Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 7, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163859

RESUMO

BACKGROUND: Chemoresistance presents a significant obstacle in the treatment of colorectal cancer (CRC), yet the molecular basis underlying CRC chemoresistance remains poorly understood, impeding the development of new therapeutic interventions. Elongation factor Tu GTP binding domain containing 2 (EFTUD2) has emerged as a potential oncogenic factor implicated in various cancer types, where it fosters tumor growth and survival. However, its specific role in modulating the sensitivity of CRC cells to chemotherapy is still unclear. METHODS: Public dataset analysis and in-house sample validation were conducted to assess the expression of EFTUD2 in 5-fluorouracil (5-FU) chemotherapy-resistant CRC cells and the potential of EFTUD2 as a prognostic indicator for CRC. Experiments both in vitro, including MTT assay, EdU cell proliferation assay, TUNEL assay, and clone formation assay and in vivo, using cell-derived xenograft models, were performed to elucidate the function of EFTUD2 in sensitivity of CRC cells to 5-FU treatment. The molecular mechanism on the reciprocal regulation between EFTUD2 and the oncogenic transcription factor c-MYC was investigated through molecular docking, ubiquitination assay, chromatin immunoprecipitation (ChIP), dual luciferase reporter assay, and co-immunoprecipitation (Co-IP). RESULTS: We found that EFTUD2 expression was positively correlated with 5-FU resistance, higher pathological grade, and poor prognosis in CRC patients. We also demonstrated both in vitro and in vivo that knockdown of EFTUD2 sensitized CRC cells to 5-FU treatment, whereas overexpression of EFTUD2 impaired such sensitivity. Mechanistically, we uncovered that EFTUD2 physically interacted with and stabilized c-MYC protein by preventing its ubiquitin-mediated proteasomal degradation. Intriguingly, we found that c-MYC directly bound to the promoter region of EFTUD2 gene, activating its transcription. Leveraging rescue experiments, we further confirmed that the effect of EFTUD2 on 5-FU resistance was dependent on c-MYC stabilization. CONCLUSION: Our findings revealed a positive feedback loop involving an EFTUD2/c-MYC axis that hampers the efficacy of 5-FU chemotherapy in CRC cells by increasing EFTUD2 transcription and stabilizing c-MYC oncoprotein. This study highlights the potential of EFTUD2 as a promising therapeutic target to surmount chemotherapy resistance in CRC patients.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Retroalimentação , Simulação de Acoplamento Molecular , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células , Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteína Nuclear Pequena U5/farmacologia
2.
Front Cell Infect Microbiol ; 13: 1118801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891156

RESUMO

Background: An increase in the demand for a functional cure has accelerated research on new methods of therapy for chronic hepatitis B, which is mainly focused on restoring antiviral immunity for controlling viral infections. Previously, we had described elongation factor Tu GTP-binding domain containing 2 (EFTUD2) as an innate immune regulator and suggested that it might be an antiviral target. Methods: In this study, we generated the Epro-LUC-HepG2 cell model for screening compounds that target EFTUD2. Plerixafor and resatorvid were screened from 261 immunity and inflammation-related compounds due to their ability to highly upregulate EFTUD2. The effects of plerixafor and resatorvid on hepatitis B virus (HBV) were examined in HepAD38 cells and HBV-infected HepG2-NTCP cells. Results: The dual-luciferase reporter assays showed that the EFTUD2 promoter hEFTUD2pro-0.5 kb had the strongest activity. In Epro-LUC-HepG2 cells, plerixafor and resatorvid significantly upregulated the activity of the EFTUD2 promoter and the expression of the gene and protein. In HepAD38 cells and HBV-infected HepG2-NTCP cells, treatment with plerixafor and resatorvid strongly inhibited HBsAg, HBV DNA, HBV RNAs, and cccDNA in a dose-dependent manner. Furthermore, the anti-HBV effect was enhanced when entecavir was administered along with either of the previous two compounds, and the effect could be blocked by knocking down EFTUD2. Conclusion: We established a convenient model for screening compounds that target EFTUD2 and further identified plerixafor and resatorvid as novel HBV inhibitors in vitro. Our findings provided information on the development of a new class of anti-HBV agents that act on host factors rather than viral enzymes.


Assuntos
Hepatite B , Compostos Heterocíclicos , Humanos , Vírus da Hepatite B/fisiologia , Fator Tu de Elongação de Peptídeos/farmacologia , Mobilização de Células-Tronco Hematopoéticas , Compostos Heterocíclicos/farmacologia , Células Hep G2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Guanosina Trifosfato/farmacologia , Guanosina Trifosfato/uso terapêutico , Hepatite B/tratamento farmacológico , Replicação Viral , DNA Viral , Fatores de Alongamento de Peptídeos/farmacologia , Ribonucleoproteína Nuclear Pequena U5/farmacologia
3.
RNA ; 5(8): 1042-54, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10445879

RESUMO

Mutants in the Drosophila crooked neck (crn) gene show an embryonic lethal phenotype with severe developmental defects. The unusual crn protein consists of sixteen tandem repeats of the 34 amino acid tetratricopeptide (TPR) protein recognition domain. Crn-like TPR elements are found in several RNA processing proteins, although it is unknown how the TPR repeats or the crn protein contribute to Drosophila development. We have isolated a Saccharomyces cerevisiae gene, CLF1, that encodes a crooked neck-like factor. CLF1 is an essential gene but the lethal phenotype of a clf1::HIS3 chromosomal null mutant can be rescued by plasmid-based expression of CLF1 or the Drosophila crn open reading frame. Clf1p is required in vivo and in vitro for pre-mRNA 5' splice site cleavage. Extracts depleted of Clf1p arrest spliceosome assembly after U2 snRNP addition but prior to productive U4/U6.U5 association. Yeast two-hybrid analyses and in vitro binding studies show that Clf1p interacts specifically and differentially with the U1 snRNP-Prp40p protein and the yeast U2AF65 homolog, Mud2p. Intriguingly, Prp40p and Mud2p also bind the phylogenetically conserved branchpoint binding protein (BBP/SF1). Our results indicate that Clf1p acts as a scaffolding protein in spliceosome assembly and suggest that Clf1p may support the cross-intron bridge during the prespliceosome-to-spliceosome transition.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Drosophila , Drosophila/genética , Proteínas Fúngicas/genética , Proteínas de Insetos/genética , Ribonucleoproteína Nuclear Pequena U4-U6/farmacologia , Ribonucleoproteína Nuclear Pequena U5/farmacologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia de Afinidade , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteínas/metabolismo , Homologia de Sequência de Aminoácidos , Fator de Processamento U2AF , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...