Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.594
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 21-27, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836686

RESUMO

This research aimed to investigate the effect of slow-released angiogenin by silicon micro-needle on angiogenesis in the Choke zone of dorsal multiple-territory perforator flap in rats, as well as its mechanism. Thirty-six adult Sprague-Dawley (SD) rats were randomly divided into control group, model group, and four experimental groups. In model group, slow-release saline through a silicon micro-needle was placed in choke II zone of the flap 7 days before the operation. For rats in four experimental groups, angiogenin was released via micro-needle in the choke I and choke II zones of the cross-zone flap 7 days before and 3 days before flap surgery, respectively. A 12 cm × 3 cm cross-zone perforator flap model was made on the back of all five groups. The flap survival rate in slow-release angiopoietin group was statistically higher than that in model group (P<0.05). Angiogenin in choke zone of the flap was increased in slow-release angiogenin group (P<0.05). In slow-release angiogenin group, the micro-vessel density was increased and the arteriovenous diameter was decreased, while the arteriovenous diameter was increased in model group (P<0.05). The levels of vascular endothelial growth factor A (VEGF-A) and angiotensin 1 (ANG-1) in choke zone were both elevated in slow-release angiogenin group (P<0.05). The expression of CD31 was significantly elevated in flaps of experimental groups (P<0.05). Micro-needle to slow release Angiogenin can increase the drug concentration in the tissues of the choke zone, promote the vascularization of rat dorsal crossover area perforator flap, reduce the possibility of flap ischemic necrosis, and improve the flap survival rate.


Assuntos
Retalho Perfurante , Ratos Sprague-Dawley , Ribonuclease Pancreático , Animais , Ribonuclease Pancreático/metabolismo , Retalho Perfurante/irrigação sanguínea , Masculino , Silício/química , Neovascularização Fisiológica/efeitos dos fármacos , Agulhas , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Preparações de Ação Retardada
2.
J Biomol Struct Dyn ; 42(11): 5903-5911, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870351

RESUMO

Osmolytes are small organic molecules that are known to stabilize proteins and other biological macromolecules under various stressful conditions. They belong to various categories such as amino acids, methylamines, and polyols. These substances are commonly known as 'compatible solutes' because they do not disrupt cellular processes and help regulate the osmotic balance within cells. In the case of ribonuclease A (RNase A), which is prone to aggregation, the presence of osmolytes can help to maintain its structural stability and prevent unwanted interactions leading to protein aggregation. In this study, we investigated the interaction between RNase A and several osmolytes using molecular docking and molecular dynamics (MD) simulations. We performed molecular docking to predict the binding mode and binding affinity of each osmolyte with RNase A. MD simulations were then carried out to investigate the dynamics and stability of the RNase A-osmolyte complexes. Our results show that two osmolytes, glucosylglycerol and sucrose have favorable binding affinities with RNase A. The possible role of these osmolytes in stabilizing the RNase A and prevention of aggregation is also explored. By providing computational insights into the interaction between RNase A and osmolytes, the study offers valuable information that could aid in comprehending the mechanisms by which osmolytes protect proteins and help in designing therapeutics for protein-related disorders based on osmolytes. These findings may have significant implications for the development of novel strategies aimed at preventing protein misfolding and aggregation in diverse disease conditions.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Ribonuclease Pancreático , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Termodinâmica , Sítios de Ligação , Metilaminas/química , Metilaminas/metabolismo , Ligação de Hidrogênio
3.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830770

RESUMO

Post-transcriptional regulation of immune-related transcripts by RNA-binding proteins (RBPs) impacts immune cell responses, including mast cell functionality. Despite their importance in immune regulation, the functional role of most RBPs remains to be understood. By manipulating the expression of specific RBPs in murine mast cells, coupled with mass spectrometry and transcriptomic analyses, we found that the Regnase family of proteins acts as a potent regulator of mast cell physiology. Specifically, Regnase-1 is required to maintain basic cell proliferation and survival, whereas both Regnase-1 and -3 cooperatively regulate the expression of inflammatory transcripts upon activation, with Tnf being a primary target in both human and mouse cells. Furthermore, Regnase-3 directly interacts with Regnase-1 in mast cells and is necessary to restrain Regnase-1 expression through the destabilization of its transcript. Overall, our study identifies protein interactors of endogenously expressed Regnase factors, characterizes the regulatory interplay between Regnase family members in mast cells, and establishes their role in the control of mast cell homeostasis and inflammatory responses.


