in mechanical ventilation holds potential benefits in preventing ventilator-induced lung injury. Larger-scale studies are essential to validate and optimize EIT's clinical utility in ARDS management.


Assuntos
Impedância Elétrica , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório , Tomografia , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Tomografia/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Mecânica Respiratória/fisiologia
19.
Acta Anaesthesiol Scand ; 68(5): 626-634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38425207

RESUMO

BACKGROUND: High positive end-expiratory pressure (PEEP>10 cmH2O) is commonly used in mechanically ventilated hypoxemic patients with COVID-19. However, some epidemiological and physiological studies indirectly suggest that using a lower PEEP may primarily and beneficially decrease lung hyperinflation in this population. Herein we directly quantified the effect of decreasing PEEP from 15 to 10 cmH2O on lung hyperinflation and collapse in mechanically ventilated patients with COVID-19. METHODS: Twenty mechanically ventilated patients with COVID-19 underwent a lung computed tomography (CT) at PEEP of 15 and 10 cmH2O. The effect of decreasing PEEP on lung hyperinflation and collapse was directly quantified as the change in the over-aerated (density below -900 HU) and non-aerated (density above -100 HU) lung volumes. The net response to decreasing PEEP was computed as the sum of the change in those two compartments and expressed as the change in the "pathologic" lung volume. If the pathologic lung volume decreased (i.e., hyperinflation decreased more than collapse increased) when PEEP was decreased, the net response was considered positive; otherwise, it was considered negative. RESULTS: On average, the ratio of arterial tension to inspiratory fraction of oxygen (PaO2:FiO2) in the overall study population was 137 (119-162) mmHg. In 11 (55%) patients, the net response to decreasing PEEP was positive. Their over-aerated lung volume decreased by 159 (98-186) mL, while the non-aerated lung volume increased by only 58 (31-91) mL. In nine (45%) patients, the net response was negative. Their over-aerated lung volume decreased by 46 (18-72) mL, but their non-aerated lung volume increased by 107 (44-121) mL. CONCLUSION: In 20 patients with COVID-19 the net response to decreasing PEEP, as assessed with lung CT, was variable. In approximately half of them it was positive (and possibly beneficial), with a decrease in hyperinflation larger than the increase in collapse.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Choque , Humanos , Complacência Pulmonar/fisiologia , COVID-19/terapia , Pulmão/diagnóstico por imagem , Respiração com Pressão Positiva/métodos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...