Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Microb Cell Fact ; 23(1): 141, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760782

RESUMO

BACKGROUND: The oleaginous yeast Rhodotorula toruloides is a promising chassis organism for the biomanufacturing of value-added bioproducts. It can accumulate lipids at a high fraction of biomass. However, metabolic engineering efforts in this organism have progressed at a slower pace than those in more extensively studied yeasts. Few studies have investigated the lipid accumulation phenotype exhibited by R. toruloides under nitrogen limitation conditions. Consequently, there have been only a few studies exploiting the lipid metabolism for higher product titers. RESULTS: We performed a multi-omic investigation of the lipid accumulation phenotype under nitrogen limitation. Specifically, we performed comparative transcriptomic and lipidomic analysis of the oleaginous yeast under nitrogen-sufficient and nitrogen deficient conditions. Clustering analysis of transcriptomic data was used to identify the growth phase where nitrogen-deficient cultures diverged from the baseline conditions. Independently, lipidomic data was used to identify that lipid fractions shifted from mostly phospholipids to mostly storage lipids under the nitrogen-deficient phenotype. Through an integrative lens of transcriptomic and lipidomic analysis, we discovered that R. toruloides undergoes lipid remodeling during nitrogen limitation, wherein the pool of phospholipids gets remodeled to mostly storage lipids. We identify specific mRNAs and pathways that are strongly correlated with an increase in lipid levels, thus identifying putative targets for engineering greater lipid accumulation in R. toruloides. One surprising pathway identified was related to inositol phosphate metabolism, suggesting further inquiry into its role in lipid accumulation. CONCLUSIONS: Integrative analysis identified the specific biosynthetic pathways that are differentially regulated during lipid remodeling. This insight into the mechanisms of lipid accumulation can lead to the success of future metabolic engineering strategies for overproduction of oleochemicals.


Assuntos
Metabolismo dos Lipídeos , Nitrogênio , Rhodotorula , Rhodotorula/metabolismo , Rhodotorula/genética , Nitrogênio/metabolismo , Transcriptoma , Engenharia Metabólica/métodos , Fosfolipídeos/metabolismo , Lipidômica , Lipídeos/biossíntese
2.
Arch Microbiol ; 206(6): 245, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702537

RESUMO

Production of carotenoids by yeast fermentation is an advantaged technology due to its easy scaling and safety. Nevertheless, carotenoid production needs an economic culture medium and other efficient yeast stains. The study aims to isolate and identify a yeast strain capable of producing carotenoids using a cost-effective substrate. A new strain was identified as Rhodotorula toruloides L/24-26-1, which can produce carotenoids at different pretreated and unpretreated sugarcane molasses concentrations (40 and 80 g/L). The highest biomass concentration (18.6 ± 0.6 g/L) was reached in the culture using 80 g/L of hydrolyzed molasses. On the other hand, the carotenoid accumulation reached the maximum value using pretreated molasses at 40 g/L (715.4 ± 15.1 µg/g d.w). In this case, the ß-carotene was 1.5 times higher than that on the control medium. The yeast growth in molasses was not correlated with carotenoid production. The most outstanding production of The DPPH, ABTS, and FRAP tests demonstrated the antioxidant activity of the obtained carotenogenic extracts. This research demonstrated the R. toruloides L/24-26-1 strain biotechnological potential for carotenoid compounds. The yeast produces carotenoids with antioxidant activity in an inexpensive medium, such as sulfuric acid pretreated and unpretreated molasses.


Assuntos
Fermentação , Melaço , Rhodotorula , Saccharum , beta Caroteno , Rhodotorula/metabolismo , Rhodotorula/genética , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/isolamento & purificação , Rhodotorula/classificação , Saccharum/metabolismo , beta Caroteno/metabolismo , beta Caroteno/biossíntese , Carotenoides/metabolismo , Antioxidantes/metabolismo , Biomassa , Meios de Cultura/química , Filogenia
4.
J Sci Food Agric ; 104(7): 4050-4057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353320

