Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J BUON ; 26(5): 2084-2089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34761620

RESUMO

PURPOSE: To analyze the influence of DDX46 on the proliferative and migratory potentials of glioblastoma (GBM). METHODS: Differential levels of DDX46 in GBM cases and controls were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. By intervening DDX46 in U87 and U251 cells, proliferative and migratory changes were determined by colony formation assay, 5-Ethynyl-2'- deoxyuridine (EdU) assay and Transwell assay, respectively. Protein levels of p-p38, p38, cyclin D1 and MMP7 in GBM cells intervened by DDX46 or the inhibitor of p38 MAPK were detected. RESULTS: DDX46 was upregulated in GBM cases. Knockdown of DDX46 attenuated the proliferative capacity of GBM cells, and its overexpression enhanced the proliferative rate. The migratory capacity of GBM was not affected by DDX46. Overexpression of DDX46 upregulated p-p38 and cyclin D1 in GBM cells. The regulatory effect of DDX46 on GBM proliferation could be partially reversed by the treatment of doramapimod. CONCLUSIONS: DDX46 is upregulated in GBM, which strengthens the proliferative capacity of GBM by activating the MAPK-p38 signaling.


Assuntos
Movimento Celular , Proliferação de Células , RNA Helicases DEAD-box/fisiologia , Glioblastoma/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Humanos , Fatores de Tempo , Células Tumorais Cultivadas
2.
J Exp Bot ; 71(3): 751-758, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31605606

RESUMO

Flowering transition is regulated by complex genetic networks in response to endogenous and environmental signals. Pre-mRNA splicing is an essential step for the post-transcriptional regulation of gene expression. Alternative splicing of key flowering genes has been investigated in detail over the past decade. However, few splicing factors have been identified as being involved in flowering transition. Human heterodimeric splicing factor U2 snRNP auxiliary factor (U2AF) consists of two subunits, U2AF35 and U2AF65, and functions in 3' splice site recognition in mRNA splicing. Recent studies reveal that Arabidopsis U2AF65a/b and U2AF35a/b play important roles in the splicing of key flowering genes. We summarize recent advances in research on splicing-regulated flowering transition by focusing on the role of Arabidopsis U2AF in the splicing of key flowering-related genes at ambient temperature and in the abscisic acid signaling pathways.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis/metabolismo , Flores/fisiologia , Proteínas de Domínio MADS/metabolismo , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis
3.
Br J Haematol ; 171(4): 478-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26255870

RESUMO

Refractory anaemia with ring sideroblasts (RARS) is distinguished by hyperplastic inefficient erythropoiesis, aberrant mitochondrial ferritin accumulation and anaemia. Heterozygous mutations in the spliceosome gene SF3B1 are found in a majority of RARS cases. To explore the link between SF3B1 mutations and anaemia, we studied mutated RARS CD34(+) marrow cells with regard to transcriptome sequencing, splice patterns and mutational allele burden during erythroid differentiation. Transcriptome profiling during early erythroid differentiation revealed a marked up-regulation of genes involved in haemoglobin synthesis and in the oxidative phosphorylation process, and down-regulation of mitochondrial ABC transporters compared to normal bone marrow. Moreover, mis-splicing of genes involved in transcription regulation, particularly haemoglobin synthesis, was confirmed, indicating a compromised haemoglobinization during RARS erythropoiesis. In order to define the phase during which erythroid maturation of SF3B1 mutated cells is most affected, we assessed allele burden during erythroid differentiation in vitro and in vivo and found that SF3B1 mutated erythroblasts showed stable expansion until late erythroblast stage but that terminal maturation to reticulocytes was significantly reduced. In conclusion, SF3B1 mutated RARS progenitors display impaired splicing with potential downstream consequences for genes of key importance for haemoglobin synthesis and terminal erythroid differentiation.


