Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.226
Filtrar
1.
An Acad Bras Cienc ; 96(2): e20231075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747797

RESUMO

Mangroves buffer metals transfer to coastal areas though strong accumulation in sediments making necessary to investigate metals' bioavailability to plants at the rhizosphere. This work evaluates the effect of mangrove root activity, through iron plaque formation, on the mobility of iron and copper its influence on metals' uptake, and translocation through simultaneous histochemical analysis. The Fe2+ and Fe3+ contents in porewaters ranged from 0.02 to 0.11 µM and 1.0 to 18.3 µg.l-1, respectively, whereas Cu concentrations were below the method's detection limit (<0.1 µM). In sediments, metal concentrations ranged from 12,800 to 39,500 µg.g-1 for total Fe and from 10 to 24 µg.g-1 for Cu. In iron plaques, Cu concentrations ranged from 1.0 to 160 µg.g-1, and from 19.4 to 316 µg.g-1 in roots. Fe concentrations were between 605 to 36,000 µg.g-1 in the iron plaques and from 2,100 to 62,400 µg.g-1 in roots. Histochemical characterization showed Fe3+ predominance at the tip of roots and Fe2+ in more internal tissues. A. schaueriana showed significant amounts of Fe in pneumatophores and evident translocation of this metal to leaves and excretion through salt glands. Iron plaques formation was essential to the Fe and Cu regulation and translocation in tissues of mangrove plants.


Assuntos
Avicennia , Cobre , Ferro , Raízes de Plantas , Rhizophoraceae , Rhizophoraceae/química , Ferro/análise , Ferro/metabolismo , Brasil , Cobre/análise , Avicennia/química , Raízes de Plantas/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Disponibilidade Biológica , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 669-677, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646754

RESUMO

As one of the important blue carbon pools in tropical and subtropical intertidal zones, mangroves are widely distributed along the coast of Guangxi in China. To deeply explore the variations of potential suitable habitats for mangroves in China under the background of climate change, based on remote sensing interpretation data of coastal wetlands in Guangxi, global marine environment and bioclimatic environment data in 2021, we constructed a maximum entropy habitat distribution model to simulate the spatial distribution of potential suitable areas for mangroves and the invasive species, Spartina alterniflora, along the coast of Guangxi, and predicted the patterns under extreme climate change scenarios (SSP5-8.5). The results showed that the interpreted area of mangrove forests along the coastline of Guangxi was 9136.7 hm2 in 2021, while the predicted area of potential suitable habitat area was 55955.9 hm2. Current distribution area of mangroves had basically covered its potential high suitability area and nearly 10% of the moderate suitability area. The current area of S. alterniflora was 1320.4 hm2, and the predicted area of potential high suitability area was twice of current area, indicating that there was still a large proportion of high suitability area that was not occupied by S. alterniflora. The most important environmental factors driving the distribution of potential habitats in mangroves were offshore Euclidean distance (62.2%), terrain deviation index (8.7%), average sea surface temperature in the hottest season (6.1%), and seabed terrain elevation (5.6%). The contribution of geographical conditions on mangrove distribution was predominant. Under the climate change scenario (SSP5-8.5), potential suitable area for mangroves would increase by 5.3%, while that for S. alterniflora would decrease by 3.1%. The overlapping proportion of the potential suitable area for mangroves and S. alterniflora was similar under current and SSP5-8.5 scenarios, being 15.2% and 14.5%, respectively. In the future, it is necessary to strengthen the protection and ecological restoration of mangroves along the coast of Guangxi and there is great challenge for preventing further invasion of S. alterniflora.