RESUMO

BACKGROUND: Ergothioneine (EGT) is a high-value food functional factor that cannot be synthesized by humans and other vertebrates, and the low yield limits its application. RESULTS: In this study, the optimal fermentation temperature, fermentation time, initial pH, inoculum age, and inoculation ratio on EGT biosynthesis of Rhodotorula mucilaginosa DL-X01 were optimized. In addition, the effects of three key precursor substances - histidine, methionine, and cysteine - on fungal EGT synthesis were verified. The optimal conditions were further obtained by response surface optimization. The EGT yield of R. mucilaginosa DL-X01 under optimal fermentation conditions reached 64.48 ± 2.30 mg L-1 at shake flask fermentation level. Finally, the yield was increased to 339.08 ± 3.31 mg L-1 (intracellular) by fed-batch fermentation in a 5 L bioreactor. CONCLUSION: To the best of our knowledge, this is the highest EGT yield ever reported in non-recombinant strains. The fermentation strategy described in this study will promote the efficient biosynthesis of EGT in red yeast and its sustainable production in the food industry. © 2024 Society of Chemical Industry.


Assuntos
Ergotioneína , Monascus , Rhodotorula , Humanos , Animais , Rhodotorula/genética , Rhodotorula/metabolismo , Antioxidantes/metabolismo , Histidina , Fermentação , Monascus/metabolismo
5.
J Agric Food Chem ; 72(7): 3793-3799, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38327062

RESUMO

Carotenoids, as a type of tetraterpene compound, have been widely used in food, medical, and health areas owing to their antioxidant, immune enhancement, and disease risk reduction effects. Rhodosporidium toruloides is a promising oleaginous red yeast that can industrially synthesize carotenoids. In this study, the effects of different light exposure times and intervals on carotenoid production by R. toruloides Z11 were first investigated. Results showed that a higher carotenoid content (1.29 mg/g) can be achieved when R. toruloides Z11 was exposed to light for 12 h per day, which was increased by 1.98 times compared with that of dark cultivation. Transcriptome profiling revealed that light stress could effectively promote the gene expression levels of GGPS1 and AL1 in the carotenoid biosynthesis pathway and phr in the DNA photolysis pathway of R. toruloides. This work will provide a molecular foundation to further improve the production efficiency of carotenoids by genetic engineering.


Assuntos
Basidiomycota , Rhodotorula , Engenharia Genética , Rhodotorula/genética , Carotenoides/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo
6.
Appl Microbiol Biotechnol ; 108(1): 7, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170311

RESUMO

Carotenoids are natural lipophilic pigments, which have been proven to provide significant health benefits to humans, relying on their capacity to efficiently scavenge singlet oxygen and peroxyl radicals as antioxidants. Strains belonging to the genus Rhodosporidium represent a heterogeneous group known for a number of phenotypic traits including accumulation of carotenoids and lipids and tolerance to heavy metals and oxidative stress. As a representative of these yeasts, Rhodosporidium toruloides naturally produces carotenoids with high antioxidant activity and grows on a wide variety of carbon sources. As a result, R. toruloides is a promising host for the efficient production of more value-added lipophilic compound carotenoids, e.g., torulene and torularhodin. This review provides a comprehensive summary of the research progress on carotenoid biosynthesis in R. toruloides, focusing on the understanding of biosynthetic pathways and the regulation of key enzymes and genes involved in the process. Moreover, the relationship between the accumulation of carotenoids and lipid biosynthesis, as well as the stress from diverse abiotic factors, has also been discussed for the first time. Finally, several feasible strategies have been proposed to promote carotenoid production by R. toruloides. It is possible that R. toruloides may become a critical strain in the production of carotenoids or high-value terpenoids by genetic technologies and optimal fermentation processes. KEY POINTS: • Biosynthetic pathway and its regulation of carotenoids in Rhodosporidium toruloides were concluded • Stimulation of abiotic factors for carotenoid biosynthesis in R. toruloides was summarized • Feasible strategies for increasing carotenoid production by R. toruloides were proposed.