Assuntos
Sobrevivência Celular , Citocinas , Mastócitos , Mastócitos/metabolismo , Animais , Camundongos , Humanos , Citocinas/metabolismo , Sobrevivência Celular/genética , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/genética , Ribonucleases/metabolismo , Ribonucleases/genética , Regulação da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos Endogâmicos C57BL , Proliferação de Células , Inflamação/metabolismo , Fatores de Transcrição
5.
Nature ; 630(8017): 769-776, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718836

RESUMO

Angiogenin, an RNase-A-family protein, promotes angiogenesis and has been implicated in cancer, neurodegenerative diseases and epigenetic inheritance1-10. After activation during cellular stress, angiogenin cleaves tRNAs at the anticodon loop, resulting in translation repression11-15. However, the catalytic activity of isolated angiogenin is very low, and the mechanisms of the enzyme activation and tRNA specificity have remained a puzzle3,16-23. Here we identify these mechanisms using biochemical assays and cryogenic electron microscopy (cryo-EM). Our study reveals that the cytosolic ribosome is the activator of angiogenin. A cryo-EM structure features angiogenin bound in the A site of the 80S ribosome. The C-terminal tail of angiogenin is rearranged by interactions with the ribosome to activate the RNase catalytic centre, making the enzyme several orders of magnitude more efficient in tRNA cleavage. Additional 80S-angiogenin structures capture how tRNA substrate is directed by the ribosome into angiogenin's active site, demonstrating that the ribosome acts as the specificity factor. Our findings therefore suggest that angiogenin is activated by ribosomes with a vacant A site, the abundance of which increases during cellular stress24-27. These results may facilitate the development of therapeutics to treat cancer and neurodegenerative diseases.


Assuntos
Domínio Catalítico , Microscopia Crioeletrônica , Modelos Moleculares , RNA de Transferência , Ribonuclease Pancreático , Ribossomos , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/química , RNA de Transferência/metabolismo , RNA de Transferência/química , Ribossomos/metabolismo , Ribossomos/química , Ribossomos/ultraestrutura , Humanos , Ativação Enzimática , Especificidade por Substrato , Citosol/metabolismo , Clivagem do RNA , Anticódon/metabolismo , Anticódon/química
6.
Talanta ; 276: 126276, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38796995

RESUMO

Ribonuclease A (RNase A) plays significant roles in several physiological and pathological conditions and can be used as a valuable diagnostic biomarker for human diseases such as myocardial infarction and cancer. Hence, it is of great importance to develop a rapid and cost-effective method for the highly sensitive detection of RNase A. The significance of RNase A assay is further enhanced by the growing attention from the biotechnology and pharmaceutical industries to develop RNA-based vaccines and drugs in large part as a result of the successful development of mRNA vaccines in the COVID-19 pandemic. Herein, we report a label-free method for the detection of RNase A by monitoring its proteolytic cleavage of an RNA substrate in a nanopore. The method is ultra-sensitive with the limit of detection reaching as low as 30 fg per milliliter. Furthermore, sensor selectivity and the effects of temperature, incubation time, metal ion, salt concentration on sensor sensitivity were also investigated.


Assuntos
Nanoporos , Ribonuclease Pancreático , Ribonuclease Pancreático/análise , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/química , Humanos , Limite de Detecção , Técnicas Biossensoriais/métodos , SARS-CoV-2 , Ensaios Enzimáticos/métodos , COVID-19/virologia , COVID-19/diagnóstico
7.
Dalton Trans ; 53(20): 8535-8540, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38727007