Assuntos
Mudança Climática , Ecossistema , Espécies Introduzidas , Poaceae , Rhizophoraceae , Áreas Alagadas , China , Rhizophoraceae/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Oceanos e Mares , Previsões , Modelos Teóricos , Conservação dos Recursos Naturais
3.
Sci Total Environ ; 927: 172284, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588743

RESUMO

Mangrove canopy height (MCH) has been described as a leading characteristic of mangrove forests, protecting coastal economic interests from hurricanes. Meanwhile, winter temperature has been considered the main factor controlling the MCH along subtropical coastlines. However, the MCH in Cedar Key, Florida (∼12 m), is significantly higher than in Port Fourchon, Louisiana (∼2.5 m), even though these two subtropical locations have similar winter temperatures. Port Fourchon has been more frequently impacted by hurricanes than Cedar Key, suggesting that hurricanes may have limited the MCH in Port Fourchon rather than simply winter temperatures. This hypothesis was evaluated using novel high-resolution remote sensing techniques that tracked the MCH changes between 2002 and 2023. Results indicate that hurricanes were the limiting factor keeping the mean MCH at Port Fourchon to <1 m (2002-2013), as the absence of hurricane impacts between 2013 and 2018 allowed the mean MCH to increase by 60 cm despite the winter freezes in Jan/2014 and Jan/2018. Hurricanes Zeta (2020) and Ida (2021) caused a decrease in the mean MCH by 20 cm, breaking branches, defoliating the canopy, and toppling trees. The mean MCH (∼1.6 m) attained before Zeta and Ida has not yet been recovered as of August 2023 (∼1.4 m), suggesting a longer-lasting impact (>4 years) of hurricanes on mangroves than winter freezes (<1 year). The high frequency of hurricanes affecting mangroves at Port Fourchon has acted as a periodic "pruning," particularly of the tallest Avicennia trees, inhibiting their natural growth rates even during quiet periods following hurricane events (e.g., 12 cm/yr, 2013-2018). By contrast, the absence of hurricanes in Cedar Key (2000-2020) has allowed the MCH to reach 12 m (44-50 cm/yr), implying that, besides the winter temperature, the frequency and intensity of hurricanes are important factors limiting the MCH on their latitudinal range limits in the Gulf of Mexico.


Assuntos
Tempestades Ciclônicas , Áreas Alagadas , Golfo do México , Florida , Monitoramento Ambiental/métodos , Louisiana , Estações do Ano , Rhizophoraceae
4.
An Acad Bras Cienc ; 96(1): e20231143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597495

RESUMO

Plants used in traditional medicine offer an affordable new alternative in tissue repair therapy. This study aimed to evaluate the effectiveness of the 5% Rhizophora mangle cream compared to the 5% dexpanthenol cream in healing open surgical wounds on the upper eyelid. A total of 18 patients were submitted to the experiment and divided into 2 groups with 9 patients each who used topically and daily 5% dexpanthenol cream (control group) or 5% R.mangle cream (intervention group) for 7 days. Clinical, morphometric and histomorphometric analyses of wounds and surgical procedures for skin removal were performed. In the morphometric analysis, all wounds treated with R.mangle and dexpanthenol creams showed complete macroscopic scars, without inflammatory signs and infection free. The skin hydration values in pre and post application periods of the cream were 43.82 ± 43.93 and 62.12 ± 67.40 respectively. The histomorphometric study showed lower values of epithelium distance in R. mangle group and higher in dexpanthenol group with significant difference between groups (p < 0.05). The R.mangle 5% cream proved to be effective in healing wounds of human upper eyelid skin with a significant improvement in epithelization compared to dexpanthenol 5% cream.