Assuntos
Carotenoides , Rhodotorula , Humanos , Carotenoides/metabolismo , Rhodotorula/genética , Leveduras/metabolismo , Vias Biossintéticas
7.
Biotechnol Bioeng ; 121(1): 238-249, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902687

RESUMO

Oleaginous yeasts are promising platforms for microbial lipids production as a renewable and sustainable alternative to vegetable oils in biodiesel production. In this paper, a thorough in silico assessment of lipid production in batch cultivation by Rhodosporidium toruloides was developed. By means of dynamic flux balance analysis, the traditional two-stage bioprocess (TSB) performed by the native strain was contrasted with one-stage bioprocess (OSB) using four designed strains obtained by gene knockout strategies. Lipid titer, yield, content, and productivity were analyzed at different initial C/N ratios as relevant performance indicators used in bioprocesses. By weighting these indicators, a global lipid efficiency metric (GLEM) was defined to consider different scenarios. Under simulated conditions, designed strains for lipid overproduction in OSB outperformed the TSB in terms of lipid title (up to threefold), lipid yield (up to 2.4-fold), lipid content (up to 2.8-fold, with a maximum of 76%), and productivity (up to 1.3-fold), depending on C/N ratios. Using these efficiency parameters and the proposed GLEM, the process of selecting the most suitable candidates for lipid production could be carried out before experimental assays. This methodology holds the potential to be extended to other oleaginous microorganisms and diverse strain design techniques.


Assuntos
Basidiomycota , Rhodotorula , Basidiomycota/genética , Rhodotorula/genética , Biocombustíveis , Lipídeos
8.
Biotechnol J ; 19(1): e2300483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041508

RESUMO

Rhodotorula toruloides can utilize crude glycerol as the low-cost carbon source for lipid production, but its growth is subjected to inhibition by methanol in crude glycerol. Here, transcriptome profiling demonstrated that 1004 genes were significantly regulated in the strain R. toruloides TO2 under methanol stress. Methanol impaired the function of membrane transport and subsequently weakened the utilization of glycerol, activities of the primary metabolism and functions of nucleus and ribosome. Afterwards the tolerance of TO2 to methanol was improved by using two-round adaptive laboratory evolution (ALE). The final strain M2-ale had tolerance up to 3.5% of methanol. 1 H NMR-based metabolome analysis indicated that ALE not only improved the tolerance of M2-ale to methanol but also tuned the carbon flux towards the biosynthesis of glycerolipid-related metabolites. The biomass and lipid titer of M2-ale reached 14.63 ± 0.45 g L-1 and 7.06 ± 0.44 g L-1 at 96 h in the crude glycerol medium, which increased up to 17.69% and 31.39%, respectively, comparing with TO2. Afterwards, an effective method for cell lysis was developed by combining sonication and enzymatic hydrolysis (So-EnH). The lytic effect of So-EnH was validated by using confocal imaging and flow cytometry. At last, lipid recovery rate reached 95.4 ± 2.7% at the optimized condition.


Assuntos
Glicerol , Rhodotorula , Glicerol/metabolismo , Metanol/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo , Biomassa , Lipídeos
9.
Microb Cell Fact ; 22(1): 252, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066588

