Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Wiley Interdiscip Rev RNA ; 15(2): e1835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38479802

RESUMO

The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Assuntos
RNA Catalítico , Ribonuclease P , Ribonuclease P/química , Ribonuclease P/genética , Ribonuclease P/metabolismo , Precursores de RNA/genética , RNA Catalítico/química , Sequência de Bases , Conformação de Ácido Nucleico , RNA de Transferência/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA
2.
Wiley Interdiscip Rev RNA ; 15(2): e1836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38453211

RESUMO

Protein-only RNase P (PRORP) is an essential enzyme responsible for the 5' maturation of precursor tRNAs (pre-tRNAs). PRORPs are classified into three categories with unique molecular architectures, although all three classes of PRORPs share a mechanism and have similar active sites. Single subunit PRORPs, like those found in plants, have multiple isoforms with different localizations, substrate specificities, and temperature sensitivities. Most recently, Arabidopsis thaliana PRORP2 was shown to interact with TRM1A and B, highlighting a new potential role between these enzymes. Work with At PRORPs led to the development of a ribonuclease that is being used to protect against plant viruses. The mitochondrial RNase P complex, found in metazoans, consists of PRORP, TRMT10C, and SDR5C1, and has also been shown to have substrate specificity, although the cause is unknown. Mutations in mitochondrial tRNA and mitochondrial RNase P have been linked to human disease, highlighting the need to continue understanding this complex. The last class of PRORPs, homologs of Aquifex RNase P (HARPs), is found in thermophilic archaea and bacteria. This most recently discovered type of PRORP forms a large homo-oligomer complex. Although numerous structures of HARPs have been published, it is still unclear how HARPs bind pre-tRNAs and in what ratio. There is also little investigation into the substrate specificity and ideal conditions for HARPs. Moving forward, further work is required to fully characterize each of the three classes of PRORP, the pre-tRNA binding recognition mechanism, the rules of substrate specificity, and how these three distinct classes of PRORP evolved. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.


Assuntos
Arabidopsis , Ribonuclease P , Humanos , Ribonuclease P/genética , Ribonuclease P/química , Ribonuclease P/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleases/metabolismo , Endonucleases/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA/metabolismo , Arabidopsis/genética , Especificidade por Substrato
3.
J Biol Chem ; 300(3): 105731, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336295

RESUMO

The endoribonuclease RNase P is responsible for tRNA 5' maturation in all domains of life. A unique feature of RNase P is the variety of enzyme architectures, ranging from dual- to multi-subunit ribonucleoprotein forms with catalytic RNA subunits to protein-only enzymes, the latter occurring as single- or multi-subunit forms or homo-oligomeric assemblies. The protein-only enzymes evolved twice: a eukaryal protein-only RNase P termed PRORP and a bacterial/archaeal variant termed homolog of Aquifex RNase P (HARP); the latter replaced the RNA-based enzyme in a small group of thermophilic bacteria but otherwise coexists with the ribonucleoprotein enzyme in a few other bacteria as well as in those archaea that also encode a HARP. Here we summarize the history of the discovery of protein-only RNase P enzymes and review the state of knowledge on structure and function of bacterial HARPs and eukaryal PRORPs, including human mitochondrial RNase P as a paradigm of multi-subunit PRORPs. We also describe the phylogenetic distribution and evolution of PRORPs, as well as possible reasons for the spread of PRORPs in the eukaryal tree and for the recruitment of two additional protein subunits to metazoan mitochondrial PRORP. We outline potential applications of PRORPs in plant biotechnology and address diseases associated with mutations in human mitochondrial RNase P genes. Finally, we consider possible causes underlying the displacement of the ancient RNA enzyme by a protein-only enzyme in a small group of bacteria.