Assuntos
Ácido Pantotênico/análogos & derivados , Rhizophoraceae , Cicatrização , Humanos , Brasil , Pálpebras/cirurgia
5.
Mar Drugs ; 22(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667775

RESUMO

The genus Bruguiera, a member of the Rhizophoraceae family, is predominantly found in coastal areas as a mangrove plant, boasting a rich and diverse community of endophytes. This review systematically compiled approximately 496 compounds derived from both the Bruguiera genus and its associated endophytes, including 152 terpenoids, 17 steroids, 16 sulfides, 44 alkaloids and peptides, 66 quinones, 68 polyketides, 19 flavonoids, 38 phenylpropanoids, 54 aromatic compounds, and 22 other compounds. Among these, 201 compounds exhibited a spectrum of activities, including cytotoxicity, antimicrobial, antioxidant, anti-inflammatory, antiviral, antidiabetic, insecticidal and mosquito repellent, and enzyme inhibitory properties, etc. These findings provided promising lead compounds for drug discovery. Certain similar or identical compounds were found to be simultaneously present in both Bruguiera plants and their endophytes, and the phenomenon of their interaction relationship was discussed.


Assuntos
Endófitos , Rhizophoraceae , Endófitos/química , Humanos , Rhizophoraceae/microbiologia , Animais
6.
Arch Microbiol ; 206(4): 192, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522061

RESUMO

Plant Growth-Promoting Yeasts (PGPY) have garnered significant attention in recent years; however, research on PGPY from mangroves remains a largely unexplored frontier. This study, therefore, focused on exploring the multifaceted plant growth-promoting (PGP) capabilities of yeasts isolated from mangroves of Puthuvype and Kumbalam. The present work found that manglicolous yeasts exhibited diverse hydrolytic properties, with the predominance of lipolytic activity, in addition to other traits such as phosphate solubilization, and production of indole acetic acid, siderophore, ammonia, catalase, nitrate, and hydrogen cyanide. After screening for 15 PGP traits, three strains P 9, PV 23, and KV 35 were selected as the most potent ones. These strains also exhibited antagonistic activity against fungal phytopathogens and demonstrated resilience to abiotic stresses, making them not only promising biocontrol agents but also suited for field application. The potent strains P 9, PV 23, and KV 35 were molecularly identified as Candida tropicalis, Debaryomyces hansenii, and Aureobasidium melanogenum, respectively. The potential of these strains in enhancing the growth performance of mangrove seedlings of Rhizophora mucronata, was demonstrated using the pot-experiment. The results suggested that the consortium of three potent strains (P 9, PV 23, and KV 35) was more effective in increasing the number of shoot branches (89.2%), plant weight (87.5%), root length (83.3%), shoot height (57.9%) and total leaf area (35.1%) than the control seedlings. The findings of this study underscore the significant potential of manglicolous yeasts in contributing to mangrove conservation and restoration efforts, offering a comprehensive understanding of their diverse plant growth-promoting mechanisms and highlighting their valuable role in sustainable ecosystem management.


Assuntos
Rhizophoraceae , Plântula , Ecossistema , Amônia , Candida tropicalis
7.
Sci Data ; 11(1): 306, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509068

RESUMO

Mangroves are nature-based solutions for coastal protection however their ability to attenuate waves and stabilise and accrete sediment varies with their species-specific architecture and frontal area. Hydrodynamic models are typically used to predict and assess the protection afforded by mangroves, but without species or genus distribution information, the results can be significantly different from reality. Data on the frontal genus of mangroves exposed to waves and tides can provide information that can be used in hydrodynamic models to more accurately forecast the protection benefit provided by mangroves. Globally, frontal species were identified from existing mangrove zonation diagrams to create a global mangrove genus distribution map. This dataset aims to improve the accuracy of hydrodynamic models. Data may be of interest to researchers in coastal engineering, marine science, wetland ecology and blue carbon.


