Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 711
Filtrar
1.
Int J Mol Med ; 53(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551157

RESUMO

Macrophages form a crucial component of the innate immune system, and their activation is indispensable for various aspects of immune and inflammatory processes, tissue repair, and maintenance of the balance of the body's state. Macrophages are found in all ocular tissues, spanning from the front surface, including the cornea, to the posterior pole, represented by the choroid/sclera. The neural retina is also populated by specialised resident macrophages called microglia. The plasticity of microglia/macrophages allows them to adopt different activation states in response to changes in the tissue microenvironment. When exposed to various factors, microglia/macrophages polarise into distinct phenotypes, each exhibiting unique characteristics and roles. Furthermore, extensive research has indicated a close association between microglia/macrophage polarisation and the development and reversal of various intraocular diseases. The present article provides a review of the recent findings on the association between microglia/macrophage polarisation and ocular pathological processes (including autoimmune uveitis, optic neuritis, sympathetic ophthalmia, retinitis pigmentosa, glaucoma, proliferative vitreoretinopathy, subretinal fibrosis, uveal melanoma, ischaemic optic neuropathy, retinopathy of prematurity and choroidal neovascularization). The paradoxical role of microglia/macrophage polarisation in retinopathy of prematurity is also discussed. Several studies have shown that microglia/macrophages are involved in the pathology of ocular diseases. However, it is required to further explore the relevant mechanisms and regulatory processes. The relationship between the functional diversity displayed by microglia/macrophage polarisation and intraocular diseases may provide a new direction for the treatment of intraocular diseases.


Assuntos
Microglia , Retinopatia da Prematuridade , Recém-Nascido , Humanos , Microglia/patologia , Retinopatia da Prematuridade/patologia , Retina/patologia , Macrófagos , Fenótipo
2.
Am J Ophthalmol ; 260: 190-199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38141904

RESUMO

PURPOSE: Experimental studies provide evidence that regulation of VEGF receptor-2 signaling in endothelial cells orders cell divisions and extends developmental angiogenesis while inhibiting pathologic intravitreal angiogenesis and has relevance to retinopathy of prematurity (ROP). We tested the hypothesis that intravitreal anti-VEGF would extend vascularization into peripheral avascular retina in human type 1 ROP compared with controls. DESIGN: Retrospective, nonrandomized treatment comparison. METHODS: The study was conducted at an academic institution, with the study population comprising all premature infants screened for ROP from January 2019 through December 2022. The experimental group included type 1 ROP treated with bilateral bevacizumab (0.25 mg) and had adequate fundus imaging by a certified ophthalmic photographer at 2 examinations: within 2 weeks of treatment and 1-3 weeks later. A control group included gestational age- and birthweight-matched infants with ROP less severe than type 1 ROP. The main outcome measure was extent of temporal retinal vasculature measured by a masked analyst between treated and control eyes. Paired and nonpaired t tests were used. RESULTS: Of 382 screened infants, 34 developed type 1 ROP; 11 comprised the experimental group and 11 the control group. At baseline, there was a trend toward shorter temporal vascular extent in treatment compared with control groups (3667±547 vs 4262±937 pixels, 95% CI -1277, 88; P = .084) but no difference between groups at follow-up (P = .945). Vascular extension was significantly greater in the treatment than control (872±521 vs 253±151 pixels, 95% CI 262, 977; P = .003), showing catch-up growth. CONCLUSIONS: This clinical evidence supports laboratory-based studies that regulation of VEGF using an intravitreal anti-VEGF agent increases developmental angiogenesis into the peripheral avascular retina while inhibiting pathologic intravitreal angiogenesis in ROP.


Assuntos
Neovascularização Retiniana , Retinopatia da Prematuridade , Recém-Nascido , Lactente , Humanos , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Células Endoteliais/patologia , Estudos Retrospectivos , Injeções Intravítreas , Bevacizumab/uso terapêutico , Recém-Nascido Prematuro , Idade Gestacional , Neovascularização Retiniana/diagnóstico , Neovascularização Retiniana/tratamento farmacológico , Retina/patologia
3.
Cells ; 12(20)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37887312