RESUMO

Pectinase is a particular type of enzyme that can break down pectin compounds and is extensively utilised in the agricultural field. In this study, twenty yeast isolates were isolated and assayed for pectinase activity. Molecular identification by PCR amplification and sequencing of internal transcribed spacer (ITS) regions of isolate no. 18 had the highest pectinase activity of 46.35 U/mg, was identified as Rhodotorula mucilaginosa PY18, and was submitted under accession no. (OM275426) in NCBI. Rhodotorula mucilaginosa PY18 was further enhanced through sequential mutagenesis, resulting in a mutant designated as Rhodotorula mucilaginosa E54 with a specific activity of 114.2 U/mg. Using Response Surface Methodology (RSM), the best culture conditions for the pectinase-producing yeast mutant Rhodotorula mucilaginosa E54 were pH 5, 72-h incubation, 2.5% xylose, and 2.5% malt extract, with a pectinase-specific activity of 156.55 U/mg. Then, the obtained sequences of the endo-polygalacturonase PGI gene from Rhodotorula mucilaginosa PY18 and mutant Rhodotorula mucilaginosa E54 were isolated for the first time, sequenced, and submitted to NCBI accession numbers OQ283005 and OQ283006, respectively. The modelled 3D structure of the endo-PGI enzyme (485 residues) was validated using Ramachandran's plot, which showed 87.71, 85.56, and 91.57% in the most favourable region for template Rhodotorula mucilaginosa KR, strain Rhodotorula mucilaginosa PY18, and mutant Rhodotorula mucilaginosa E54, respectively. In molecular docking studies, the results of template Rhodotorula mucilaginosa KR endo-PG1 showed an interaction with an affinity score of - 6.0, - 5.9, and - 5.6 kcal/mol for active sites 1, 2, and 3, respectively. Rhodotorula mucilaginosa PY18 endo-PG1 showed an interaction affinity with a score of - 5.8, - 6.0, and - 5.0 kcal/mol for active sites 1, 2, and 3, respectively. Mutant Rhodotorula mucilaginosa E54 endo-PG1 showed an interaction affinity of - 5.6, - 5.5, - 5.5 and - 5.4 kcal/mol for active sites 1, 2, and 3, respectively. The endo-PGI genes of both the yeast strain Rhodotorula mucilaginosa PY18 and mutant Rhodotorula mucilaginosa E54 were successfully cloned and expressed in E. coli DH5α, showing significantly higher endo-PG1 activity, which recorded 94.57 and 153.10 U/mg for recombinant Rhodotorula mucilaginosa pGEM-PGI-PY18 and recombinant mutant Rhotorula pGEM-PGI-E54, respectively.


Assuntos
Poligalacturonase , Rhodotorula , Poligalacturonase/genética , Simulação de Acoplamento Molecular , Escherichia coli/metabolismo , Rhodotorula/genética , Leveduras/metabolismo , Mutagênese
10.
BMC Genomics ; 24(1): 695, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986036

RESUMO

BACKGROUND: Despite a rising interest in the diversity and ecology of fungi in marine environments, there are few published genomes of fungi isolated from the ocean. The basidiomycetous yeast (unicellular fungus) genus Rhodotorula are prevalent and abundant in the open ocean, and they have been isolated from a wide range of other environments. Many of these environments are nutrient poor, such as the Antarctica and the Atacama deserts, raising the question as to how Rhodotorula yeasts may have adapted their metabolic strategies to optimize survival under low nutrient conditions. In order to understand their adaptive strategies in the ocean, the genome of R. sphaerocarpa ETNP2018 was compared to that of fourteen representative Rhodotorula yeasts, isolated from a variety of environments. RESULTS: Rhodotorula sphaerocarpa ETNP2018, a strain isolated from the oligotrophic part of the eastern tropical North Pacific (ETNP) oxygen minimum zone (OMZ), hosts the smallest of the fifteen genomes and yet the number of protein-coding genes it possesses is on par with the other strains. Its genome exhibits a distinct reduction in genes dedicated to Major Facilitator Superfamily transporters as well as biosynthetic enzymes. However, its core metabolic pathways are fully conserved. Our research indicates that the selective pressures of the ETNP OMZ favor a streamlined genome with reduced overall biosynthetic potential balanced by a stable set of core metabolisms and an expansion of mechanisms for nutrient acquisition. CONCLUSIONS: In summary, this study offers insights into the adaptation of fungi to the oligotrophic ocean and provides valuable information for understanding the ecological roles of fungi in the ocean.


Assuntos
Rhodotorula , Rhodotorula/genética , Leveduras , Genômica , Oceanos e Mares , Filogenia
11.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37989723

RESUMO

Rhodotorula toruloides is being developed for the use in industrial biotechnology processes because of its favorable physiology. This includes its ability to produce and store large amounts of lipids in the form of intracellular lipid bodies. Nineteen strains were characterized for mating type, ploidy, robustness for growth, and accumulation of lipids on inhibitory switchgrass hydrolysate (SGH). Mating type was determined using a novel polymerase chain reaction (PCR)-based assay, which was validated using the classical microscopic test. Three of the strains were heterozygous for mating type (A1/A2). Ploidy analysis revealed a complex pattern. Two strains were triploid, eight haploid, and eight either diploid or aneuploid. Two of the A1/A2 strains were compared to their parents for growth on 75%v/v concentrated SGH. The A1/A2 strains were much more robust than the parental strains, which either did not grow or had extended lag times. The entire set was evaluated in 60%v/v SGH batch cultures for growth kinetics and biomass and lipid production. Lipid titers were 2.33-9.40 g/L with a median of 6.12 g/L, excluding the two strains that did not grow. Lipid yields were 0.032-0.131 (g/g) and lipid contents were 13.5-53.7% (g/g). Four strains had significantly higher lipid yields and contents. One of these strains, which had among the highest lipid yield in this study (0.131 ± 0.007 g/g), has not been previously described in the literature. SUMMARY: The yeast Rhodotorula toruloides was used to produce oil using sugars extracted from a bioenergy grass.