Assuntos
Evolução Molecular , Ribonuclease P , Animais , Humanos , Archaea/enzimologia , Archaea/genética , Bactérias/enzimologia , Bactérias/genética , Filogenia , Ribonuclease P/química , Ribonuclease P/classificação , Ribonuclease P/genética , Ribonuclease P/metabolismo , RNA Catalítico
4.
J Biol Chem ; 300(3): 105729, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336296

RESUMO

RNase P and RNase mitochondrial RNA processing (MRP) are ribonucleoproteins (RNPs) that consist of a catalytic RNA and a varying number of protein cofactors. RNase P is responsible for precursor tRNA maturation in all three domains of life, while RNase MRP, exclusive to eukaryotes, primarily functions in rRNA biogenesis. While eukaryotic RNase P is associated with more protein cofactors and has an RNA subunit with fewer auxiliary structural elements compared to its bacterial cousin, the double-anchor precursor tRNA recognition mechanism has remarkably been preserved during evolution. RNase MRP shares evolutionary and structural similarities with RNase P, preserving the catalytic core within the RNA moiety inherited from their common ancestor. By incorporating new protein cofactors and RNA elements, RNase MRP has established itself as a distinct RNP capable of processing ssRNA substrates. The structural information on RNase P and MRP helps build an evolutionary trajectory, depicting how emerging protein cofactors harmonize with the evolution of RNA to shape different functions for RNase P and MRP. Here, we outline the structural and functional relationship between RNase P and MRP to illustrate the coevolution of RNA and protein cofactors, a key driver for the extant, diverse RNP world.


Assuntos
Endorribonucleases , Evolução Molecular , Subunidades Proteicas , RNA Catalítico , Ribonuclease P , Coenzimas , Endorribonucleases/química , Endorribonucleases/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ribonuclease P/química , Ribonuclease P/metabolismo , Processamento Pós-Transcricional do RNA , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Especificidade por Substrato , Eucariotos/enzimologia
5.
J Biol Chem ; 300(1): 105498, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013087

RESUMO

Developing quantitative models of substrate specificity for RNA processing enzymes is a key step toward understanding their biology and guiding applications in biotechnology and biomedicine. Optimally, models to predict relative rate constants for alternative substrates should integrate an understanding of structures of the enzyme bound to "fast" and "slow" substrates, large datasets of rate constants for alternative substrates, and transcriptomic data identifying in vivo processing sites. Such data are either available or emerging for bacterial ribonucleoprotein RNase P a widespread and essential tRNA 5' processing endonuclease, thus making it a valuable model system for investigating principles of biological specificity. Indeed, the well-established structure and kinetics of bacterial RNase P enabled the development of high throughput measurements of rate constants for tRNA variants and provided the necessary framework for quantitative specificity modeling. Several studies document the importance of conformational changes in the precursor tRNA substrate as well as the RNA and protein subunits of bacterial RNase P during binding, although the functional roles and dynamics are still being resolved. Recently, results from cryo-EM studies of E. coli RNase P with alternative precursor tRNAs are revealing prospective mechanistic relationships between conformational changes and substrate specificity. Yet, extensive uncharted territory remains, including leveraging these advances for drug discovery, achieving a complete accounting of RNase P substrates, and understanding how the cellular context contributes to RNA processing specificity in vivo.


Assuntos
Proteínas de Bactérias , Ribonuclease P , Escherichia coli/enzimologia , Escherichia coli/genética , Conformação de Ácido Nucleico , Ribonuclease P/química , Ribonuclease P/genética , Ribonuclease P/metabolismo , Precursores de RNA/classificação , Precursores de RNA/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Especificidade por Substrato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Proteica
6.
Nat Plants ; 9(12): 2031-2041, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37945696