Assuntos
Avicennia , Ecologia , Rhizophoraceae , Áreas Alagadas , Carbono , Ecossistema , Previsões , Especificidade da Espécie
8.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474695

RESUMO

Marine mangrove vegetation has been traditionally employed in folk medicine to address various ailments. Notably, Rhizophora apiculata Blume has exhibited noteworthy properties, demonstrating efficacy against cancer, viruses, and bacteria. The enzyme fatty acid synthase (FAS) plays a pivotal role in de novo fatty acid synthesis, making it a promising target for combating colon cancer. Our study focused on evaluating the FAS inhibitory effects of both the crude extract and three isolated compounds from R. apiculata. The n-butanol fraction of R. apiculata extract (BFR) demonstrated a significant inhibition of FAS, with an IC50 value of 93.0 µg/mL. For inhibition via lyoniresinol-3α-O-ß-rhamnopyranoside (LR), the corresponding IC50 value was 20.1 µg/mL (35.5 µM). LR competitively inhibited the FAS reaction with acetyl-CoA, noncompetitively with malonyl-CoA, and in a mixed manner with NADPH. Our results also suggest that both BFR and LR reversibly bind to the KR domain of FAS, hindering the reduction of saturated acyl groups in fatty acid synthesis. Furthermore, BFR and LR displayed time-dependent inhibition for FAS, with kobs values of 0.0045 min-1 and 0.026 min-1, respectively. LR also exhibited time-dependent inhibition on the KR domain, with a kobs value of 0.019 min-1. In human colon cancer cells, LR demonstrated the ability to reduce viability and inhibit intracellular FAS activity. Notably, the effects of LR on human colon cancer cells could be reversed with the end product of FAS-catalyzed chemical reactions, affirming the specificity of LR on FAS. These findings underscore the potential of BFR and LR as potent FAS inhibitors, presenting novel avenues for the treatment of human colon cancer.


Assuntos
Neoplasias do Colo , Rhizophoraceae , Humanos , Polifenóis , Ácido Graxo Sintases/metabolismo , Ácidos Graxos
9.
Sci Total Environ ; 923: 171340, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438047

RESUMO

Understanding the interactions between microorganisms, soil extracellular enzymes, and mangroves is crucial for conserving and restoring mangrove ecosystems. However, the unique environments associated with mangroves have resulted in a lack of pertinent data regarding the interactions between these components. Root, stem, leaf, and soil samples were collected at three distinct stages of mangrove succession. Stoichiometry was employed to analyze the carbon, nitrogen, and phosphorus contents of these samples and to quantify extracellular enzyme activities, microbial biomass, and various physicochemical factors in the soil. The results showed that the trends of C, N, and P in the mangrove plants were consistent. Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) were the highest in the Kandelia obovate community. Catalase (CAT) and ß-D-G showed the highest content in K. obovate and Bruguiera gymnorrhiza, whereas cellulase showed the opposite trend. Urease was least abundant in the K. obovate community, whereas neutral protease (NPR) and acid phosphatase (ACP) were most abundant. The overall soil environment in mangroves exhibited a state of N limitation, with varying degrees of limitation observed across different succession stages. The demand for P became more intense in the later stages of succession, particularly in the K. obovate and B. gymnorrhiza communities. In conjunction with correlation analysis, it indicated that the input of mangrove plant litter had a significant regulatory influence on the C, N, and P contents in the soil. There was a significant positive correlation between MBC, MBN, and MBP, indicating synergistic effects of C, N, and P on soil microorganisms. Therefore, evaluating the nutrient ratios and sufficiency of mangroves allowed us to comprehensively understand the present environmental conditions. This study aims to develop sustainable management strategies for the conservation and restoration of mangroves.


Assuntos
Ecossistema , Rhizophoraceae , China , Solo , Carbono , Nitrogênio , Fósforo , Microbiologia do Solo
10.
Plant J ; 118(4): 1119-1135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308390

RESUMO

Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.