RESUMO

The reactivity of the anticancer drug picoplatin (cis-amminedichlorido(2-methylpyridine)platinum(II) complex) with the model proteins hen egg white lysozyme (HEWL) and bovine pancreatic ribonuclease (RNase A) was investigated by electrospray ionisation mass spectrometry (ESI MS) and X-ray crystallography. The data were compared with those previously obtained for the adducts of these proteins with cisplatin, carboplatin and oxaliplatin under the same experimental conditions. ESI-MS data show binding of Pt to both proteins, with fragments retaining the 2-methylpyridine ligand and, possibly, a chloride ion. X-ray crystallography identifies different binding sites on the two proteins, highlighting a different behaviour of picoplatin in the absence or presence of dimethyl sulfoxide (DMSO). Metal-containing fragments bind to HEWL close to the side chains of His15, Asp18, Asp119 and both Lys1 and Glu7, whereas they bind to RNase A on the side chain of His12, Met29, His48, Asp53, Met79, His105 and His119. The data suggest that the presence of DMSO favours the loss of 2-methylpyridine and alters the ability of the Pt compound to bind to the two proteins. With both proteins, picoplatin appears to behave similarly to cisplatin and carboplatin when dissolved in DMSO, whereas it behaves more like oxaliplatin in the absence of the coordinating solvent. This study provides important insights into the pharmacological profile of picoplatin and supports the conclusion that coordinating solvents should not be used to evaluate the biological activities of Pt-based drugs.


Assuntos
Muramidase , Compostos Organoplatínicos , Ribonuclease Pancreático , Muramidase/química , Muramidase/metabolismo , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Animais , Cristalografia por Raios X , Compostos Organoplatínicos/química , Compostos Organoplatínicos/metabolismo , Bovinos , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Galinhas , Espectrometria de Massas por Ionização por Electrospray , Dimetil Sulfóxido/química , Carboplatina/química , Carboplatina/metabolismo
8.
Sci Adv ; 10(22): eadl0320, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820160

RESUMO

Translation of mRNAs is a fundamental process that occurs in all cell types of multicellular organisms. Conventionally, it has been considered a default step in gene expression, lacking specific regulation. However, recent studies have documented that certain mRNAs exhibit cell type-specific translation. Despite this, it remains unclear whether global translation is controlled in a cell type-specific manner. By using human cell lines and mouse models, we found that deletion of the ribosome-associated protein ribonuclease inhibitor 1 (RNH1) decreases global translation selectively in hematopoietic-origin cells but not in the non-hematopoietic-origin cells. RNH1-mediated cell type-specific translation is mechanistically linked to angiogenin-induced ribosomal biogenesis. Collectively, this study unravels the existence of cell type-specific global translation regulators and highlights the complex translation regulation in vertebrates.


Assuntos
Biossíntese de Proteínas , Ribonuclease Pancreático , Ribossomos , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/genética , Humanos , Animais , Camundongos , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Linhagem Celular , Especificidade de Órgãos , Proteínas de Transporte
9.
Biochem Biophys Res Commun ; 712-713: 149938, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640739

RESUMO

Polymerization of nucleotides under prebiotic conditions simulating the early Earth has been extensively studied. Several independent methods have been used to verify that RNA-like polymers can be produced by hot wet-dry cycling of nucleotides. However, it has not been shown that these RNA-like polymers are similar to biological RNA with 3'-5' phosphodiester bonds. In the results described here, RNA-like polymers were generated from 5'-monophosphate nucleosides AMP and UMP. To confirm that the polymers resemble biological RNA, ribonuclease A should catalyze hydrolysis of the 3'-5' phosphodiester bonds between pyrimidine nucleotides to each other or to purine nucleotides, but not purine-purine nucleotide bonds. Here we show AFM images of specific polymers produced by hot wet-dry cycling of AMP, UMP and AMP/UMP (1:1) solutions on mica surfaces, before and after exposure to ribonuclease A. AMP polymers were unaffected by ribonuclease A but UMP polymers disappeared. This indicates that a major fraction of the bonds in the UMP polymers is indeed 3'-5' phosphodiester bonds. Some of the polymers generated from the AMP/UMP mixture also showed clear signs of cleavage. Because ribonuclease A recognizes the ester bonds in the polymers, we show for the first time that these prebiotically produced polymers are in fact similar to biological RNA but are likely to be linked by a mixture of 3'-5' and 2'-5' phosphodiester bonds.