Assuntos
Anemia Refratária/genética , Anemia Sideroblástica/genética , Eritropoese/genética , Hemoglobinas/biossíntese , Fosfoproteínas/genética , Splicing de RNA/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Idoso , Idoso de 80 Anos ou mais , Anemia Refratária/sangue , Anemia Sideroblástica/sangue , Transporte Biológico/genética , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Heterogeneidade Genética , Humanos , Ferro/metabolismo , Fosfoproteínas/fisiologia , Isoformas de Proteínas/genética , Fatores de Processamento de RNA , RNA Mensageiro/genética , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Análise de Sequência de RNA , Transdução de Sinais/genética
4.
FEBS J ; 281(23): 5194-207, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25238490

RESUMO

Alternative splicing of pre-mRNA, catalyzed by small nuclear ribonucleoproteins (snRNPs), plays an important role in proteome complexity and the modulation of cellular functions. snRNP polypeptide N (SmN), is tissue-specifically expressed, where it replaces snRNP polypeptide B (SmB)/B' in the Sm core assembly of snRNPs. Recent studies have demonstrated that perturbation of snRNPs leads to alternative splicing, but whether SmN modulates functions of the splicing machinery remains unclear. In this study, we found that ectopic expression of SmN increased utilization of the proximal 5' splice site on an adenovirus early gene 1A reporter. To evaluate the molecular mechanisms underlying SmN-dependent alternative splicing, we generated a HeLa cell line with an inducible expression system for SmN. Upon SmN induction, SmB/B' expression decreased dramatically, despite only small changes in the level and splicing pattern of SNRPB mRNA. In addition, SmN was incorporated into the U2 snRNP but not into the U1 snRNP after induction. Sedimentation analysis revealed a decrease in the level of mature U2 snRNP. This result suggests that SmN incorporation into the Sm core may impede processing, decreasing the level of functional U2 snRNP. We also found that the inclusion frequencies of alternatively spliced exons in the bridging integrator 1 and exocyst complex component 7 (EXOC7) genes were modulated by SmN expression. An enhanced GFP-EXOC7 reporter was used to confirm that SmN increases the inclusion frequency of EXOC7 exon 7. Taken together, our findings indicate that SmN expression reduces the level of mature U2 snRNP, leading to alternative splicing.


Assuntos
Processamento Alternativo , Proteínas Centrais de snRNP/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Cultivadas , Doxiciclina/farmacologia , Imunofluorescência , Células HeLa , Humanos , Proteínas Nucleares/genética , Ribonucleoproteína Nuclear Pequena U2/análise , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas de Transporte Vesicular/genética
5.
Mech Ageing Dev ; 135: 50-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24463145

RESUMO

Ageing in man is associated with changes to the splicing factor pool. A proportion of splicing factors are regulated during ageing by mechanisms involving the Ataxia Telangiectasia Mutated (ATM) gene, but the factors that determine the remaining proportion have yet to be identified. DNA methylation is known to be an important regulatory mechanism of gene expression. We assessed age-associated methylation and expression levels for 27 splicing factor genes, in peripheral blood samples from the InCHIANTI study. Examination of splicing patterns at specific loci was examined in a second cohort, the Exeter 10000 study. 27/502 methylation probes in 17 different genes were associated with age. Most changes were not associated with transcript expression levels or splicing patterns, but hypomethylation of the SF3B1 promoter region was found to mediate 53% of the relationship between age and transcript expression at this locus (p=0.02). DNA methylation does not appear to play a major role in regulation of the splicing factors, but changes in SF3B1 expression may be attributable to promoter hypomethylation at this locus. SF3B1 encodes a critical component of the U2 snRNP; altered expression of this gene may therefore contribute to the loss of regulated mRNA splicing that occurs with age.


Assuntos
Envelhecimento , Metilação de DNA , Regulação da Expressão Gênica , Fosfoproteínas/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , DNA , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/fisiologia , Regiões Promotoras Genéticas , Splicing de RNA , Fatores de Processamento de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Adulto Jovem
6.
PLoS One ; 7(10): e47621, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23118884