Assuntos
Homeostase , Peróxido de Hidrogênio , NADPH Oxidases , Oxirredução , Raízes de Plantas , Potássio , Ácido Salicílico , Tolerância ao Sal , Sódio , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Potássio/metabolismo , Tolerância ao Sal/genética , Sódio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Regulação da Expressão Gênica de Plantas , Rhizophoraceae/fisiologia , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
J Plant Res ; 137(3): 463-484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38337083

RESUMO

Floral biochemistry and stress physiology is an underexplored aspect of mangroves, which should be investigated as part of preservation and restoration efforts. A thriving true mangrove tree (Bruguiera gymnorrhiza (L.) Lamk.) and a threatened mangrove-associate species (Heritiera fomes Buch. Ham.) were studied in the Sundarban region of India for seasonal variations in floral odours, non-volatile phytochemicals, antioxidant enzyme activities, and surface water chemistry in surrounding habitat. Both species were found to exhibit significant differences in floral volatilomes, protein contents, antioxidant enzyme activities, total flavonoids, and total phenolic contents between spring and autumn blooms. The bird-pollinated flowers of B. gymnorrhiza also showed considerable seasonal differences in floral anthocyanin and proline contents, indicating vulnerability of the post-anthesis open flowers to environmental factors. Contrarily to previous findings, B. gymnorrhiza floral bouquet appeared to be enriched in various classes of volatiles - dominated by sulphurous compounds in bud stage and terpenoids in open stage. Floral anthocyanins, contributing to the striking colouration of the calyx, were found to comprise cyanidin and delphinidin derivatives. Other glycosides of cyanidin and delphinidin were detected in H. fomes flowers, contributing to visual guides to potential food rewards for pollinating insects. Floral tissue in H. fomes was found to be protected by densely overlapping layers of stellate trichomes containing sesquiterpenoids as phytoprotectants. Comparison of the two floral species suggested that H. fomes flowering is optimized to oligohaline (but not freshwater) vernal conditions; whereas B. gymnorrhiza blooms are adapted for biologically enriched (including abundant herbivores and microbial growth), mesohaline forest habitats.


Assuntos
Ecossistema , Flores , Odorantes , Rhizophoraceae , Flores/fisiologia , Rhizophoraceae/fisiologia , Odorantes/análise , Índia , Antocianinas/metabolismo , Antocianinas/análise , Áreas Alagadas , Estresse Fisiológico , Estações do Ano , Polinização , Animais , Flavonoides/metabolismo , Flavonoides/análise , Antioxidantes/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/química , Fenóis/metabolismo , Fenóis/análise , Prolina/metabolismo , Prolina/análise
12.
Braz J Biol ; 83: e278789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422272

RESUMO

Studies in the long-term recruitment and mortality of mangrove seedlings can help to understand mangrove demography and its relationship with climatic variables, environmental restoration and advances in the ecology of this ecosystem. A seven-year population dynamics study of seedling recruitment and mortality in cohorts of Rhizophora mangle L. was carried out to identify expansion processes and patterns of survival in the understory of mangrove forests on the Atlantic coast of Brazil. The present study aimed to evaluate the relationship between recruitment and mortality R. mangle seedlings at the population level, salinity, and climatic variables (precipitation, temperature and humidity). On an annual scale, seedling recruitment was positively correlated with mean temperature. Seedling density was negatively correlated with the number of recruits and positively with the number of deaths. The number of recruits was associated with dead seedlings, temperature and precipitation considering a population scale, without grouping the data. The seedling density in the stands increased with the number of dead seedlings. Our findings described the relationship between climate variability (durability and magnitude of the dry/rainy season) and the long-term population dynamics of R. mangle seedlings in a poorly studied region and from what moment, on a monthly and annual time scale, did this relationship become significant and changes occur. The findings of this study provide information on the population dynamics of the species that will help in understanding mangrove demography. These results have important implications for projections about the recruitment and survival of the species thinking about to long-term climate change that will modify current weather patterns and mangrove conservation efforts.


Assuntos
Ecossistema , Rhizophoraceae , Plântula , Dinâmica Populacional , Florestas
13.
Tree Physiol ; 44(3)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38366388

RESUMO

Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits-Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.