RESUMO

The progression to fibrosis and traction in retinopathy of prematurity (ROP) and other ischemic retinopathies remains an important clinical and surgical challenge, necessitating a comprehensive understanding of its pathogenesis. Fibrosis is an unbalanced deposition of extracellular matrix components responsible for scar tissue formation with consequent tissue and organ impairment. Together with retinal traction, it is among the main causes of retinal detachment and vision loss. We capitalize on the Limited Hyperoxia Induced Retinopathy (LHIPR) model, as it reflects the more advanced pathological phenotypes seen in ROP and other ischemic retinopathies. To model LHIPR, we exposed wild-type C57Bl/6J mouse pups to 65% oxygen from P0 to P7. Then, the pups were returned to room air to recover until later endpoints. We performed histological and molecular analysis to evaluate fibrosis progression, angiogenesis, and inflammation at several time points, from 1.5 months to 9 months. In addition, we performed in vivo retinal imaging by optical coherence tomography (OCT) or OCT Angiography (OCTA) to follow the fibrovascular progression in vivo. Although the retinal morphology was relatively preserved, we found a progressive increase in preretinal fibrogenesis over time, up to 9 months of age. We also detected blood vessels in the preretinal space as well as an active inflammatory process, altogether mimicking advanced preretinal fibrovascular disease in humans.


Assuntos
Hiperóxia , Neovascularização Retiniana , Retinopatia da Prematuridade , Vitreorretinopatia Proliferativa , Animais , Camundongos , Fibrose , Hiperóxia/complicações , Inflamação/patologia , Isquemia/patologia , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Vasos Retinianos , Retinopatia da Prematuridade/induzido quimicamente , Retinopatia da Prematuridade/complicações , Retinopatia da Prematuridade/patologia , Vitreorretinopatia Proliferativa/patologia
4.
Am J Pathol ; 193(12): 2001-2016, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37673326

RESUMO

Bronchopulmonary dysplasia (BPD), also called chronic lung disease of immaturity, afflicts approximately one third of all extremely premature infants, causing lifelong lung damage. There is no effective treatment other than supportive care. Retinopathy of prematurity (ROP), which impairs vision irreversibly, is common in BPD, suggesting a related pathogenesis. However, specific mechanisms of BPD and ROP are not known. Herein, a neonatal mouse hyperoxic model of coincident BPD and retinopathy was used to screen for candidate mediators, which revealed that granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3, was up-regulated significantly in mouse lung lavage fluid and plasma at postnatal day 14 in response to hyperoxia. Preterm infants with more severe BPD had increased plasma G-CSF. G-CSF-deficient neonatal pups showed significantly reduced alveolar simplification, normalized alveolar and airway resistance, and normalized weight gain compared with wild-type pups after hyperoxic lung injury. This was associated with a marked reduction in the intensity, and activation state, of neutrophilic and monocytic inflammation and its attendant oxidative stress response, and protection of lung endothelial cells. G-CSF deficiency also provided partial protection against ROP. The findings in this study implicate G-CSF as a pathogenic mediator of BPD and ROP, and suggest the therapeutic utility of targeting G-CSF biology to treat these conditions.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Retinopatia da Prematuridade , Lactente , Recém-Nascido , Animais , Humanos , Camundongos , Displasia Broncopulmonar/patologia , Recém-Nascido Prematuro , Células Endoteliais/patologia , Pulmão/patologia , Hiperóxia/complicações , Retinopatia da Prematuridade/patologia , Fator Estimulador de Colônias de Granulócitos , Animais Recém-Nascidos
5.
Invest Ophthalmol Vis Sci ; 64(11): 8, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540175

RESUMO

Purpose: SYVN1, a gene involved in endoplasmic reticulum-associated degradation, has been found to exert a protective effect by inhibiting inflammation in retinopathy. This study aimed to clarify whether SYVN1 is involved in the pathogenesis of retinopathy of prematurity (ROP) and its potential as a candidate for target therapy. Methods: Human retinal microvascular endothelial cells (hRMECs) and a mouse model of oxygen-induced retinopathy (OIR) were used to reveal the retinopathy development-associated protein expression and molecular mechanism. An adenovirus overexpressing SYVN1 or vehicle control was injected intravitreally at postnatal day 12 (P12), and the neovascular lesions were evaluated in retinal flatmounts with immunofluorescence staining, and hematoxylin and eosin staining at P17. Visual function was assessed by using electroretinogram (ERG). Results: Endogenous SYVN1 expression dramatically decreased in hRMECs under hypoxia and in ROP mouse retinas. SYVN1 regulated the signal transducer and activator of transcription 3 (STAT3)/vascular endothelial growth factor (VEGF) axis. SYVN1 overexpression promoted ubiquitination and degradation of STAT3, decreased the levels of phospho-STAT3, secretion of VEGF, and formation of neovascularization in hRMECs, which could be rescued by STAT3 activator treatment. In addition, SYVN1 overexpression prevented neovascularization and extended physiologic retinal vascular development in the retinal tissues of OIR mice without affecting retinal function. Conclusions: SYVN1 has a protective effect against OIR, and the molecular mechanisms are partly through SYVN1-mediated ubiquitination of STAT3 and the subsequent downregulation of VEGF. These findings strongly support our assumption that SYVN1 confers ROP resistance and may be a potentially novel pharmaceutical target against proliferative retinopathy.