Assuntos
RNA , Ribonuclease Pancreático , RNA/química , RNA/metabolismo , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo , Microscopia de Força Atômica , Temperatura Alta , Polímeros/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Hidrólise , Polimerização
10.
Arch Biochem Biophys ; 756: 110000, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621442

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive degeneration of motor neurons, resulting in respiratory failure and mortality within 3-5 years. Mutations in the Angiogenin (ANG) cause loss of ribonucleolytic and nuclear translocation activities, contributing to ALS pathogenesis. This study focused on investigating two uncharacterized ANG mutations, T11S and R122H, newly identified in the Project Mine consortium. Using extensive computational analysis, including structural modeling and microsecond-timescale molecular dynamics (MD) simulations, we observed conformational changes in the catalytic residue His114 of ANG induced by T11S and R122H mutations. These alterations impaired ribonucleolytic activity, as inferred through molecular docking and binding free energy calculations. Gibbs free energy landscape and residue-residue interaction network analysis further supported our findings, revealing the energetic states and allosteric pathway from the mutated site to His114. Additionally, we assessed the binding of NCI-65828, an inhibitor of ribonucleolytic activity of ANG, and found reduced effectiveness in binding to T11S and R122H mutants when His114 assumed a non-native conformation. This highlights the crucial role of His114 and its association with ALS. Elucidating the relationship between physical structure and functional dynamics of frequently mutated ANG mutants is essential for understanding ALS pathogenesis and developing more effective therapeutic interventions.


Assuntos
Esclerose Lateral Amiotrófica , Simulação de Dinâmica Molecular , Ribonuclease Pancreático , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Mutação com Perda de Função , Simulação de Acoplamento Molecular , Mutação , Conformação Proteica , Termodinâmica
11.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 857-865, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38567413

RESUMO

Inflammatory bowel disease (IBD) is a debilitating condition that can lead to life-threatening complications. Macrophages are crucial in IBD management because they secrete various cytokines and regulate tissue repair. Macrophage-derived angiogenin (ANG) has been shown to be essential for limiting colonic inflammation, but its upstream regulatory pathway and role in macrophages remain unclear. Here we show that ANG expression is up-regulated in macrophages during colitis treatment or upon lipopolysaccharides (LPS) treatment. Mechanistically, LPS activates Toll-like receptor 4 (TLR4) to initiate NF-κB translocation from the cytoplasm to the nucleus, where it binds to the ANG promoter and enhances its transcriptional activity, leading to increased ANG expression. Interestingly, our data also reveal that the deletion of ANG in macrophages has no adverse effect on key macrophage functions, such as phagocytosis, chemotaxis, and cell survival. Our findings establish a "LPS-TLR4-NF-κB-ANG" regulatory axis in inflammatory disorders and confirm that ANG controls inflammation in a paracrine manner, highlighting the importance of ANG as a key mediator in the complex network of inflammatory processes.


Assuntos
Colite , Lipopolissacarídeos , Macrófagos , NF-kappa B , Ribonuclease Pancreático , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/genética , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Transdução de Sinais/efeitos dos fármacos , Colite/metabolismo , Colite/induzido quimicamente , Colite/genética , Camundongos , Camundongos Endogâmicos C57BL , Humanos
12.
Cell Rep ; 43(3): 113856, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416641

RESUMO

Polycomb repressive complex 2 (PRC2) modifies chromatin to maintain repression of genes specific for other cell lineages. In vitro, RNA inhibits PRC2 activity, but the effect of RNA on PRC2 in cells is less clear, with studies concluding that RNA either antagonizes or promotes PRC2 chromatin association. The addition of RNase A to chromatin immunoprecipitation reactions has been reported to reduce detection of PRC2 target sites, suggesting the existence of RNA bridges connecting PRC2 to chromatin. Here, we show that the apparent loss of PRC2 chromatin association after RNase A treatment is due to non-specific chromatin precipitation. RNA degradation precipitates chromatin out of solution, thereby masking enrichment of specific DNA sequences in chromatin immunoprecipitation reactions. Maintaining chromatin solubility by the addition of poly-L-glutamic acid rescues detection of PRC2 chromatin occupancy upon RNA degradation. These findings undermine support for the model that RNA bridges PRC2 and chromatin in cells.