RESUMO

The yeast Saccharomyces cerevisiae normally selects bud sites (and hence axes of cell polarization) in one of two distinct patterns, the axial pattern of haploid cells and the bipolar pattern of diploid cells. Although many of the proteins involved in bud-site selection are known, it is likely that others remain to be identified. Confirming a previous report (Ni and Snyder, 2001, Mol. Biol. Cell 12, 2147-2170), we found that diploids homozygous for deletions of IST3/SNU17 or BUD13 do not show normal bipolar budding. However, these abnormalities do not reflect defects in the apparatus of bipolar budding. Instead, the absence of Ist3 or Bud13 results in a specific defect in the splicing of the MATa1 pre-mRNA, which encodes a repressor that normally blocks expression of haploid-specific genes in diploid cells. When Mata1 protein is lacking, Axl1, a haploid-specific protein critical for the choice between axial and bipolar budding, is expressed ectopically in diploid cells and disrupts bipolar budding. The involvement of Ist3 and Bud13 in pre-mRNA splicing is by now well known, but the degree of specificity shown here for MATa1 pre-mRNA, which has no obvious basis in the pre-mRNA structure, is rather surprising in view of current models for the functions of these proteins. Moreover, we found that deletion of PML1, whose product is thought to function together with Ist3 and Bud13 in a three-protein retention-and-splicing (RES) complex, had no detectable effect on the splicing in vivo of either MATa1 or four other pre-mRNAs.


Assuntos
Proteínas de Transporte , Proteínas de Homeodomínio , Splicing de RNA/genética , Proteínas Repressoras , Ribonucleoproteína Nuclear Pequena U2 , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Diploide , Haploidia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
8.
Blood ; 120(16): 3173-86, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22826563

RESUMO

Whole exome/genome sequencing has been fundamental in the identification of somatic mutations in the spliceosome machinery in myelodysplastic syndromes (MDSs) and other hematologic disorders. SF3B1, splicing factor 3b subunit 1 is mutated in 60%-80% of refractory anemia with ring sideroblasts (RARS) and RARS associated with thrombocytosis (RARS-T), 2 distinct subtypes of MDS and MDS/myeloproliferative neoplasms (MDSs/MPNs). An idiosyncratic feature of RARS/RARS-T is the presence of abnormal sideroblasts characterized by iron overload in the mitochondria, called RS. Based on the high frequency of mutations of SF3B1 in RARS/RARS-T, we investigated the consequences of SF3B1 alterations. Ultrastructurally, SF3B1 mutants showed altered iron distribution characterized by coarse iron deposits compared with wild-type RARS patients by transmission electron microscopy. SF3B1 knockdown experiments in K562 cells resulted in down-regulation of U2-type intron-splicing by RT-PCR. RNA-sequencing analysis of SF3B1 mutants showed differentially used genes relevant in MDS pathogenesis, such as ASXL1, CBL, EZH, and RUNX families. A SF3B pharmacologic inhibitor, meayamycin, induced the formation of RS in healthy BM cells. Further, BM aspirates of Sf3b1 heterozygous knockout mice showed RS by Prussian blue. In conclusion, we report the first experimental evidence of the association between SF3B1 and RS phenotype. Our data suggest that SF3B1 haploinsufficiency leads to RS formation.


Assuntos
Anemia Sideroblástica/patologia , Biomarcadores Tumorais/genética , Haploinsuficiência , Mutação/genética , Síndromes Mielodisplásicas/patologia , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Adolescente , Adulto , Idoso , Anemia Sideroblástica/etiologia , Anemia Sideroblástica/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Humanos , Células K562 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fosfoproteínas/genética , Fatores de Processamento de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteína Nuclear Pequena U2/genética , Adulto Jovem
9.
Dev Biol ; 354(2): 232-41, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21504747

RESUMO

In Caenorhabditis elegans, germ cells develop as spermatids in the larva and as oocytes in the adult. Such fundamentally different gametes are produced through a fine-tuned balance between feminizing and masculinizing genes. For example, the switch to oogenesis requires repression of the fem-3 mRNA through the mog genes. Here we report on the cloning and characterization of the sex determination gene mog-2. MOG-2 is the worm homolog of spliceosomal protein U2A'. We found that MOG-2 is expressed in most nuclei of somatic and germ cells. In addition to its role in sex determination, mog-2 is required for meiosis. Moreover, MOG-2 binds to U2B″/RNP-3 in the absence of RNA. We also show that MOG-2 associates with the U2 snRNA in the absence of RNP-3. Therefore, we propose that MOG-2 is a bona fide component of the U2 snRNP. Albeit not being required for general pre-mRNA splicing, MOG-2 increases the splicing efficiency to a cryptic splice site that is located at the 5' end of the exon.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Meiose , Sítios de Splice de RNA , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Processos de Determinação Sexual , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Células Germinativas/fisiologia , Masculino , Dados de Sequência Molecular , Ligação Proteica , Ribonucleoproteína Nuclear Pequena U2/genética
10.
PLoS One ; 6(1): e16077, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21283673