Assuntos
Neovascularização Retiniana , Retinopatia da Prematuridade , Recém-Nascido , Animais , Camundongos , Humanos , Retinopatia da Prematuridade/patologia , Neovascularização Retiniana/metabolismo , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Endoteliais/metabolismo , Degradação Associada com o Retículo Endoplasmático , Oxigênio/metabolismo , Neovascularização Patológica/metabolismo , Ubiquitinação , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos , Ubiquitina-Proteína Ligases/genética
6.
Methods Mol Biol ; 2678: 27-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37326703

RESUMO

Diabetic retinopathy (DR) is one of the leading causes of vision loss worldwide. There are numerous animal models available for developing new ocular therapeutics and drug screening and to investigate the pathological processes involved in DR. Among those animal models, the oxygen-induced retinopathy (OIR) model, though originally developed as a model for retinopathy of prematurity, has also been used to investigate angiogenesis in proliferative DR with the phenomenon of ischemic avascular zones and pre-retinal neovascularization it demonstrated. Briefly, neonatal rodents are exposed to hyperoxia to induce vaso-obliteration. Upon removal from hyperoxia, hypoxia develops in the retina that eventually results in neovascularization. The OIR model is mostly used in small rodents such as mice and rats. Here, we describe a detailed experimental protocol of rat OIR model and the subsequent assessment of abnormal vasculature. By illustrating the vasculoprotective and anti-angiogenic activities of the treatment, OIR model might advance to a new platform for investigating novel ocular therapeutic strategies for DR.


Assuntos
Hiperóxia , Neovascularização Retiniana , Retinopatia da Prematuridade , Humanos , Recém-Nascido , Animais , Ratos , Camundongos , Oxigênio , Hiperóxia/complicações , Hiperóxia/patologia , Retinopatia da Prematuridade/etiologia , Retinopatia da Prematuridade/patologia , Vasos Retinianos/patologia , Modelos Animais de Doenças , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Retina/patologia , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos
7.
Semin Ophthalmol ; 38(2): 124-133, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36536520

RESUMO

BACKGROUND: Retinal neovascularization is the major cause of vision loss that affects both adults and young children including premature babies. It has been a major pathology in several retinal diseases like age-related macular degeneration (AMD), diabetic retinopathy (DR) and retinopathy of prematurity (ROP). Current treatment modalities such as anti-VEGF therapy, laser are not suitable for every patient and response to these therapies is highly variable. Thus, there is a need to investigate newer therapeutic targets for DR, ROP and AMD, based on a clear understanding of disease pathology and regulatory mechanisms involved. METHOD: Appropriate articles published till February 2021 were extracted from PUBMED using keywords like ocular angiogenesis, DR, ROP, AMD, miRNA, mRNA, and cirMiRNA and containvaluable information regarding the involvement of miRNA in causing neovascularization. After compiling the list of miRNA regulating mRNA expression in angiogenesis and neovascularaization, their interactions were studied using online available tool MIENTURNET (http://userver.bio.uniroma1.it/apps/mienturnet/). The pathways involved in these processes were also predicted using the same tool. RESULTS: Most of the studies have explored potential targets like HIF1-α, PDGF, TGFß, FGF, etc., for their involvement in pathological angiogenesis in different retinal diseases. The regulatory role of microRNA (miRNA) has also been explored in various retinal ocular pathologies. This review highlights regulatory mechanism of cellular and circulatory miRNAs and their interactions with the genes involved in retinal neovascularization. The role of long noncoding RNA (ncRNA) in the regulation of genes involved in different pathways is also noteworthy and discussed in this review. CONCLUSION: This review highlights the potential regulatory mechanism/pathways involved in retinal neovascularization and its implications in retinal diseases and for identifying new drug targets.