Assuntos
Cromatina , Complexo Repressor Polycomb 2 , Complexo Repressor Polycomb 2/metabolismo , RNA/metabolismo , Artefatos , Ribonuclease Pancreático/metabolismo , Estabilidade de RNA
13.
Protein Sci ; 33(2): e4864, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38073126

RESUMO

Escherichia coli is one of the most widely utilized hosts for production of recombinant membrane proteins (MPs). Bacterial MP production, however, is usually accompanied by severe toxicity and low-level volumetric accumulation. In previous work, we had discovered that co-expression of RraA, an inhibitor of the RNA-degrading activity of RNase E, can efficiently suppress the cytotoxicity associated with the MP overexpression process and, simultaneously, enhance significantly the cellular accumulation of membrane-incorporated recombinant MPs in bacteria. Based on this, we constructed the specialized MP-producing E. coli strain SuptoxR, which can achieve dramatically enhanced volumetric yields of well-folded recombinant MPs. Ιn the present work, we have investigated whether domain deletions in the E. coli RNase E, which exhibit reduced ribonucleolytic activity, can result in suppressed MP-induced toxicity and enhanced recombinant MP production, in a manner resembling the conditions of rraA overexpression in E. coli SuptoxR. We have found that some strains encoding specific RNase E truncation variants can achieve significantly enhanced levels of recombinant MP production. Among these, we have found a single RNase E variant strain, which can efficiently suppress MP-induced toxicity and achieve greatly enhanced levels of recombinant MP production for proteins of both prokaryotic and eukaryotic origin. Based on its properties, and in analogy to the original SuptoxR strain, we have termed this strain SuptoxRNE22. E. coli SuptoxRNE22 can perform better than commercially available bacterial strains, which are frequently utilized for recombinant MP production. We anticipate that SuptoxRNE22 will become a widely utilized host for recombinant MP production in bacteria.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Ribonuclease Pancreático/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Protein J ; 43(2): 316-332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145445

RESUMO

Most plant and bacterial toxins are highly immunogenic with non-specific toxic effects. Human ribonucleases are thought to provide a promising basis for reducing the toxic agent's immunogenic properties, which are candidates for cancer therapy. In the cell, the ribonuclease inhibitor (RI) protein binds to the ribonuclease enzyme and forms a tight complex. This study aimed to engineer and provide a gene construct encoding an improved version of Human Pancreatic RNase 1 (HP-RNase 1) to reduce connection to RI and modulate the immunogenic effects of immunotoxins. To further characterize the interaction complex of HP-RNase 1 and RI, we established various in silico and in vitro approaches. These methods allowed us to specifically monitor interactions within native and engineered HP-RNase 1/RI complexes. In silico research involved molecular dynamics (MD) simulations of native and mutant HP-RNase 1 in their free form and when bound to RI. For HP-RNase 1 engineering, we designed five mutations (K8A/N72A/N89A/R92D/E112/A) based on literature studies, as this combination proved effective for the intended investigation. Then, the cDNA encoding HP-RNase 1 was generated by RT-PCR from blood and cloned into the pSYN2 expression vector. Consequently, wild-type and the engineered HP-RNase 1 were over-expressed in E. coli TG1 and purified using an IMAC column directed against a poly-his tag. The protein products were detected by SDS-PAGE and Western blot analysis. HP-RNase 1 catalytic activity, in the presence of various concentrations of RI, demonstrated that the mutated version of the protein is able to escape the ribonuclease inhibitor and target the RNA substrate 2.5 folds more than that of the wild type. From these data, we tend to suggest the engineered recombinant HP-RNase 1 potentially as a new immunotherapeutic agent for application in human cancer therapy.


Assuntos
Proteínas de Transporte , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Ribonuclease Pancreático , Humanos , Engenharia de Proteínas/métodos , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Neoplasias/terapia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Imunotoxinas/química , Imunotoxinas/genética , Imunotoxinas/farmacologia , Mutação
15.
Nat Commun ; 14(1): 8072, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057323

RESUMO

In the gastric pathogen Helicobacter pylori, post-transcriptional regulation relies strongly on the activity of the essential ribonuclease RNase J. Here, we elucidated the crystal and cryo-EM structures of RNase J and determined that it assembles into dimers and tetramers in vitro. We found that RNase J extracted from H. pylori is acetylated on multiple lysine residues. Alanine substitution of several of these residues impacts on H. pylori morphology, and thus on RNase J function in vivo. Mutations of Lysine 649 modulates RNase J oligomerization in vitro, which in turn influences ribonuclease activity in vitro. Our structural analyses of RNase J reveal loops that gate access to the active site and rationalizes how acetylation state of K649 can influence activity. We propose acetylation as a regulatory level controlling the activity of RNase J and its potential cooperation with other enzymes of RNA metabolism in H. pylori.