RESUMO

There is mounting evidence to suggest that the synthesis of pre-mRNA transcripts and their subsequent splicing are coordinated events. Previous studies have implicated the mammalian spliceosomal U2 snRNP as having a novel role in stimulating transcriptional elongation in vitro through interactions with the elongation factors P-TEFb and Tat-SF1; however, the mechanism remains unknown [1]. These factors are conserved in Saccharomyces cerevisiae, a fact that suggests that a similar interaction may occur in yeast to stimulate transcriptional elongation in vivo. To address this possibility we have looked for evidence of a role for the yeast Tat-SF1 homolog, Cus2, and the U2 snRNA in regulating transcription. Specifically, we have performed a genetic analysis to look for functional interactions between Cus2 or U2 snRNA and the P-TEFb yeast homologs, the Bur1/2 and Ctk1/2/3 complexes. In addition, we have analyzed Cus2-deleted or -overexpressing cells and U2 snRNA mutant cells to determine if they show transcription-related phenotypes similar to those displayed by the P-TEFb homolog mutants. In no case have we been able to observe phenotypes consistent with a role for either spliceosomal factor in transcription elongation. Furthermore, we did not find evidence for physical interactions between the yeast U2 snRNP factors and the P-TEFb homologs. These results suggest that in vivo, S. cerevisiae do not exhibit functional or physical interactions similar to those exhibited by their mammalian counterparts in vitro. The significance of the difference between our in vivo findings and the previously published in vitro results remains unclear; however, we discuss the potential importance of other factors, including viral proteins, in mediating the mammalian interactions.


Assuntos
Regulação Fúngica da Expressão Gênica , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos , Transcrição Gênica , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Ligação Proteica , Proteínas Quinases/genética , Proteínas de Ligação a RNA/genética
11.
Bull Exp Biol Med ; 147(6): 733-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19902070

RESUMO

Intensive exercise triggers the cascade processes of body adaptation, including modulation of splisosome functioning, and can lead to modification of its activity and choice of alternative exons. We studied the effect of exercise of the maximum aerobic power on activation of transcription of genes involved in the splicing process. Short-term exercise resulted in a significant increase of mRNA expression of genes encoding proteins involved in the formation of precatalytic splisosome: DDX17, DDX46, HNRNPR, PRPF4B, and SRPK2. The role of the detected regulators in initiation of splisosome assembly under conditions of maximally intensive exercise is discussed.


Assuntos
Exercício Físico/fisiologia , Regulação da Expressão Gênica , Splicing de RNA/genética , Adolescente , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/fisiologia , Perfilação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/fisiologia , Adulto Jovem
12.
FEMS Yeast Res ; 8(2): 276-86, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17995956

RESUMO

Using the Saccharomyces cerevisiae MATa/MATalpha ORF deletion collection, homozygous deletion strains were identified that undergo mating with MATa or MATalpha haploids. Seven homozygous deletions were identified that confer enhanced mating. Three of these, lacking CTF8, CTF18, and DCC1, mate at a low frequency with either MATa or MATalpha haploids. The products of these genes form a complex involved in sister chromatid cohesion. Each of these strains also exhibits increased chromosome loss rates, and mating likely occurs due to loss of one copy of chromosome III, which bears the MAT locus. Three other homozygous diploid deletion strains, ylr193cDelta/ylr193cDelta, yor305wDelta/yor305wDelta, and ypr170cDelta/ypr170cDelta, mate at very low frequencies with haploids of either or both mating types. However, an ist3Delta/ist3Delta strain mates only with MATa haploids. It is shown that IST3, previously linked to splicing, is required for efficient processing of the MATa1 message, particularly the first intron. As a result, the ist3Delta/ist3Delta strain expresses unbalanced ratios of Matalpha to Mata proteins and therefore mates with MATa haploids. Accordingly, mating in this diploid can be repressed by introduction of a MATa1 cDNA. In summary, this study underscores and elaborates upon predicted pathways by which mutations restore mating function to yeast diploids and identifies new mutants warranting further study.