RESUMO

RNase P is the essential activity that performs the 5' maturation of transfer RNA (tRNA) precursors. Beyond the ancestral form of RNase P containing a ribozyme, protein-only RNase P enzymes termed PRORP were identified in eukaryotes. In human mitochondria, PRORP forms a complex with two protein partners to become functional. In plants, although PRORP enzymes are active alone, we investigate their interaction network to identify potential tRNA maturation complexes. Here we investigate functional interactions involving the Arabidopsis nuclear RNase P PRORP2. We show, using an immuno-affinity strategy, that PRORP2 occurs in a complex with the tRNA methyl transferases TRM1A and TRM1B in vivo. Beyond RNase P, these enzymes can also interact with RNase Z. We show that TRM1A/TRM1B localize in the nucleus and find that their double knockout mutation results in a severe macroscopic phenotype. Using a combination of immuno-detections, mass spectrometry and a transcriptome-wide tRNA sequencing approach, we observe that TRM1A/TRM1B are responsible for the m22G26 modification of 70% of cytosolic tRNAs in vivo. We use the transcriptome wide tRNAseq approach as well as RNA blot hybridizations to show that RNase P activity is impaired in TRM1A/TRM1B mutants for specific tRNAs, in particular, tRNAs containing a m22G modification at position 26 that are strongly downregulated in TRM1A/TRM1B mutants. Altogether, results indicate that the m22G-adding enzymes TRM1A/TRM1B functionally cooperate with nuclear RNase P in vivo for the early steps of cytosolic tRNA biogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Ribonuclease P/genética , Ribonuclease P/química , Ribonuclease P/metabolismo , Proteínas de Arabidopsis/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Processamento Pós-Transcricional do RNA
7.
Trends Biochem Sci ; 47(11): 965-977, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35725940

RESUMO

Ribonuclease P (RNase P) enzymes are responsible for the 5' processing of tRNA precursors. In addition to the well-characterised ribozyme-based RNase P enzymes, an evolutionarily distinct group of protein-only RNase Ps exists. These proteinaceous RNase Ps (PRORPs) can be found in all three domains of life and can be divided into two structurally different types: eukaryotic and prokaryotic. Recent structural studies on members of both families reveal a surprising diversity of molecular architectures, but also highlight conceptual and mechanistic similarities. Here, we provide a comparison between the different types of PRORP enzymes and review how the combination of structural, biochemical, and biophysical studies has led to a molecular picture of protein-mediated tRNA processing.


Assuntos
Arabidopsis , RNA Catalítico , Arabidopsis/genética , Humanos , Processamento Pós-Transcricional do RNA , RNA Catalítico/metabolismo , RNA de Transferência/metabolismo , Ribonuclease P/química , Ribonuclease P/genética , Ribonuclease P/metabolismo
8.
Methods Enzymol ; 659: 71-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752299

RESUMO

The ubiquitous ribonucleoprotein (RNP) form of RNase P catalyzes the Mg2+-dependent cleavage of the 5' leader of precursor-transfer RNAs. The rate and fidelity of the single catalytic RNA subunit in the RNase P RNP is significantly enhanced by association with protein cofactors. While the bacterial RNP exhibits robust activity at near-physiological Mg2+ concentrations with a single essential protein cofactor, archaeal and eukaryotic RNase P are dependent on up to 5 and 10 protein subunits, respectively. Archaeal RNase P-whose proteins share eukaryotic homologs-is an experimentally tractable model for dissecting in a large RNP the roles of multiple proteins that aid an RNA catalyst. We describe protocols to assemble RNase P from Methanococcus maripaludis, a methanogenic archaeon. We present strategies for tag-less purification of four of the five proteins (the tag from the fifth is removed post-purification), an approach that helps reconstitute the RNase P RNP with near-native constituents. We demonstrate the value of native mass spectrometry (MS) in establishing the accurate masses (including native oligomers and modifications) of all six subunits in M. maripaludis RNase P, and the merits of mass photometry (MP) as a complement to native MS for characterizing the oligomeric state of protein complexes. We showcase the value of native MS and MP in revealing time-dependent modifications (e.g., oxidation) and aggregation of protein subunits, thereby providing insights into the decreased function of RNase P assembled with aged preparations of recombinant subunits. Our protocols and cautionary findings are applicable to studies of other cellular RNPs.


Assuntos
Proteínas Arqueais , RNA Catalítico , Archaea , Proteínas Arqueais/metabolismo , RNA , Precursores de RNA , RNA Catalítico/metabolismo , Ribonuclease P/química , Ribonuclease P/genética , Ribonuclease P/metabolismo
9.
Trends Biochem Sci ; 46(12): 976-991, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34511335

RESUMO

RNase P is an essential enzyme that catalyzes removal of the 5' leader from precursor transfer RNAs. The ribonucleoprotein (RNP) form of RNase P is present in all domains of life and comprises a single catalytic RNA (ribozyme) and a variable number of protein cofactors. Recent cryo-electron microscopy structures of representative archaeal and eukaryotic (nuclear) RNase P holoenzymes bound to tRNA substrate/product provide high-resolution detail on subunit organization, topology, and substrate recognition in these large, multisubunit catalytic RNPs. These structures point to the challenges in understanding how proteins modulate the RNA functional repertoire and how the structure of an ancient RNA-based catalyst was reshaped during evolution by new macromolecular associations that were likely necessitated by functional/regulatory coupling.