Assuntos
Helicobacter pylori , Ribonucleases , Ribonucleases/metabolismo , Helicobacter pylori/genética , Acetilação , Lisina/metabolismo , Endorribonucleases/metabolismo , Ribonuclease Pancreático/metabolismo
16.
Bull Exp Biol Med ; 175(5): 658-661, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37861896

RESUMO

We studied angiogenin production by human macrophages and evaluated the role of this factor in the macrophage-mediated regulation of fibroblasts. All macrophage subtypes, and especially the efferocytosis-polarized macrophages, M2(LS), actively produced angiogenin. Exogenous recombinant angiogenin dose-dependently enhanced the proliferation and differentiation of dermal fibroblasts. The addition of the angiogenin inhibitor to fibroblasts cultures suppressed the stimulating effect of exogenous angiogenin or M2(LS) conditioned media. These findings indicate the involvement of angiogenin in the macrophage-mediated paracrine regulation of skin fibroblasts.


Assuntos
Fibroblastos , Macrófagos , Ribonuclease Pancreático , Humanos , Meios de Cultivo Condicionados , Fibroblastos/citologia , Fibroblastos/metabolismo , Macrófagos/metabolismo , Ribonuclease Pancreático/metabolismo , Pele/citologia , Pele/metabolismo
17.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37432743

RESUMO

The U1RNP complex, Ro/SSA, and La/SSB are major RNA-containing autoantigens. Immune complexes (ICs) composed of RNA-containing autoantigens and autoantibodies are suspected to be involved in the pathogenesis of some systemic autoimmune diseases. Therefore, RNase treatment, which degrades RNA in ICs, has been tested in clinical trials as a potential therapeutic agent. However, no studies to our knowledge have specifically evaluated the effect of RNase treatment on the Fcγ receptor-stimulating (FcγR-stimulating) activity of RNA-containing ICs. In this study, using a reporter system that specifically detects FcγR-stimulating capacity, we investigated the effect of RNase treatment on the FcγR-stimulating activity of RNA-containing ICs composed of autoantigens and autoantibodies from patients with systemic autoimmune diseases such as systemic lupus erythematosus. We found that RNase enhanced the FcγR-stimulating activity of Ro/SSA- and La/SSB-containing ICs, but attenuated that of the U1RNP complex-containing ICs. RNase decreased autoantibody binding to the U1RNP complex, but increased autoantibody binding to Ro/SSA and La/SSB. Our results suggest that RNase enhances FcγR activation by promoting the formation of ICs containing Ro/SSA or La/SSB. Our study provides insights into the pathophysiology of autoimmune diseases involving anti-Ro/SSA and anti-La/SSB autoantibodies, and into the therapeutic application of RNase treatment for systemic autoimmune diseases.


Assuntos
Doenças Autoimunes , Receptores de IgG , Humanos , Receptores de IgG/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , RNA , Ribonucleases/metabolismo , Ribonucleoproteínas/metabolismo , Doenças Autoimunes/tratamento farmacológico , Autoanticorpos , Autoantígenos , Endorribonucleases/metabolismo , Ribonuclease Pancreático/metabolismo
18.
Front Immunol ; 14: 1209588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346037

RESUMO

In cancer, activation of the IRE1/XBP1s axis of the unfolded protein response (UPR) promotes immunosuppression and tumor growth, by acting in cancer cells and tumor infiltrating immune cells. However, the role of IRE1/XBP1s in dendritic cells (DCs) in tumors, particularly in conventional type 1 DCs (cDC1s) which are cellular targets in immunotherapy, has not been fully elucidated. Here, we studied the role of IRE1/XBP1s in subcutaneous B16/B78 melanoma and MC38 tumors by generating loss-of-function models of IRE1 and/or XBP1s in DCs or in cDC1s. Data show that concomitant deletion of the RNase domain of IRE1 and XBP1s in DCs and cDC1s does not influence the kinetics of B16/B78 and MC38 tumor growth or the effector profile of tumor infiltrating T cells. A modest effect is observed in mice bearing single deletion of XBP1s in DCs, which showed slight acceleration of melanoma tumor growth and dysfunctional T cell responses, however, this effect was not recapitulated in animals lacking XBP1 only in cDC1s. Thus, evidence presented here argues against a general pro-tumorigenic role of the IRE1/XBP1s pathway in tumor associated DC subsets.