Assuntos
Genes Fúngicos Tipo Acasalamento , Saccharomyces cerevisiae/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Diploide , Deleção de Genes , Genes Fúngicos Tipo Acasalamento/genética , Genes Fúngicos Tipo Acasalamento/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Troca de Cromátide Irmã/genética , Troca de Cromátide Irmã/fisiologia
13.
PLoS Genet ; 2(12): e178, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17154718

RESUMO

The sequence of the SPF45 protein is significantly conserved, yet functional studies have identified it as a splicing factor in animal cells and as a DNA-repair protein in plants. Using a combined genetic and biochemical approach to investigate this apparent functional discrepancy, we unify and validate both of these studies by demonstrating that the Drosophila melanogaster protein is bifunctional, with independent functions in DNA repair and splicing. We find that SPF45 associates with the U2 snRNP and that mutations that remove the C-terminal end of the protein disrupt this interaction. Although animals carrying this mutation are viable, they are nevertheless compromised in their ability to regulate Sex-lethal splicing, demonstrating that Sex-lethal is an important physiological target of SPF45. Furthermore, these mutant animals exhibit phenotypes diagnostic of difficulties in recovering from exogenously induced DNA damage. The conclusion that SPF45 functions in the DNA-repair pathway is strengthened by finding both genetic and physical interactions between SPF45 and RAD201, a previously uncharacterized member of the RecA/Rad51 protein family. Together with our finding that the fly SPF45 protein increases the survival rate of mutagen-treated bacteria lacking the RecG helicase, these studies provide the tantalizing suggestion that SPF45 has an ancient and evolutionarily conserved role in DNA repair.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Sequência de Aminoácidos , Animais , DNA/genética , DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Éxons , Heterocromatina/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo
14.
Mol Biol Cell ; 16(3): 1366-77, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15647371

RESUMO

The three subunits of human splicing factor SF3a are essential for the formation of the functional 17S U2 snRNP and prespliceosome assembly in vitro. RNAi-mediated depletion indicates that each subunit is essential for viability of human cells. Knockdown of single subunits results in a general block in splicing strongly suggesting that SF3a is a constitutive splicing factor in vivo. In contrast, splicing of several endogenous and reporter pre-mRNAs is not affected after knockdown of SF1, which functions at the onset of spliceosome assembly in vitro and is essential for cell viability. Thus, SF1 may only be required for the splicing of a subset of pre-mRNAs. We also observe a reorganization of U2 snRNP components in SF3a-depleted cells, where U2 snRNA and U2-B'' are significantly reduced in nuclear speckles and the nucleoplasm, but still present in Cajal bodies. Together with the observation that the 17S U2 snRNP cannot be detected in extracts from SF3a-depleted cells, our results provide further evidence for a function of Cajal bodies in U2 snRNP biogenesis.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Splicing de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Fatores de Transcrição/fisiologia , Northern Blotting , Western Blotting , Núcleo Celular/metabolismo , Sobrevivência Celular , Corpos Enovelados/metabolismo , Proteínas de Ligação a DNA/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Interferência de RNA , Fatores de Processamento de RNA , RNA Interferente Pequeno/metabolismo , RNA Nuclear Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/química , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transfecção
15.
Biochem J ; 382(Pt 1): 223-30, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15142036

RESUMO

SF3a (splicing factor 3a) complex is an essential component of U2 snRNPs (small nuclear ribonucleoprotein particles), which are involved in pre-mRNA splicing. This complex consists of three subunits: SF3a60, SF3a66 and SF3a120. Here, we report a possible non-canonical function of a well-characterized RNA-splicing factor, SF3a66. Ectopic expression experiments using each SF3a subunit in N1E 115 neuroblastoma cells reveals that SF3a66 alone can induce neurite extension, suggesting that SF3a66 functions in the regulation of cell morphology. A screen for proteins that bind to SF3a66 clarifies that SF3a66 binds to beta-tubulin, and also to microtubules, with high affinity, indicating that SF3a66 is a novel MAP (microtubule-associated protein). Electron microscopy experiments show that SF3a66 can bundle microtubules, and that bundling of microtubules is due to cross-bridging of microtubules by high-molecular-mass complexes of oligomerized SF3a66. These results indicate that SF3a66 is likely to be a novel MAP, and can function as a microtubule-bundling protein independently of RNA splicing.