Assuntos
Rhizophoraceae , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Complexo de Proteína do Fotossistema II/genética , Temperatura Baixa , Fotossíntese/genética , Perfilação da Expressão Gênica
14.
Artigo em Inglês | MEDLINE | ID: mdl-38240737

RESUMO

A Gram-negative, non-motile, strictly aerobic, rod-shaped bacterium, designated as H12T, was isolated from the sediments of mangrove plant Bruguiera sexangula taken from Dapeng district, Shenzhen, PR China. The pairwise 16S rRNA gene sequence analysis showed that strain H12T shared high identity levels with species of the genus Microbulbifer, with the highest similarity level of 98.5 % to M. pacificus SPO729T, followed by 98.1 % to M. donghaiensis CN85T. Phylogenetic analysis using core-genome sequences showed that strain H12T formed a cluster with type species of M. pacificus SPO729T and M. harenosus HB161719T. The complete genome of strain H12T was 4 481 396 bp in size and its DNA G+C content was 56.7 mol%. The average nucleotide identity and digital DNA-DNA hybridization values among strain H12T and type species of genus Microbulbifer were below the cut-off levels of 95-96 and 70 %, respectively. The predominant cellular fatty acids of strain H12T were iso-C15 : 0 (22.5 %) and C18 : 1 ω7c (13.9 %). Ubiquinone-8 was detected as the major respiratory quinone. The polar lipids of strain H12T comprised one phosphatidylglycerol, one phosphatidylethanolamine, one unidentified aminoglycophospholipid, one unidentified glycophospholipid, three unidentified glycolipids, two unidentified aminolipids, and one unidentified lipid. Based on polyphasic evidence, strain H12T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer bruguierae sp. nov. is proposed. The type strain is H12T (=KCTC 92859T=MCCC 1K08451T). Comparative genomic analyses of strain H12T with strains of the genus Microbulbifer reveal its potential in degradation of pectin.


Assuntos
Alteromonadaceae , Rhizophoraceae , Sedimentos Geológicos/microbiologia , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Hibridização Genômica Comparativa , Genômica , Fosfolipídeos/análise
15.
Plant Cell Environ ; 47(2): 511-526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37869766

RESUMO

Brassinosteroid (BR) has been shown to modulate plant tolerance to various stresses. S-nitrosoglutathione reductase (GSNOR) is involved in the plant response to environment stress by fine-turning the level of nitric oxide (NO). However, whether GSNOR is involved in BR-regulated Na+ /K+ homeostasis to improve the salt tolerance in halophyte is unknown. Here, we firstly reported that high salinity increases the expression of BR-biosynthesis genes and the endogenous levels of BR in mangrove Kandelia obovata. Then, salt-induced BR triggers the activities and gene expressions of GSNOR and antioxidant enzymes, thereafter decrease the levels of malondialdehyde, hydrogen peroxide. Subsequently, BR-mediated GSNOR negatively regulates NO contributions to the reduction of reactive oxygen species generation and induction of the gene expression related to Na+ and K+ transport, leading to the decrease of Na+ /K+ ratio in the roots of K. obovata. Finally, the applications of exogenous BR, NO scavenger, BR biosynthetic inhibitor and GSNOR inhibitor further confirm the function of BR. Taken together, our result provides insight into the mechanism of BR in the response of mangrove K. obovata to high salinity via GSNOR and NO signaling pathway by reducing oxidative damage and modulating Na+ /K+ homeostasis.


Assuntos
Óxido Nítrico , Rhizophoraceae , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Tolerância ao Sal , Transdução de Sinais
16.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069316