Assuntos
Retinopatia Diabética , Degeneração Macular , MicroRNAs , Neovascularização Retiniana , Retinopatia da Prematuridade , Recém-Nascido , Criança , Humanos , Pré-Escolar , Neovascularização Retiniana/genética , Retina/patologia , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Degeneração Macular/tratamento farmacológico , Retinopatia Diabética/genética , MicroRNAs/genética , MicroRNAs/uso terapêutico , RNA Mensageiro/uso terapêutico
8.
Exp Eye Res ; 226: 109347, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502924

RESUMO

Retinopathy of prematurity (ROP) is a vision-threatening ocular disease that occurs in premature infants, but the underlying mechanism is still unclear. Since oxidative stress has been well documented in the ROP development, we aimed to investigate whether ferroptosis, a new type of cell death characterized by lipid peroxidation and iron overload, is also involved in ROP. We detected the lipid peroxidation, oxidative stress and the expression of ferroptosis markers in the retina of mouse model of oxygen-induced retinopathy. After ferroptosis inhibitor, ferrostatin-1, was administered by intravitreal injection, ferroptosis marker, lipid peroxidation, retinal vasculature and glial cell activation were examined. We found decreased expression of SLC7A11 and GPX4, increased expression of FTH1 and TFRC, as well as increase of lipid peroxidation in the retina of OIR mice. Ferrostatin-1 administration significantly reduced lipid peroxidation, and also reversed the change of ferroptosis marker. Neovascular area and avascular area were suppressed and the pathological vasculature changes including acellular vessels and ghost pericytes were decreased. Microglial cell and Müller cell activation was not evidently influenced by ferrostatin-1 treatment. Our findings suggest that ferroptosis is involved in the pathological angiogenesis and might be a promising target for ROP therapy.


Assuntos
Ferroptose , Neovascularização Patológica , Retinopatia da Prematuridade , Animais , Humanos , Recém-Nascido , Camundongos , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Oxigênio/toxicidade , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Estresse Oxidativo
9.
Pediatr Res ; 93(5): 1250-1257, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35986147

RESUMO

BACKGROUND: Retinopathy of prematurity (ROP) is the leading cause of blindness in infants, and elevation of HIF-1α through the PI3K/Akt and ERK pathways is implicated in ROP pathogenesis. The mechanism of action of propranolol in ROP remains controversial. We investigated the effect of propranolol on ROP and explored its potential mechanisms of action in an oxygen-induced retinopathy (OIR) mouse model. METHODS: OIR mice were first treated with propranolol intraperitoneally, and the retina integrity was measured by FITC-dextran and hematoxylin-eosin staining. The expression of HIF-1α, VEGF, and key signaling pathway proteins was determined using real-time PCR and western blotting. RESULTS: FITC-dextran staining showed that propranolol treatment reduced damage to retinal morphology in OIR mice. Mice treated with propranolol showed a reduced number of nuclei of vascular endothelial cells penetrating the inner limiting membrane of the retina, confirming the therapeutic effect of propranolol on ROP. Further analysis showed that HIF-1α and PI3K/Akt/ERK pathway protein levels were significantly elevated in OIR mice. In contrast, propranolol treatment downregulated the expression of these proteins, indicating that the PI3K/Akt/ERK/HIF-1α axis is associated with propranolol-induced ROP alleviation. CONCLUSIONS: Propranolol has a therapeutic function against ROP, likely through the downregulation of HIF-1α via the PI3K/Akt/ERK pathway. IMPACT: Propranolol can reduce the formation of abnormal retinal neovascularization in oxygen-induced retinopathy (OIR) models, and reduce leaking, tortuous, and abnormally expanding retinal blood vessels. Propranolol possibly improves OIR by inhibiting the activated ERK and HIF-1α pathways. Furthermore, propranolol may downregulate HIF-1α via the PI3K/Akt/ERK pathway to ameliorate retinopathy of prematurity. This study elucidated that the therapeutic effect of propranolol in OIR mice does not involve the VEGFR-2 pathway.


Assuntos
Neovascularização Retiniana , Retinopatia da Prematuridade , Humanos , Recém-Nascido , Animais , Camundongos , Propranolol/uso terapêutico , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Neovascularização Retiniana/metabolismo , Oxigênio/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
10.
Elife ; 112022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36420952

RESUMO

At preterm birth, the retina is incompletely vascularized. Retinopathy of prematurity (ROP) is initiated by the postnatal suppression of physiological retinal vascular development that would normally occur in utero. As the neural retina slowly matures, increasing metabolic demand including in the peripheral avascular retina, leads to signals for compensatory but pathological neovascularization. Currently, only late neovascular ROP is treated. ROP could be prevented by promoting normal vascular growth. Early perinatal metabolic dysregulation is a strong but understudied risk factor for ROP and other long-term sequelae of preterm birth. We will discuss the metabolic and oxygen needs of retina, current treatments, and potential interventions to promote normal vessel growth including control of postnatal hyperglycemia, dyslipidemia and hyperoxia-induced retinal metabolic alterations. Early supplementation of missing nutrients and growth factors and control of supplemental oxygen promotes physiological retinal development. We will discuss the current knowledge gap in retinal metabolism after preterm birth.