Assuntos
Proteínas Associadas aos Microtúbulos/fisiologia , Precursores de RNA/genética , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Camundongos , Microtúbulos/metabolismo , Neuritos/metabolismo , Neuroblastoma/química , Neuroblastoma/patologia , Ligação Proteica/fisiologia , Subunidades Proteicas/fisiologia , Splicing de RNA/fisiologia , Ribonucleoproteínas Nucleares Pequenas , Tubulina (Proteína)/metabolismo
16.
Nucleic Acids Res ; 32(3): 1242-50, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14973223

RESUMO

Mer1p activates the splicing of at least three pre-mRNAs (AMA1, MER2, MER3) during meiosis in the yeast Saccharomyces cerevisiae. We demonstrate that enhancer recognition by Mer1p is separable from Mer1p splicing activation. The C-terminal KH-type RNA-binding domain of Mer1p recognizes introns that contain the Mer1p splicing enhancer, while the N-terminal domain interacts with the spliceosome and activates splicing. Prior studies have implicated the U1 snRNP and recognition of the 5' splice site as key elements in Mer1p-activated splicing. We provide new evidence that Mer1p may also function at later steps of spliceosome assembly. First, Mer1p can activate splicing of introns that have mutated branch point sequences. Secondly, Mer1p fails to activate splicing in the absence of the non-essential U2 snRNP protein Snu17p. Thirdly, Mer1p interacts with the branch point binding proteins Mud2p and Bbp1p and the U2 snRNP protein Prp11p by two-hybrid assays. We conclude that Mer1p is a modular splicing regulator that can activate splicing at several early steps of spliceosome assembly and depends on the activities of both U1 and U2 snRNP proteins to activate splicing.


Assuntos
Splicing de RNA , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Sequência de Bases , Íntrons , Mutação , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Spliceossomos/metabolismo
17.
EMBO J ; 23(2): 376-85, 2004 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-14713954

RESUMO

Communication between U1 and U2 snRNPs is critical during pre-spliceosome assembly; yet, direct connections have not been observed. To investigate this assembly step, we focused on Prp5, an RNA-dependent ATPase of the DExD/H family. We identified homologs of Saccharomyces cerevisiae Prp5 in humans (hPrp5) and Schizosaccharomyces pombe (SpPrp5), and investigated their interactions and function. Depletion and reconstitution of SpPrp5 from extracts demonstrate that ATP binding and hydrolysis by Prp5 are required for pre-spliceosome complex A formation. hPrp5 and SpPrp5 are each physically associated with both U1 and U2 snRNPs; Prp5 contains distinct U1- and U2-interacting domains that are required for pre-spliceosome assembly; and, we observe a Prp5-associated U1/U2 complex in S. pombe. Together, these data are consistent with Prp5 being a bridge between U1 and U2 snRNPs at the time of pre-spliceosome formation.


Assuntos
Adenosina Trifosfatases/fisiologia , Íntrons , RNA Helicases/fisiologia , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Spliceossomos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box , Éxons , Modelos Genéticos , Estrutura Terciária de Proteína , RNA Helicases/química , Precursores de RNA/metabolismo , RNA Mensageiro/química , Ribonucleoproteína Nuclear Pequena U1/fisiologia , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Homologia de Sequência de Aminoácidos
18.
Yeast ; 19(3): 193-202, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11816027

RESUMO

Cell tolerance to salt stress depends on many physiological functions, including the best characterized of osmotic adjustment, ion transport and sodium-sensitive sulphate metabolism. From a screening designed to identify novel determinants of salt tolerance we have isolated the YNL091w gene, probably an Ascomycete-specific gene encoding a protein of unknown function. This gene negatively affects salt tolerance and therefore has been designated NST1. The salt tolerance mechanism of nst1 mutants is novel because it is not related to osmoregulation, altered cation accumulation or sulphate metabolism. Genome-wide two-hybrid analysis has suggested that Nst1p interacts with the splicing factor Msl1p and, accordingly, the impact of NST1 on salt tolerance is dependent on a functional MSL1 gene. Loss of MSL1 and NST1 function has pleiotropic phenotypes including increased sensitivity to divalent cations (manganese and zinc) and to caffeine (a cell wall-weakening agent). On the other hand, msl1 mutants but not nst1 mutants are sensitive to thiabendazole (a microtubule-destabilizing agent) and to osmotic stress.