Assuntos
RNA Catalítico , Ribonuclease P , Microscopia Crioeletrônica , Conformação de Ácido Nucleico , RNA , RNA Catalítico/metabolismo , RNA de Transferência/metabolismo , Ribonuclease P/química , Ribonuclease P/genética , Ribonuclease P/metabolismo
10.
Nat Struct Mol Biol ; 28(9): 713-723, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34489609

RESUMO

Human mitochondrial transcripts contain messenger and ribosomal RNAs flanked by transfer RNAs (tRNAs), which are excised by mitochondrial RNase (mtRNase) P and Z to liberate all RNA species. In contrast to nuclear or bacterial RNase P, mtRNase P is not a ribozyme but comprises three protein subunits that carry out RNA cleavage and methylation by unknown mechanisms. Here, we present the cryo-EM structure of human mtRNase P bound to precursor tRNA, which reveals a unique mechanism of substrate recognition and processing. Subunits TRMT10C and SDR5C1 form a subcomplex that binds conserved mitochondrial tRNA elements, including the anticodon loop, and positions the tRNA for methylation. The endonuclease PRORP is recruited and activated through interactions with its PPR and nuclease domains to ensure precise pre-tRNA cleavage. The structure provides the molecular basis for the first step of RNA processing in human mitochondria.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/química , Metiltransferases/química , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Ribonuclease P/química , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Anticódon/química , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Microscopia Crioeletrônica , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Mitocôndrias/enzimologia , Modelos Moleculares , Mutação de Sentido Incorreto , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , RNA Fúngico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonuclease P/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade , Especificidade por Substrato
11.
J Biol Chem ; 297(3): 101028, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339732

RESUMO

Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5' leader sequence of precursor tRNA (pre-tRNA). Ribonucleoprotein RNase P and protein-only RNase P (PRORP) in eukaryotes have been extensively studied, but the mechanism by which a prokaryotic nuclease recognizes and cleaves pre-tRNA is unclear. To gain insights into this mechanism, we studied homologs of Aquifex RNase P (HARPs), thought to be enzymes of approximately 23 kDa comprising only this nuclease domain. We determined the cryo-EM structure of Aq880, the first identified HARP enzyme. The structure unexpectedly revealed that Aq880 consists of both the nuclease and protruding helical (PrH) domains. Aq880 monomers assemble into a dimer via the PrH domain. Six dimers form a dodecamer with a left-handed one-turn superhelical structure. The structure also revealed that the active site of Aq880 is analogous to that of eukaryotic PRORPs. The pre-tRNA docking model demonstrated that 5' processing of pre-tRNAs is achieved by two adjacent dimers within the dodecamer. One dimer is responsible for catalysis, and the PrH domains of the other dimer are responsible for pre-tRNA elbow recognition. Our study suggests that HARPs measure an invariant distance from the pre-tRNA elbow to cleave the 5' leader sequence, which is analogous to the mechanism of eukaryotic PRORPs and the ribonucleoprotein RNase P. Collectively, these findings shed light on how different types of RNase P enzymes utilize the same pre-tRNA processing.


Assuntos
Precursores de RNA/metabolismo , RNA de Transferência/metabolismo , Ribonuclease P/química , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Microscopia Crioeletrônica , Dimerização , Simulação de Acoplamento Molecular , Ribonuclease P/metabolismo , Homologia de Sequência de Aminoácidos
12.
J Struct Biol ; 213(2): 107704, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33571640