Assuntos
Nascimento Prematuro , Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Gravidez , Feminino , Recém-Nascido , Humanos , Retinopatia da Prematuridade/etiologia , Retinopatia da Prematuridade/patologia , Retinopatia da Prematuridade/terapia , Neovascularização Retiniana/metabolismo , Modelos Animais de Doenças , Oxigênio/metabolismo , Fatores de Risco
11.
J Control Release ; 350: 789-802, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35961472

RESUMO

Retinopathy of prematurity (ROP) is characterized by pathological angiogenesis and associated inflammation in the retina and is the leading cause of childhood blindness. MiRNA-223 (miR-223) drives microglial polarization toward the anti-inflammatory phenotype and offers a therapeutic approach to suppress inflammation and consequently pathological neovascularization. However, miRNA-based therapy is hindered by the low stability and non-specific cell-targeting ability of delivery systems. In the present study, we developed folic acid-chitosan (FA-CS)-modified mesoporous silica nanoparticles (PMSN) loaded with miR-223 to regulate retinal microglial polarization. The FA-CS/PMSN/miR-223 nanoparticles exhibited high stability and loading efficiency, achieved targeted delivery, and successfully escaped from lysosomes. In cultured microglial cells, treatment with FA-CS/PMSN/miR-223 nanoparticles upregulated the anti-inflammatory gene YM1/2 and IL-4RA, and downregulated the proinflammatory genes iNOS, IL-1ß, and IL-6. Notably, in a mouse oxygen-induced retinopathy model of ROP, intravitreally injected FA-CS/PMSN/miR-223 nanoparticles (1 µg) decreased the retinal neovascular area by 52.6%. This protective effect was associated with the reduced and increased levels of pro-inflammatory (M1) and anti-inflammatory (M2) cytokines, respectively. Collectively, these findings demonstrate that FA-CS/PMSN/miR-223 nanoparticles provide an effective therapeutic strategy for the treatment of ROP by modulating the miR-223-mediated microglial polarization to the M2 phenotype.


Assuntos
Quitosana , MicroRNAs , Retinopatia da Prematuridade , Animais , Quitosana/uso terapêutico , Modelos Animais de Doenças , Ácido Fólico , Humanos , Imunomodulação , Recém-Nascido , Inflamação , Interleucina-6 , Camundongos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neovascularização Patológica , Oxigênio/uso terapêutico , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Dióxido de Silício/uso terapêutico
12.
Cell Death Dis ; 13(8): 745, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038541

RESUMO

Current therapies for treatment of proliferative retinopathy focus on retinal neovascularization (RNV) during advanced disease and can trigger adverse side-effects. Here, we have tested a new strategy for limiting neurovascular injury and promoting repair during early-stage disease. We have recently shown that treatment with a stable, pegylated drug form of the ureohydrolase enzyme arginase 1 (A1) provides neuroprotection in acute models of ischemia/reperfusion injury, optic nerve crush, and ischemic stroke. Now, we have determined the effects of this treatment on RNV, vascular repair, and retinal function in the mouse oxygen-induced retinopathy (OIR) model of retinopathy of prematurity (ROP). Our studies in the OIR model show that treatment with pegylated A1 (PEG-A1), inhibits pathological RNV, promotes angiogenic repair, and improves retinal function by a mechanism involving decreased expression of TNF, iNOS, and VEGF and increased expression of FGF2 and A1. We further show that A1 is expressed in myeloid cells and areas of RNV in retinal sections from mice with OIR and human diabetic retinopathy (DR) patients and in blood samples from ROP patients. Moreover, studies using knockout mice with hemizygous deletion of A1 show worsened RNV and retinal injury, supporting the protective role of A1 in limiting the OIR-induced pathology. Collectively, A1 is critically involved in reparative angiogenesis and neuroprotection in OIR. Pegylated A1 may offer a novel therapy for limiting retinal injury and promoting repair during proliferative retinopathy.