RESUMO

One of the most productive ecosystems in the world, mangroves are susceptible to cold stress. However, there is currently insufficient knowledge of the adaptation mechanisms of mangrove plants in response to chilling stress. This study conducted a comparative analysis of transcriptomics and metabolomics to investigate the adaptive responses of Kandelia obovata (chilling-tolerant) and Avicennia marina (chilling-sensitive) to 5 °C. The transcriptomics results revealed that differentially expressed genes (DEGs) were mostly enriched in signal transduction, photosynthesis-related pathways, and phenylpropanoid biosynthesis. The expression pattern of genes involved in photosynthesis-related pathways in A. marina presented a downregulation of most DEGs, which correlated with the decrease in total chlorophyll content. In the susceptible A. marina, all DEGs encoding mitogen-activated protein kinase were upregulated. Phenylpropanoid-related genes were observed to be highly induced in K. obovata. Additionally, several metabolites, such as 4-aminobutyric acid, exhibited higher levels in K. obovata than in A. marina, suggesting that chilling-tolerant varieties regulated more metabolites in response to chilling. The investigation defined the inherent distinctions between K. obovata and A. marina in terms of signal transduction gene expression, as well as phenylpropanoid and flavonoid biosynthesis, during exposure to low temperatures.


Assuntos
Avicennia , Rhizophoraceae , Avicennia/genética , Avicennia/metabolismo , Rhizophoraceae/genética , Plântula/metabolismo , Ecossistema , Perfilação da Expressão Gênica
17.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139139

RESUMO

Copper-containing amine oxidases (CuAOs) are known to have significant involvement in the process of polyamine catabolism, as well as serving crucial functions in plant development and response to abiotic stress. A genome-wide investigation of the CuAO protein family was previously carried out in sweet orange (Citrus sinensis) and sweet cherry (Prunus avium L.). Six CuAO (KoCuAO1-KoCuAO6) genes were discovered for the first time in the Kandelia obovata (Ko) genome through a genome-wide analysis conducted to better understand the key roles of the CuAO gene family in Kandelia obovata. This study encompassed an investigation into various aspects of gene analysis, including gene characterization and identification, subcellular localization, chromosomal distributions, phylogenetic tree analysis, gene structure analysis, motif analysis, duplication analysis, cis-regulatory element identification, domain and 3D structural variation analysis, as well as expression profiling in leaves under five different treatments of copper (CuCl2). Phylogenetic analysis suggests that these KoCuAOs, like sweet cherry, may be subdivided into three subgroups. Examining the chromosomal location revealed an unequal distribution of the KoCuAO genes across four out of the 18 chromosomes in Kandelia obovata. Six KoCuAO genes have coding regions with 106 and 159 amino acids and exons with 4 and 12 amino acids. Additionally, we discovered that the 2.5 kb upstream promoter region of the KoCuAOs predicted many cis elements linked to phytohormones and stress responses. According to the expression investigations, CuCl2 treatments caused up- and downregulation of all six genes. In conclusion, our work provides a comprehensive overview of the expression pattern and functional variety of the Kandelia obovata CuAO gene family, which will facilitate future functional characterization of each KoCuAO gene.


Assuntos
Amina Oxidase (contendo Cobre) , Rhizophoraceae , Rhizophoraceae/genética , Amina Oxidase (contendo Cobre)/metabolismo , Filogenia , Cobre/metabolismo , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958925

RESUMO

Plant basic helix-loop-helix (bHLH) transcription factors play pivotal roles in responding to stress, including cold and drought. However, it remains unclear how bHLH family genes respond to these stresses in Kandelia obovata. In this study, we identified 75 bHLH members in K. obovata, classified into 11 subfamilies and unevenly distributed across its 18 chromosomes. Collineation analysis revealed that segmental duplication primarily drove the expansion of KobHLH genes. The KobHLH promoters were enriched with elements associated with light response. Through RNA-seq, we identified several cold/drought-associated KobHLH genes. This correlated with decreased net photosynthetic rates (Pn) in the leaves of cold/drought-treated plants. Weighted gene co-expression network analysis (WGCNA) confirmed that 11 KobHLH genes were closely linked to photoinhibition in photosystem II (PS II). Among them, four Phytochrome Interacting Factors (PIFs) involved in chlorophyll metabolism were significantly down-regulated. Subcellular localization showed that KobHLH52 and KobHLH30 were located in the nucleus. Overall, we have comprehensively analyzed the KobHLH family and identified several members associated with photoinhibition under cold or drought stress, which may be helpfulfor further cold/drought-tolerance enhancement and molecular breeding through genetic engineering in K. obovata.