RESUMO

Human RNase MRP ribonucleoprotein complex is an essential endoribonuclease involved in the processing of ribosomal RNAs, mitochondrial RNAs and certain messenger RNAs. Its RNA subunit RMRP catalyzes the cleavage of substrate RNAs, and the protein components of RNase MRP are required for activity. RMRP mutations are associated with several types of inherited developmental disorders, but the pathogenic mechanism is largely unknown. Recent structural studies shed lights on the catalytic mechanism of yeast RNase MRP and the closely related RNase P; however, the structural and catalytic mechanism of RMRP in human RNase MRP complex remains unclear. Here we report the crystal structure of the P3 domain of RMRP in complex with the RPP20 and RPP25 proteins of human RNase MRP, which shows that the P3 RNA binds to a conserved positively-charged surface of the RPP20-RPP25 heterodimer through its distal stem and internal loop regions. The disease-related mutations of RMRPP3 are mostly located at the protein-RNA interface and are likely to weaken the binding of P3 to RPP20-RPP25. Moreover, the structure reveals a homodimeric organization of the entire RPP20-RPP25-RMRPP3 complex, which might mediate the dimerization of human RNase MRP complex in cells. These findings provide structural clues to the assembly and pathogenesis of human RNase MRP complex and also reveal a tetrameric feature of RPP20-RPP25 evolutionarily conserved with that of the archaeal Alba proteins.


Assuntos
Autoantígenos/química , RNA Longo não Codificante/química , Ribonuclease P/química , Proteínas Arqueais/química , Autoantígenos/metabolismo , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribonuclease P/metabolismo
13.
Nat Commun ; 12(1): 1007, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579946

RESUMO

Plant viruses cause massive crop yield loss worldwide. Most plant viruses are RNA viruses, many of which contain a functional tRNA-like structure. RNase P has the enzymatic activity to catalyze the 5' maturation of precursor tRNAs. It is also able to cleave tRNA-like structures. However, RNase P enzymes only accumulate in the nucleus, mitochondria, and chloroplasts rather than cytosol where virus replication takes place. Here, we report a biotechnology strategy based on the re-localization of plant protein-only RNase P to the cytosol (CytoRP) to target plant viruses tRNA-like structures and thus hamper virus replication. We demonstrate the cytosol localization of protein-only RNase P in Arabidopsis protoplasts. In addition, we provide in vitro evidences for CytoRP to cleave turnip yellow mosaic virus and oilseed rape mosaic virus. However, we observe varied in vivo results. The possible reasons have been discussed. Overall, the results provided here show the potential of using CytoRP for combating some plant viral diseases.


Assuntos
Resistência à Doença/fisiologia , Ribonuclease P/genética , Ribonuclease P/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Vírus do Mosaico/genética , Vírus do Mosaico/metabolismo , Vírus de Plantas/genética , Protoplastos/metabolismo , Precursores de RNA/metabolismo , RNA de Transferência/genética , Ribonuclease P/química
14.
Nucleic Acids Res ; 49(3): 1784-1800, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33469651

RESUMO

We describe a synthetic riboswitch element that implements a regulatory principle which directly addresses an essential tRNA maturation step. Constructed using a rational in silico design approach, this riboswitch regulates RNase P-catalyzed tRNA 5'-processing by either sequestering or exposing the single-stranded 5'-leader region of the tRNA precursor in response to a ligand. A single base pair in the 5'-leader defines the regulatory potential of the riboswitch both in vitro and in vivo. Our data provide proof for prior postulates on the importance of the structure of the leader region for tRNA maturation. We demonstrate that computational predictions of ligand-dependent structural rearrangements can address individual maturation steps of stable non-coding RNAs, thus making them amenable as promising target for regulatory devices that can be used as functional building blocks in synthetic biology.


Assuntos
Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Ribonuclease P/metabolismo , Riboswitch , Simulação por Computador , Escherichia coli/genética , Ligantes , RNA de Transferência/química , Ribonuclease P/química , Termodinâmica
15.
Mol Cell ; 81(4): 870-883.e10, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453165