Assuntos
Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Arginase/genética , Arginase/metabolismo , Modelos Animais de Doenças , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Oxigênio , Polietilenoglicóis/uso terapêutico , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia
13.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742898

RESUMO

Retinopathy of prematurity (ROP) is a severe eye disease leading to blindness. Abnormal vessel formation is the pathological hallmark of neovascular ROP. In forming vessels, vascular endothelial growth factor (VEGF) is an important stimulator. The current anti-ROP therapy has focused on bevacizumab, a monoclonal antibody against VEGF, and pazopanib, a tyrosine kinase inhibitor on the VEGF receptor (VEGFR). Several lines of evidence have proposed that natural compounds may be more effective and safer for anti-VEGF function. Resveratrol, a common natural compound, binds to VEGF and blocks its interaction with VEGFR, thereafter suppressing angiogenesis. Here, we evaluate the efficacy of intravitreal injection, or topical instillation (eye drops), of resveratrol into the eyes of mice suffering from oxygen-induced retinopathy, i.e., developing ROP. The treatment of resveratrol significantly relieved the degree of vascular distortion, permeability and hyperplasia; the efficacy could be revealed by both methods of resveratrol application. In parallel, the treatments of resveratrol inhibited the retinal expressions of VEGF, VEGFR and CD31. Moreover, the applied resveratrol significantly relieved the damage caused by oxygen radicals through upregulating the level of superoxide dismutase (SOD) and downregulating the level of malondialdehyde (MDA) in the retina. Taken together, the potential therapeutic benefit of resveratrol in pro-angiogenic diseases, including retinopathy, can be considered.


Assuntos
Retinopatia da Prematuridade , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Bevacizumab/uso terapêutico , Camundongos , Neovascularização Patológica/tratamento farmacológico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
14.
Semin Ophthalmol ; 37(6): 740-748, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35671203

RESUMO

PURPOSE: To evaluate the fluorescein angiography (FA) findings in eyes with spontaneously regressed retinopathy of prematurity (ROP). METHODS: Fluorescein angiography images of 162 eyes of 81 treatment-naive infants who underwent FA due to retinal vascular immaturity and persistent avascular retina (PAR) despite exceeding postmenstrual age of 60 weeks were analyzed retrospectively. Disc diameter (DD), optic disc-to-fovea distance (FD), the length of temporal retinal vascularization (LTRV), and the length of measurable temporal avascular retina distance (LMTAR), were quantitatively measured. RESULTS: The mean gestational age and FA imaging age were 29.39 ± 3.13 and 86.51 ± 24.80 weeks postmenstrual, respectively. The mean ratios of LTRV/FD and LMTAR /DD were 4.47 ± 0.36 and 2.21 ± 1.01, respectively. Pigmentary changes were detected in the peripheral retina in 21% of the eyes. There was at least one angiographic finding in 88% of the eyes, but these findings were usually mild. Based on the FA findings, laser photocoagulation was performed to the peripheral avascular retina in ten eyes of five patients. CONCLUSION: Even in larger preterm infants and without severe retinopathy and anti-VEGF treatment, PAR and peripheral pigmentary changes may be detected, and mild angiographic vascular activity may continue. These findings may lead to late-onset retinal pathologies that may threaten vision. In eyes with PAR, follow-up with FA and prophylactic laser application may be applicable. Further investigation is required for this topic.


Assuntos
Neovascularização Retiniana , Retinopatia da Prematuridade , Pré-Escolar , Angiofluoresceinografia , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Retina/patologia , Neovascularização Retiniana/diagnóstico , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/patologia , Estudos Retrospectivos
15.
Adv Sci (Weinh) ; 9(21): e2105365, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35619548

RESUMO

Retinopathy of prematurity (ROP) is one of the leading causes of childhood visual impairment and blindness. However, there are still very few effective pharmacological interventions for ROP. Histone deacetylase 6 (HDAC6)-mediated disassembly of photoreceptor cilia has recently been implicated as an early event in the pathogenesis of ROP. Herein it is shown that enhanced expression of HDAC6 by intravitreal injection of adenoviruses encoding HDAC6 induces the typical pathological changes associated with ROP in mice, including disruption of the membranous disks of photoreceptor outer segments and a decrease in electroretinographic amplitudes. Hdac6 transgenic mice exhibit similar ROP-related defects in retinal structures and functions and disassembly of photoreceptor cilia, whereas Hdac6 knockout mice are resistant to oxygen change-induced retinal defects. It is further shown that blocking HDAC6-mediated cilium disassembly by intravitreal injection of small-molecule compounds protect mice from ROP-associated retinal defects. The findings indicate that pharmacological targeting of the HDAC6-cilium axis may represent a promising strategy for the prevention of ROP.