Assuntos
Rhodotorula , Açúcares , Lipídeos , Biomassa , Rhodotorula/genética , Ploidias
12.
ACS Synth Biol ; 12(11): 3406-3413, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37864563

RESUMO

A small and efficient DNA mutation-inducing machine was constructed with an array of microplasma jet devices (7 × 1) that can be operated at atmospheric pressure for microbial mutagenesis. Using this machine, we report disruption of a plasmid DNA and generation of mutants of an oleaginous yeast Rhodosporidium toruloides. Specifically, a compact-sized microplasma channel (25 × 20 × 2 mm3) capable of generating an electron density of greater than 1013 cm-3 was constructed to produce reactive species (N2*, N2+, O, OH, and Hα) under helium atmospheric conditions to induce DNA mutagenesis. The length of microplasma channels in the device played a critical role in augmenting both the volume of plasma and the concentration of reactive species. First, we confirmed that microplasma treatment can linearize a plasmid by creating nicks in vitro. Second, we treated R. toruloides cells with a jet device containing 7 microchannels for 5 min; 94.8% of the treated cells were killed, and 0.44% of surviving cells showed different colony colors as compared to their parental colony. Microplasma-based DNA mutation is energy-efficient and can be a safe alternative for inducing mutations compared to conventional methods using toxic mutagens. This compact and scalable device is amenable for industrial strain improvement involving large-scale mutagenesis.


Assuntos
Rhodotorula , Mutagênese , Mutação/genética , Rhodotorula/genética , DNA
13.
Microb Cell Fact ; 22(1): 160, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598166

RESUMO

BACKGROUND: The non-conventional yeast Rhodotorula toruloides is an emerging host organism in biotechnology by merit of its natural capacity to accumulate high levels of carotenoids and intracellular storage lipids from a variety of carbon sources. While the number of genetic engineering strategies that employ R. toruloides is increasing, the lack of genetic tools available for modification of this yeast is still limiting strain development. For instance, several strong, constitutive R. toruloides promoters have been characterized, but to date, only five inducible promoters have been identified. Although nitrogen-limited cultivation conditions are commonly used to induce lipid accumulation in this yeast, no promoters regulated by nitrogen starvation have been described for R. toruloides. RESULTS: In this study, we used a combination of genomics and transcriptomics methods to identify novel R. toruloides promoter sequences that are either inducible or repressible by nitrogen starvation. RNA sequencing was used to assess gene expression in the recently isolated strain R. toruloides BOT-A2 during exponential growth and during nitrogen starvation, when cultivated with either glucose or xylose as the carbon source. The genome of BOT-A2 was sequenced using a combination of long- and short-read sequencing and annotated with support of the RNAseq data. Differential expression analysis was used to identify genes with a |log2 fold change|≥ 2 when comparing their expression during nitrogen depletion to that during exponential growth. The promoter regions from 16 of these genes were evaluated for their ability to drive the expression of a fluorescent reporter gene. Three promoters that were clearly upregulated under nitrogen starvation and three that were downregulated were selected and further characterized. One promoter, derived from gene RTBOTA2_003877, was found to function like an on-off switch, as it was only upregulated under full nitrogen depletion and downregulated in the presence of the nitrogen source. CONCLUSIONS: Six new R. toruloides promoters that were either upregulated or downregulated under nitrogen-starvation were identified. These substantially contribute to the available promoters when engineering this organism and are foreseen to be particularly useful for future engineering strategies requiring specific regulation of target genes in accordance with nitrogen availability.