RESUMO

The series of RNA folding events that occur during transcription can critically influence cellular RNA function. Here, we present reconstructing RNA dynamics from data (R2D2), a method to uncover details of cotranscriptional RNA folding. We model the folding of the Escherichia coli signal recognition particle (SRP) RNA and show that it requires specific local structural fluctuations within a key hairpin to engender efficient cotranscriptional conformational rearrangement into the functional structure. All-atom molecular dynamics simulations suggest that this rearrangement proceeds through an internal toehold-mediated strand-displacement mechanism, which can be disrupted with a point mutation that limits local structural fluctuations and rescued with compensating mutations that restore these fluctuations. Moreover, a cotranscriptional folding intermediate could be cleaved in vitro by recombinant E. coli RNase P, suggesting potential cotranscriptional processing. These results from experiment-guided multi-scale modeling demonstrate that even an RNA with a simple functional structure can undergo complex folding and processing during synthesis.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Dobramento de RNA , RNA Bacteriano/química , Ribonuclease P/química , Partícula de Reconhecimento de Sinal/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , Ribonuclease P/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
16.
Nat Commun ; 11(1): 3474, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651392

RESUMO

RNase MRP is an essential eukaryotic ribonucleoprotein complex involved in the maturation of rRNA and the regulation of the cell cycle. RNase MRP is related to the ribozyme-based RNase P, but it has evolved to have distinct cellular roles. We report a cryo-EM structure of the S. cerevisiae RNase MRP holoenzyme solved to 3.0 Å. We describe the structure of this 450 kDa complex, interactions between its components, and the organization of its catalytic RNA. We show that some of the RNase MRP proteins shared with RNase P undergo an unexpected RNA-driven remodeling that allows them to bind to divergent RNAs. Further, we reveal how this RNA-driven protein remodeling, acting together with the introduction of new auxiliary elements, results in the functional diversification of RNase MRP and its progenitor, RNase P, and demonstrate structural underpinnings of the acquisition of new functions by catalytic RNPs.


Assuntos
Microscopia Crioeletrônica , Endorribonucleases/ultraestrutura , Ribonucleoproteínas/ultraestrutura , Carbono/química , Catálise , Domínio Catalítico , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA Catalítico/química , RNA Fúngico/química , Ribonuclease P/química , Saccharomyces cerevisiae/enzimologia
17.
Nucleic Acids Res ; 48(21): 11815-11826, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32719843

RESUMO

Pentatricopeptide repeat (PPR) motifs are α-helical structures known for their modular recognition of single-stranded RNA sequences with each motif in a tandem array binding to a single nucleotide. Protein-only RNase P 1 (PRORP1) in Arabidopsis thaliana is an endoribonuclease that uses its PPR domain to recognize precursor tRNAs (pre-tRNAs) as it catalyzes removal of the 5'-leader sequence from pre-tRNAs with its NYN metallonuclease domain. To gain insight into the mechanism by which PRORP1 recognizes tRNA, we determined a crystal structure of the PPR domain in complex with yeast tRNAPhe at 2.85 Å resolution. The PPR domain of PRORP1 bound to the structurally conserved elbow of tRNA and recognized conserved structural features of tRNAs using mechanisms that are different from the established single-stranded RNA recognition mode of PPR motifs. The PRORP1 PPR domain-tRNAPhe structure revealed a conformational change of the PPR domain upon tRNA binding and moreover demonstrated the need for pronounced overall flexibility in the PRORP1 enzyme conformation for substrate recognition and catalysis. The PRORP1 PPR motifs have evolved strategies for protein-tRNA interaction analogous to tRNA recognition by the RNA component of ribonucleoprotein RNase P and other catalytic RNAs, indicating convergence on a common solution for tRNA substrate recognition.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/genética , Precursores de RNA/química , Ribonuclease P/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonuclease P/genética , Ribonuclease P/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
18.
BMC Genomics ; 21(1): 334, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349659