Assuntos
Rhizophoraceae , Rhizophoraceae/genética , Secas , Estresse Fisiológico/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
PeerJ ; 11: e16400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025714

RESUMO

Background: The Rhizophoraceae family comprises crucial mangrove plants that inhabit intertidal environments. In China, eight Rhizophoraceae mangrove species exist. Although complete chloroplast (Cp) genomes of four Rhizophoraceae mangrove plants have been reported, the Cp genomes of the remaining four species remain unclear, impeding a comprehensive understanding of the evolutionary history of this family. Methods: Illumina high-throughput sequencing was employed to obtain the DNA sequences of Rhizophoraceae species. Cp genomes were assembled by NOVOPlasty and annotated using CpGAVAS software. Phylogenetic and divergence time analyses were conducted using MEGA and BEAST 2 software. Results: Four novel Cp genomes of Rhizophoraceae mangrove species (Bruguiera sexangula, Bruguiera gymnorrhiza, Bruguiera × rhynchopetala and Rhizophora apiculata) were successfully assembled. The four Cp genomes ranged in length from 163,310 to 164,560 bp, with gene numbers varying from 124 to 128. The average nucleotide diversity (Pi) value of the eight Rhizophoraceae Cp genomes was 0.00596. Phylogenetic trees constructed based on the complete Cp genomes supported the monophyletic origin of Rhizophoraceae. Divergence time estimation based on the Cp genomes of representative species from Malpighiales showed that the origin of Rhizophoraceae occurred at approximately 58.54-50.02 million years ago (Mya). The divergence time within the genus Rhizophora (∼4.51 Mya) was much earlier than the divergence time within the genus Bruguiera (∼1.41 Mya), suggesting recent speciation processes in these genera. Our data provides new insights into phylogenetic relationship and evolutionary history of Rhizophoraceae mangrove plants.


Assuntos
Genoma de Cloroplastos , Rhizophoraceae , Filogenia , Rhizophoraceae/genética , Sequência de Bases , Cloroplastos
20.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958561

RESUMO

The copper transporter (COPT/Ctr) gene family plays a critical part in maintaining the balance of the metal, and many diverse species depend on COPT to move copper (Cu) across the cell membrane. In Arabidopsis thaliana, Oryza sativa, Medicago sativa, Zea mays, Populus trichocarpa, Vitis vinifera, and Solanum lycopersicum, a genome-wide study of the COPT protein family was performed. To understand the major roles of the COPT gene family in Kandelia obovata (Ko), a genome-wide study identified four COPT genes in the Kandelia obovata genome for the first time. The domain and 3D structural variation, phylogenetic tree, chromosomal distributions, gene structure, motif analysis, subcellular localization, cis-regulatory elements, synteny and duplication analysis, and expression profiles in leaves and Cu were all investigated in this research. Structural and sequence investigations show that most KoCOPTs have three transmembrane domains (TMDs). According to phylogenetic research, these KoCOPTs might be divided into two subgroups, just like Populus trichocarpa. KoCOPT gene segmental duplications and positive selection pressure were discovered by universal analysis. According to gene structure and motif analysis, most KoCOPT genes showed consistent exon-intron and motif organization within the same group. In addition, we found five hormones and four stress- and seven light-responsive cis-elements in the KoCOPTs promoters. The expression studies revealed that all four genes changed their expression levels in response to copper (CuCl2) treatments. In summary, our study offers a thorough overview of the Kandelia obovata COPT gene family's expression pattern and functional diversity, making it easier to characterize each KoCOPT gene's function in the future.


Assuntos
Genes de Plantas , Rhizophoraceae , Cobre/metabolismo , Proteínas de Transporte de Cobre/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Rhizophoraceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...