Assuntos
Rhodotorula , Rhodotorula/genética , Regiões Promotoras Genéticas , Carbono , Nitrogênio
14.
Adv Appl Microbiol ; 123: 133-156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37400173

RESUMO

Rhodotorula sp. are well-known for their ability to biosynthesize a diverse range of valuable biomolecules, including carotenoids, lipids, enzymes, and polysaccharides. Despite the high number of studies conducted using Rhodotorula sp. at the laboratory scale, most of these do not address all processual aspects necessary for scaling up these processes for industrial applications. This chapter explores the potential of Rhodotorula sp. as a cell factory for the production of distinct biomolecules, with a particular emphasis on exploring their use from a biorefinery perspective. Through in-depth discussions of the latest research and insights into non-conventional applications, we aim to provide a comprehensive understanding of Rhodotorula sp.'s ability to produce biofuels, bioplastics, pharmaceuticals, and other valuable biochemicals. This book chapter also examines the fundamentals and challenges associated with the optimizing upstream and downstream processing of Rhodotorula sp-based processes. We believe that through this chapter, readers with different levels of expertise will gain insights into strategies for enhancing the sustainability, efficiency, and effectiveness of producing biomolecules using Rhodotorula sp.


Assuntos
Rhodotorula , Rhodotorula/genética , Carotenoides , Polissacarídeos , Biocombustíveis
15.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2313-2333, 2023 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-37401596

RESUMO

Rhodotorula toruloides is a non-conventional red yeast that can synthesize various carotenoids and lipids. It can utilize a variety of cost-effective raw materials, tolerate and assimilate toxic inhibitors in lignocellulosic hydrolysate. At present, it is widely investigated for the production of microbial lipids, terpenes, high-value enzymes, sugar alcohols and polyketides. Given its broad industrial application prospects, researchers have carried out multi-dimensional theoretical and technological exploration, including research on genomics, transcriptomics, proteomics and genetic operation platform. Here we review the recent progress in metabolic engineering and natural product synthesis of R. toruloides, and prospect the challenges and possible solutions in the construction of R. toruloides cell factory.


Assuntos
Edição de Genes , Rhodotorula , Engenharia Metabólica , Rhodotorula/genética , Rhodotorula/metabolismo , Lipídeos
16.
Bioresour Technol ; 384: 129379, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37352986

RESUMO

The study reports the exploration of the transcriptome landscape of the red oleaginous yeast Rhodotorula mucilaginosa IIPL32 coinciding with the fermentation kinetics of the yeast cultivated in a two-stage fermentation process to exploit the time-series approach to get the complete transcripts picture and reveal the persuasive genes for fatty acid and terpenoid synthesis. The finding displayed the molecular drivers with more than 2-fold upregulation in the nitrogen-limited stage than in the nitrogen-excess stage. The rate-limiting diphosphomevalonate decarboxylase, acetylCoA-citrate lyase, and acetyl-CoA C-acetyltransferase were significant in controlling the metabolic flux in the synthesis of reduced compounds, and acetoacetyl-CoA synthase, 3-ketoacyl-acyl carrier-protein reductase, and ß-subunit enoyl reductase catalyze the key starting steps of lipids or terpenoid synthesis. The last two catalyze essential reduction steps in fatty acid synthesis. These enzymes would be the prime targets for the metabolic engineering of the oleaginous yeast for enhanced fatty acids and terpenoid production.


Assuntos
Rhodotorula , Rhodotorula/genética , Rhodotorula/metabolismo , Glicerol/metabolismo , Transcriptoma/genética , Carotenoides/metabolismo , Leveduras/genética , Leveduras/metabolismo , Ácidos Graxos/metabolismo , Oxirredutases/metabolismo , Nitrogênio/metabolismo
17.
Appl Biochem Biotechnol ; 195(12): 7889-7897, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37084031

RESUMO

We employed genomic mutagenesis to the yeast Rhodotorula gracilis using Zeocin as a mutagen to develop enhanced carotenoid-producing mutant strains. The yeast mutant strains with enhanced carotenoid pigmentation were produced on agar plates containing Zeocin at a concentration of less than 1.5 µg/mL. The optimum concentration for producing enhanced carotenoid-pigmentation mutant strains was 0.25 µg/mL. The production of ß-carotene, torulene, and torularhodin in an enhanced pigmentation strain were 1.3, 1.65, and 1.5 times higher than in the wild-type strain. These results suggested that genomic mutagenesis of the yeast using Zeocin could be applied for efficiently producing enhanced carotenoid-producing mutant strains.