RESUMO

BACKGROUND: The rnpB gene encodes for an essential catalytic RNA (RNase P). Like other essential RNAs, RNase P's sequence is highly variable. However, unlike other essential RNAs (i.e. tRNA, 16 S, 6 S,...) its structure is also variable with at least 5 distinct structure types observed in prokaryotes. This structural variability makes it labor intensive and challenging to create and maintain covariance models for the detection of RNase P RNA in genomic and metagenomic sequences. The lack of a facile and rapid annotation algorithm has led to the rnpB gene being the most grossly under annotated essential gene in completed prokaryotic genomes with only a 24% annotation rate. Here we describe the coupling of the largest RNase P RNA database with the local alignment scoring algorithm to create the most sensitive and rapid prokaryote rnpB gene identification and annotation algorithm to date. RESULTS: Of the 2772 completed microbial genomes downloaded from GenBank only 665 genomes had an annotated rnpB gene. We applied P Finder to these genomes and were able to identify 2733 or nearly 99% of the 2772 microbial genomes examined. From these results four new rnpB genes that encode the minimal T-type P RNase P RNAs were identified computationally for the first time. In addition, only the second C-type RNase P RNA was identified in Sphaerobacter thermophilus. Of special note, no RNase P RNAs were detected in several obligate endosymbionts of sap sucking insects suggesting a novel evolutionary adaptation. CONCLUSIONS: The coupling of the largest RNase P RNA database and associated structure class identification with the P Finder algorithm is both sensitive and rapid, yielding high quality results to aid researchers annotating either genomic or metagenomic data. It is the only algorithm to date that can identify challenging RNAse P classes such as C-type and the minimal T-type RNase P RNAs. P Finder is written in C# and has a user-friendly GUI that can run on multiple 64-bit windows platforms (Windows Vista/7/8/10). P Finder is free available for download at https://github.com/JChristopherEllis/P-Finder as well as a small sample RNase P RNA file for testing.


Assuntos
Genes Microbianos , Genômica/métodos , Ribonuclease P/genética , Algoritmos , Chloroflexi/enzimologia , Chloroflexi/genética , Bases de Dados Genéticas , Genoma Microbiano/genética , Metagenômica/métodos , Conformação de Ácido Nucleico , Células Procarióticas/enzimologia , RNA Catalítico/química , RNA Catalítico/classificação , RNA Catalítico/genética , Ribonuclease P/química , Ribonuclease P/classificação , Software
19.
Artigo em Inglês | MEDLINE | ID: mdl-32039645

RESUMO

The modular structure of bacterial ribonuclease P (RNase P) ribozymes, which recognize tertiary structures of precursor tRNAs (pre-tRNAs) to cleave their 5' leader sequence, can be dissected physically into the two structured domain RNAs (S-domain and C-domain). Separately prepared S-domain RNA and C-domain RNA assemble to form bimolecular forms of RNase P ribozymes. We analyzed the effects of polyethylene glycols (PEGs) on pre-tRNA cleavage catalyzed by bimolecular RNase P ribozymes to examine the effects of molecular crowding on the reaction. PEG molecular crowders significantly enhanced the activities of bimolecular RNase P ribozymes, some of which were hardly active without PEGs.


Assuntos
Bacillus subtilis/enzimologia , Escherichia coli/enzimologia , Polietilenoglicóis/metabolismo , Ribonuclease P/metabolismo , Biocatálise , Estrutura Molecular , Polietilenoglicóis/química , RNA Bacteriano/biossíntese , RNA Bacteriano/química , Ribonuclease P/química
20.
Biochem Biophys Res Commun ; 523(2): 342-347, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31866011

RESUMO

Ribonuclease P (RNase P) is an RNA processing enzyme essential for production of functional tRNAs. Bacterial RNase P is a ribozyme, i.e., an RNA-based enzyme, which functions in all bacteria including those growing at high temperatures (≥55 °C). We examined three bacterial RNase P ribozymes, one from a mesophilic bacterium and two from thermophilic bacteria, to understand the factor(s) providing efficient catalytic ability under conditions of high temperature. Thermophilic RNase P ribozymes show structural adaptations to allow correct folding at high temperature. The presence of a molecular crowder significantly enhanced the catalytic efficiency of thermophilic RNase P ribozyme reactions at 55 °C, while it modestly reduced the upper limit of the reaction temperature.


Assuntos
Proteínas de Bactérias/metabolismo , Ribonuclease P/metabolismo , Proteínas de Bactérias/química , Biocatálise , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Temperatura Alta , Cinética , Conformação de Ácido Nucleico , Dobramento de Proteína , Estrutura Secundária de Proteína , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Ribonuclease P/química , Thermotoga maritima/enzimologia , Termotolerância , Thermus thermophilus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...