Assuntos
Cílios , Desacetilase 6 de Histona , Retinopatia da Prematuridade , Animais , Cílios/metabolismo , Cílios/patologia , Desacetilase 6 de Histona/metabolismo , Camundongos , Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia
16.
PLoS One ; 17(4): e0267576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476813

RESUMO

BACKGROUND: Retinopathy of prematurity (ROP) remains the leading cause for blindness in children. Limited hyperoxia induced proliferative retinopathy (L-HIPR) was recently introduced as a potential animal model for ROP and persistent fetal vasculature; however, the detailed pathological changes remain unclear. METHODS: To model L-HIPR, we placed C57BL/6J mice in 65% oxygen from birth to post-natal day 7 (P7). We examined eyes at intervals between P12 and P30. Retinal morphometry, thickness, and preretinal fibrosis were quantified at different time points on histological sections stained with hematoxylin and eosin (H&E) and Masson Trichrome, respectively. Vascular development, angiogenesis, inflammation, and pericyte coverage were analyzed using immunohistochemistry staining in retinal flat mounts and cross sections. RESULTS: In L-HIPR, the hyaloidal vessels persisted until the latest time point in this study, P30 and began to invaginate the peripheral then central retina starting at P12. Central retinal distortion was noted beginning at P17, while the peripheral retina demonstrated a trend of thinning from P12 to P30. We found that L-HIPR was associated with delayed and abnormal retinal vascular development with subsequent retinal inflammation, pericyte loss and preretinal fibrosis. CONCLUSION: Our study presents a detailed analysis of the L-HIPR animal model demonstrating vitreoretinal pathologic changes, preretinal fibrosis and persistent hyaloidal vessels into adulthood. Based on our findings, we suggest that the persistence and peculiar stepwise migration of the hyaloidal vessels into the retina may provide a potential rescue mechanism for inner retinal development that deserves further study.


Assuntos
Membrana Epirretiniana , Hiperóxia , Neovascularização Retiniana , Retinopatia da Prematuridade , Vitreorretinopatia Proliferativa , Adulto , Animais , Modelos Animais de Doenças , Membrana Epirretiniana/patologia , Fibrose , Humanos , Hiperóxia/complicações , Hiperóxia/patologia , Recém-Nascido , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Retina/patologia , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Retinopatia da Prematuridade/etiologia , Retinopatia da Prematuridade/patologia , Vitreorretinopatia Proliferativa/patologia
17.
Mol Cell Biochem ; 477(6): 1739-1763, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35262882

RESUMO

Retinopathy of prematurity (ROP) is a retinal vasoproliferative disorder that represents an important cause of childhood visual impairment and blindness. Although oxidative stress has long been implicated in ROP etiology, other prenatal and perinatal factors are also involved. This review focuses on current research involving inflammation and genetic factors in the pathogenesis of ROP. Increasing evidence suggests that perinatal inflammation or infection contributes to ROP pathogenesis. Cytokines and chemokines with a fundamental role in inflammatory responses and that significantly contributing to angiogenesis are analyzed. Microglia cells, the retinal-resident macrophages, are crucial for retinal homeostasis, however, under sustained pathological stimuli release exaggerated amounts of inflammatory mediators and can promote pathological neovascularization. Current modulation of angiogenic cytokines, such as treatment with antibodies to vascular endothelial growth factor (anti-VEGF), has shown efficacy in the treatment of ocular neovascularization; however, some patients are refractory to anti-VEGF agents, suggesting that other angiogenic or anti-angiogenic cytokines need to be identified. Much evidence suggests that genetic factors contribute to the phenotypic variability of ROP. Several studies have implicated the involvement of candidate genes from different signaling pathways in the development of ROP. However, a genetic component with a major impact on ROP has not yet been discovered. Most studies have limitations and did not replicate results. Future research involving bioinformatics, genomics, and proteomics may contribute to finding more genes associated with ROP and may allow discovering better solutions in the management and treatment of ROP.


Assuntos
Retinopatia da Prematuridade , Citocinas/genética , Humanos , Recém-Nascido , Inflamação/genética , Neovascularização Patológica/genética , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/patologia , Fator A de Crescimento do Endotélio Vascular/genética
18.
Cell Mol Life Sci ; 79(1): 63, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35006382

RESUMO

Conventional angiogenic factors, such as vascular endothelial growth factor (VEGF), regulate both pathological and physiological angiogenesis indiscriminately, and their inhibitors may elicit adverse side effects. Secretogranin III (Scg3) was recently reported to be a diabetes-restricted VEGF-independent angiogenic factor, but the disease selectivity of Scg3 in retinopathy of prematurity (ROP), a retinal disease in preterm infants with concurrent pathological and physiological angiogenesis, was not defined. Here, using oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP, we quantified an exclusive binding of Scg3 to diseased versus healthy developing neovessels that contrasted sharply with the ubiquitous binding of VEGF. Functional immunohistochemistry visualized Scg3 binding exclusively to disease-related disorganized retinal neovessels and neovascular tufts, whereas VEGF bound to both disorganized and well-organized neovessels. Homozygous deletion of the Scg3 gene showed undetectable effects on physiological retinal neovascularization but markedly reduced the severity of OIR-induced pathological angiogenesis. Furthermore, anti-Scg3 humanized antibody Fab (hFab) inhibited pathological angiogenesis with similar efficacy to anti-VEGF aflibercept. Aflibercept dose-dependently blocked physiological angiogenesis in neonatal retinas, whereas anti-Scg3 hFab was without adverse effects at any dose and supported a therapeutic window at least 10X wider than that of aflibercept. Therefore, Scg3 stringently regulates pathological but not physiological angiogenesis, and anti-Scg3 hFab satisfies essential criteria for development as a safe and effective disease-targeted anti-angiogenic therapy for ROP.