Assuntos
Carotenoides , Rhodotorula , Rhodotorula/genética , Leveduras
18.
Appl Microbiol Biotechnol ; 107(4): 1491-1501, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633623

RESUMO

Enhancing the lipid production of oleaginous yeasts is conducive to cutting the cost of feedstock for biodiesel. To increase the lipid productivity of Rhodotorula sp. U13N3, genes involving lipid degradation were knocked out and fermentation conditions were investigated. Results of transcription analysis demonstrated that genes encoding the ATG15-like lipase (ATG15) and peroxisomal acyl-CoA oxidase (ACOX2) were upregulated significantly at the lipogenesis stage. When ATG15 and ACOX2 were knocked out separately from the genome by the CRISPR/Cas9 method, both ΔATG15 and ΔACOX2 mutants showed better lipid production ability than the parent strain. Flow cytometry and confocal microscopic analyses indicated that simultaneous the knockout of ATG15 and ACOX2 did not impact the cell viability, whereas the lipid production was enhanced markedly as the lipid yield increased by 67.03% in shake flasks. Afterward, the ΔATG15ΔACOX2 transformant (TO2) was cultivated in shake flasks in the fed-batch mode; the highest biomass and lipid yield reached 45.76 g/L and 27.14 g/L at 216 h, respectively. Better performance was achieved when TO2 was cultivated in the 1-L bioreactor. At the end of fermentation (180 h), lipid content, yield, yield coefficient, and productivity reached 65.53%, 27.35 g/L, 0.277 g/g glycerol, and 0.152 g/L/h, respectively. These values were at the high level in comparison with Rhodotorula strains cultivated in glycerol media. Besides, fermentation modes did not affect the fatty acid composition of TO2 significantly. In conclusion, blocking the lipid degradation was an applicable strategy to increase the lipid production of Rhodotorula strains without compromising their cell viability. KEY POINTS: • ATG15-like lipase and acyl-CoA oxidase (ACOX2) participated in lipid degradation. • Knockout of ATG15 and ACOX2 increased lipid productivity, and lipid yield coefficient. • Cell viability maintained at high level in the knockout mutants during fermentation.


Assuntos
Rhodotorula , Rhodotorula/genética , Rhodotorula/metabolismo , Glicerol/metabolismo , Ácidos Graxos/metabolismo , Leveduras/metabolismo , Biocombustíveis , Lipase/metabolismo , Biomassa , Triglicerídeos/metabolismo
19.
J Agric Food Chem ; 71(4): 1802-1819, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688927

RESUMO

Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.


Assuntos
Rhodotorula , Rhodotorula/genética , Rhodotorula/metabolismo , Engenharia Metabólica , Fenótipo , Carotenoides/metabolismo
20.
Bioresour Technol ; 370: 128573, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603754

RESUMO

Oleaginous yeasts-derived microbial lipids provide a promising alternative feedstock for the biodiesel industry. However, hyperosmotic stress caused by high sugar concentration during fermentation significantly prevents high cell density and productivity. Isolation of new robust osmophilic oleaginous species from specific environment possibly resolves this issue to some extent. In this study, the cultivable yeast composition of honeycombs was investigated. Totally, 11 species of honeycomb-associated cultivable yeast were identified and characterized. Among them, an osmophilic yeast strain, designated as Rhodotorula toruloides C23 was featured with excellent lipogenic and carotenogenic capacity and remarkable cell growth using glucose, xylose or glycerol as feedstock, with simultaneous production of 24.41 g/L of lipids and 15.50 mg/L of carotenoids from 120 g/L glucose in 6.7-L fermentation. Comparative transcriptomic analysis showed that C23 had evolved a dedicated molecular regulation mechanism to maintain their high simultaneous accumulation of intracellular lipids and carotenoids and cell growth under high sugar concentration.


Assuntos
Lipídeos , Rhodotorula , Leveduras , Rhodotorula/genética , Carotenoides , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...