Assuntos
Melanoma Experimental , Ribonucleases , Camundongos , Animais , Ribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Imunidade Adaptativa , Ribonuclease Pancreático/metabolismo , Melanoma Experimental/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Células Dendríticas
19.
RNA ; 29(10): 1481-1499, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37369528

RESUMO

Noncoding 6S RNAs regulate transcription by binding to the active site of bacterial RNA polymerase holoenzymes. Processing and decay of 6S-1 and 6S-2 RNA were investigated in Bacillus subtilis by northern blot and RNA-seq analyses using different RNase knockout strains, as well as by in vitro processing assays. For both 6S RNA paralogs, we identified a key-but mechanistically different-role of RNase J1. RNase J1 catalyzes 5'-end maturation of 6S-1 RNA, yet relatively inefficient and possibly via the enzyme's "sliding endonuclease" activity. 5'-end maturation has no detectable effect on 6S-1 RNA function, but rather regulates its decay: The generated 5'-monophosphate on matured 6S-1 RNA propels endonucleolytic cleavage in its apical loop region. The major 6S-2 RNA degradation pathway is initiated by endonucleolytic cleavage in the 5'-central bubble to trigger 5'-to-3'-exoribonucleolytic degradation of the downstream fragment by RNase J1. The four 3'-exonucleases of B. subtilis-RNase R, PNPase, YhaM, and particularly RNase PH-are involved in 3'-end trimming of both 6S RNAs, degradation of 6S-1 RNA fragments, and decay of abortive transcripts (so-called product RNAs, ∼14 nt in length) synthesized on 6S-1 RNA during outgrowth from stationary phase. In the case of the growth-retarded RNase Y deletion strain, we were unable to infer a specific role of RNase Y in 6S RNA decay. Yet, a participation of RNase Y in 6S RNA decay still remains possible, as evidence for such a function may have been obscured by overlapping substrate specificities of RNase Y, RNase J1, and RNase J2.


Assuntos
Bacillus subtilis , RNA Bacteriano , RNA Bacteriano/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA não Traduzido/metabolismo , Ribonuclease Pancreático/metabolismo , Estabilidade de RNA/genética
20.
Biochem Biophys Res Commun ; 666: 36-44, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37172450

RESUMO

DIS3 is an RNA exosome associated ribonuclease that degrades a wide range of transcripts that can be essential for cell survival and development. The proximal region of the mouse epididymis (initial segment and caput) plays a pivotal role in sperm transport and maturation required for male fertility. However, whether DIS3 ribonuclease mediates RNA decay in proximal epididymides remains unclear. Herein, we established a conditional knockout mouse line by crossing a floxed Dis3 allele with Lcn9-cre mice in which the recombinase is expressed in the principal cells of initial segment as early as post-natal day 17. Morphological and histological analyses, immunofluorescence, computer-aided sperm analysis and fertility were used for functional analyses. We document that DIS3 deficiency in the initial segment had no effect on male fertility. Dis3 cKO males had normal spermatogenesis and initial segment development. In cauda epididymides of Dis3 cKO mice, sperm abundance, morphology, motility, and the frequency of acrosome exocytosis were comparable to controls. Collectively, our genetic model demonstrates that loss of DIS3 in the initial segment of the epididymis is not essential for sperm maturation, motility, or male fertility.


Assuntos
Epididimo , Exossomos , Masculino , Animais , Camundongos , Epididimo/metabolismo , Maturação do Esperma , Ribonuclease Pancreático/metabolismo , Ribonucleases/metabolismo , Sêmen , Espermatozoides/metabolismo , Fertilidade/genética , Camundongos Knockout , Motilidade dos Espermatozoides/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...