Assuntos
Inibidores da Angiogênese/farmacologia , Cromograninas/imunologia , Cromograninas/metabolismo , Neovascularização Patológica/genética , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/patologia , Animais , Capilares/metabolismo , Cromograninas/antagonistas & inibidores , Cromograninas/genética , Modelos Animais de Doenças , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/farmacologia , Neovascularização Retiniana/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
19.
Pediatr Res ; 91(7): 1677-1685, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34285351

RESUMO

BACKGROUND: Pathologic ocular neovascularization in retinopathy of prematurity (ROP) and other proliferative retinopathies are characterized by dysregulation of vascular endothelial growth factor-A (VEGF-A). A study of Vegfa isoform expression during oxygen-induced ischemic retinopathy (OIR) may enhance our understanding of Vegf dysregulation. METHODS: Following induction of OIR, immunohistochemistry and polymerase chain reaction (PCR) was performed on room air (RA) and OIR mice. RESULTS: Total Vegfa messenger RNA (mRNA) expression was stable in RA mice, but increased in OIR mice with a peak at postnatal day 17 (P17), before returning to RA levels. Vegfa164a expression was similar in both OIR and RA mice at P10 (Phase 1 OIR), but 2.4-fold higher in OIR mice compared to RA mice at P16 (Phase 2 OIR). At P10, Vegfa164b mRNA was similar in OIR vs RA mice, but was expressed 2.5-fold higher in OIR mice compared to RA mice at P16. At P10 and P16, Vegfr2/Vegfr1 expression was increased in OIR mice compared to RA mice. Increased activation of microglia was seen in OIR mice. CONCLUSIONS: Vegfa164a, Vegfa164b, and Vegfr1 were overexpressed in OIR mice, leading to abnormal signaling and angiogenesis. Further studies of mechanisms of Vegf dysregulation may lead to novel therapies for ROP and other proliferative retinopathies. IMPACT: Vegfa164 has two major isoforms, a proangiogenic, Vegfa164a, and an antiangiogenic, Vegfa164b, with opposing receptors, inhibitory Vegfr1, and stimulatory Vegfr2, but their role in OIR is unclear. In Phase 1 OIR, both isoforms and receptors are expressed similarly. In Phase 2 OIR, both isoforms are overexpressed, with an increased ratio of inhibitory Vegfr1. Modulation of angiogenesis by Vegf regulation enables pruning of excess angiogenesis during physiology, but results in ineffective angiogenesis during OIR. Knowledge of VEGF dysregulation may have novel therapeutic implications in the management of ROP and retinal proliferative diseases.


Assuntos
Neovascularização Retiniana , Retinopatia da Prematuridade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Oxigênio/uso terapêutico , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Neovascularização Retiniana/genética , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/patologia
20.
Semin Ophthalmol ; 37(3): 358-372, 2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-34499578

RESUMO

Optical coherence tomography (OCT) is widely applied in diagnosis and management of retina diseases particularly macular diseases in adult retina practices. However, it has been under-utilized in pediatric retinal diseases especially in neonates and infants. Utilization of OCT in primary macular diseases in this age group is also uncommon and is less reported. Challenges involved in image acquisition and limitations with available devices technique can explain the limited research and accurate data availability in the literature in this field. Purpose of this review article is to summarize the use of OCT and its importance in various infantile retinal pathologies such as vascular diseases, tumors, retinal dystrophies, and optic nerve pathologies with primary focus on neonates and infants, along with infant choroid. In addition, we also discuss about future directions including OCT angiography for infants.


Assuntos
Retinopatia da Prematuridade , Tomografia de Coerência Óptica , Adulto , Criança , Corioide , Humanos , Lactente , Recém-Nascido , Nervo Óptico , Retina/diagnóstico por imagem , Retina/patologia , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/patologia , Tomografia de Coerência Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...