Assuntos
Ribonucleoproteína Nuclear Pequena U2/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Cloreto de Sódio/farmacologia , Sequência de Aminoácidos , Autoantígenos , Northern Blotting , Cafeína/farmacologia , Lítio/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Inibidores de Fosfodiesterase/farmacologia , Potássio/análise , RNA Fúngico/química , RNA Fúngico/isolamento & purificação , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteínas Nucleares Pequenas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/metabolismo , Tiabendazol/farmacologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas Centrais de snRNP
19.
Nucleic Acids Res ; 29(19): 4006-13, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11574683

RESUMO

U12-dependent introns are found in small numbers in most eukaryotic genomes, but their scarcity makes accurate characterisation of their properties challenging. A computational search for U12-dependent introns was performed using the draft version of the human genome sequence. Human expressed sequences confirmed 404 U12-dependent introns within the human genome, a 6-fold increase over the total number of non-redundant U12-dependent introns previously identified in all genomes. Although most of these introns had AT-AC or GT-AG terminal dinucleotides, small numbers of introns with a surprising diversity of termini were found, suggesting that many of the non-canonical introns found in the human genome may be variants of U12-dependent introns and, thus, spliced by the minor spliceosome. Comparisons with U2-dependent introns revealed that the U12-dependent intron set lacks the 'short intron' peak characteristic of U2-dependent introns. Analysis of this U12-dependent intron set confirmed reports of a biased distribution of U12-dependent introns in the genome and allowed the identification of several alternative splicing events as well as a surprising number of apparent splicing errors. This new larger reference set of U12-dependent introns will serve as a resource for future studies of both the properties and evolution of the U12 spliceosome.


Assuntos
Biologia Computacional/métodos , Genoma Humano , Íntrons , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Processamento Alternativo , Humanos , Sítios de Splice de RNA , Ribonucleoproteína Nuclear Pequena U2/fisiologia
20.
Mol Cell Biol ; 21(9): 3037-46, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11287609

RESUMO

We have isolated and microsequenced Snu17p, a novel yeast protein with a predicted molecular mass of 17 kDa that contains an RNA recognition motif. We demonstrate that Snu17p binds specifically to the U2 small nuclear ribonucleoprotein (snRNP) and that it is part of the spliceosome, since the pre-mRNA and the lariat-exon 2 are specifically coprecipitated with Snu17p. Although the SNU17 gene is not essential, its knockout leads to a slow-growth phenotype and to a pre-mRNA splicing defect in vivo. In addition, the first step of splicing is dramatically decreased in extracts prepared from the snu17 deletion (snu17Delta) mutant. This defect is efficiently reversed by the addition of recombinant Snu17p. To investigate the step of spliceosome assembly at which Snu17p acts, we have used nondenaturing gel electrophoresis. In Snu17p-deficient extracts, the spliceosome runs as a single slowly migrating complex. In wild-type extracts, usually at least two distinct complexes are observed: the prespliceosome, or B complex, containing the U2 but not the U1 snRNP, and the catalytically active spliceosome, or A complex, containing the U2, U6, and U5 snRNPs. Northern blot analysis and affinity purification of the snu17Delta spliceosome showed that it contains the U1, U2, U6, U5, and U4 snRNPs. The unexpected stabilization of the U1 snRNP and the lack of dissociation of the U4 snRNP suggest that loss of Snu17p inhibits the progression of spliceosome assembly prior to U1 snRNP release and after [U4/U6.U5] tri-snRNP addition.


Assuntos
Proteínas Fúngicas/metabolismo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Proteínas de Saccharomyces cerevisiae , Spliceossomos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , DNA Fúngico , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Humanos , Dados de Sequência Molecular , Mutagênese , Fenótipo , Precursores de RNA , RNA Fúngico/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Spliceossomos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA