Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Immunol Lett ; 237: 3-10, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174253

RESUMO

Many studies of the autoimmune disease Sjögren's syndrome have been performed using spontaneous mouse models. In the present study, we describe the characteristics of McH/lpr-RA1 mice and propose their use as a novel murine model of autoimmune sialadenitis. The McH/lpr-RA1 mouse is a recombinant congenic strain derived from generation F54 or more of MRL-Faslpr x (MRL- Faslpr x C3H- Faslpr) F1. We show for the first time that this mouse spontaneously develops autoimmune sialadenitis and vasculitis in submandibular gland tissues. Sialadenitis was accompanied by extensive inflammatory cell infiltration and tissue destruction. Immunohistochemical studies revealed that the salivary gland lesions strongly expressed four sialadenitis-related molecules: SSA and SSB (autoantigens of Sjögren's syndrome), gp91phox (an accelerator of reactive oxygen species production) and single strand DNA (a marker of apoptotic cells). In contrast, expression of aquaporin-5 (AQP5), which stimulates salivary secretion was weak or negligible. Statistical correlation analyses indicated that the apoptosis of salivary gland cells provoked by oxidative stress contributed to the severe sialadenitis and reduced expression of AQP5. Our study has demonstrated that McH/lpr-RA1 mice spontaneously develop the pathognomonic features of autoimmune sialadenitis and thus could be used as a new animal model of Sjögren's syndrome.


Assuntos
Doenças Autoimunes/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos/imunologia , Camundongos Mutantes/imunologia , Sialadenite/imunologia , Síndrome de Sjogren , Vasculite/imunologia , Animais , Animais Congênicos , Apoptose , Aquaporina 5/biossíntese , Aquaporina 5/genética , Autoantígenos/biossíntese , Autoantígenos/genética , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , DNA de Cadeia Simples/análise , Feminino , Predisposição Genética para Doença , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos/genética , Camundongos Mutantes/genética , NADPH Oxidase 2/biossíntese , NADPH Oxidase 2/genética , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas/genética , Índice de Gravidade de Doença , Sialadenite/genética , Sialadenite/patologia , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Glândula Submandibular/metabolismo , Glândula Submandibular/patologia , Vasculite/genética , Vasculite/patologia , Antígeno SS-B
2.
Cancer Lett ; 508: 115-126, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-33794309

RESUMO

Tripartite motif-containing 21 (Trim21) is mainly involved in antiviral responses and autoimmune diseases. Although Trim21 has been reported to have a cancer-promoting or anticancer effect in various tumours, its role in renal cell cancer (RCC) remains to be elucidated. In this study, we demonstrate that Trim21 is downregulated in primary RCC tissues. Low Trim21 expression in RCC is correlated with poor clinicopathological characteristics and short overall survival. Moreover, we illustrate that Trim21 inhibits RCC cells glycolysis through the ubiquitination-mediated degradation of HIF-1α, which inhibits the proliferation, tumorigenesis, migration, and metastasis of RCC cells in vitro and in vivo. Our findings show that Trim21 may become a promising predictive biomarker for the prognosis of patients with RCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Carcinogênese , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Glicólise , Xenoenxertos , Humanos , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Prognóstico , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas/genética
3.
RNA ; 26(3): 229-239, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31879280

RESUMO

The proper regulation of mRNA processing, localization, translation, and degradation occurs on mRNPs. However, the global principles of mRNP organization are poorly understood. We utilize the limited, but existing, information available to present a speculative synthesis of mRNP organization with the following key points. First, mRNPs form a compacted structure due to the inherent folding of RNA. Second, the ribosome is the principal mechanism by which mRNA regions are partially decompacted. Third, mRNPs are 50%-80% protein by weight, consistent with proteins modulating mRNP organization, but also suggesting the majority of mRNA sequences are not directly interacting with RNA-binding proteins. Finally, the ratio of mRNA-binding proteins to mRNAs is higher in the nucleus to allow effective RNA processing and limit the potential for nuclear RNA based aggregation. This synthesis of mRNP understanding provides a model for mRNP biogenesis, structure, and regulation with multiple implications.


Assuntos
RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Ribossomos/genética , Núcleo Celular/genética , Eucariotos/genética , Conformação de Ácido Nucleico , RNA Mensageiro/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , Ribonucleoproteínas/biossíntese
4.
Sci Rep ; 9(1): 17290, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754224

RESUMO

Osteoporosis is one of the most common metabolic bone disease among pre- and postmenopausal women. As the precursors of osteoclast cells, circulating monocytes play important role in bone destruction and remodeling. The aim of study is to identify potential key genes and pathways correlated with the pathogenesis of osteoporosis. Then we construct novel estimation model closely linked to the bone mineral density (BMD) with key genes. Weighted gene co-expression network analysis (WGCNA) were conducted by collecting gene data set with 80 samples from gene expression omnibus (GEO) database. Besides, hub genes were identified by series of bioinformatics and machine learning algorithms containing protein-protein interaction (PPI) network, receiver operating characteristic curve and Pearson correlation. The direction of correlation coefficient were performed to screen for gene signatures with high BMD and low BMD. A novel BMD score system was put forward based on gene set variation analysis and logistic regression, which was validated by independent data sets. We identified six modules correlated with BMD. Finally 100 genes were identified as the high bone mineral density signatures while 130 genes were identified as low BMD signatures. Besides, we identified the significant pathway in monocytes: ribonucleoprotein complex biogenesis. What's more, our score validated it successfully.


Assuntos
Densidade Óssea/genética , Monócitos/metabolismo , Osteoporose/genética , Ribonucleoproteínas/biossíntese , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Aprendizado de Máquina , Análise de Sequência com Séries de Oligonucleotídeos , Osteoporose/sangue , Pós-Menopausa/sangue , Pós-Menopausa/genética , Pré-Menopausa/sangue , Pré-Menopausa/genética , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/genética , Transcriptoma
5.
Commun Biol ; 2: 161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069270

RESUMO

CRISPR/Cas9 ribonucleoprotein (RNP) complexes are promising biological tools with diverse biomedical applications. However, to date there are no efficient methods that can produce these proteins at large scales and low cost. Here, we present a streamlined method for direct production of Cas9 RNPs from Escherichia coli by co-expression of Cas9 and the target-specific single-guided RNAs. Harnessing an ultrahigh-affinity CL7/Im7 purification system recently developed we achieve one-step purification of the self-assembling CRISPR/Cas RNPs, including the commonly used Cas9 and Cas12a, within half a day and with a ~fourfold higher yield than incumbent methods. The prepared Cas RNPs show remarkable stability in the absence of RNase inhibitors, as well as profound gene-editing efficiency in vitro and in vivo. Our method is convenient, cost-effective, and can be used to prepare other CRISPR/Cas RNPs.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Ribonucleoproteínas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Cromatografia de Afinidade/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Colicinas/genética , Colicinas/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Plasmídeos/química , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas/isolamento & purificação
6.
RNA Biol ; 16(7): 879-889, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31007122

RESUMO

Eukaryotic cells have evolved a nuclear quality control (QC) system to monitor the co-transcriptional mRNA processing and packaging reactions that lead to the formation of export-competent ribonucleoprotein particles (mRNPs). Aberrant mRNPs that fail to pass the QC steps are retained in the nucleus and eliminated by the exonuclease activity of Rrp6. It is still unclear how the surveillance system is precisely coordinated both physically and functionally with the transcription machinery to detect the faulty events that may arise at each step of transcript elongation and mRNP formation. To dissect the QC mechanism, we previously implemented a powerful assay based on global perturbation of mRNP biogenesis in yeast by the bacterial Rho helicase. By monitoring model genes, we have shown that the QC process is coordinated by Nrd1, a component of the NNS complex (Nrd1-Nab3-Sen1) involved in termination, processing and decay of ncRNAs which is recruited by the CTD of RNAP II. Here, we have extended our investigations by analyzing the QC behaviour over the whole yeast genome. We performed high-throughput RNA sequencing (RNA-seq) to survey a large collection of mRNPs whose biogenesis is affected by Rho action and which can be rescued upon Rrp6 depletion. This genome-wide perspective was extended by generating high-resolution binding landscapes (ChIP-seq) of QC components along the yeast chromosomes before and after perturbation of mRNP biogenesis. Our results show that perturbation of mRNP biogenesis redistributes the QC components over the genome with a significant hijacking of Nrd1 and Nab3 from genomic loci producing ncRNAs to Rho-affected protein-coding genes, triggering termination and processing defects of ncRNAs.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Genoma Fúngico , Ribonucleoproteínas/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , DNA Helicases/metabolismo , Regulação para Baixo/genética , Regulação Fúngica da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo
7.
Assay Drug Dev Technol ; 17(3): 116-127, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30901265

RESUMO

Fibrosis is defined by excessive production of type I collagen in various organs. Excessive type I collagen production in fibrosis is stimulated by binding of RNA protein LARP6 to the structural element of collagen mRNAs, the 5' stem loop (5'SL). The LARP6-dependent regulation is specific for type I collagen and critical for fibrosis development. Inhibitors of LARP6 binding have potential to be specific antifibrotic drugs, as evidenced by the discovery of one such inhibitor. To create technology for phenotypic screening of additional compounds we developed an inverted yeast three hybrid system. The system is based on expression of human LARP6 and a short RNA containing the 5'SL of human collagen α1(I) mRNA in Saccharomyces cerevisiae cells. The cells were engineered in such a way that when LARP6 is bound to 5'SL RNA they fail to grow in a specific synthetic medium. Dissociation of LARP6 from 5'SL RNA permits the cell growth, allowing identification of the inhibitors of LARP6 binding. The assay simply involves measuring optical density of cells growing in multiwall plates and is pertinent for high throughput applications. We describe the specificity of the system and its characteristics for high throughput screening. As a proof of principle, the result of one screen using collection of FDA approved drugs is also presented. This screen demonstrates that using this technology discovery of novel LARP6 inhibitors is possible.


Assuntos
Descoberta de Drogas , Ribonucleoproteínas/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido , Autoantígenos/biossíntese , Engenharia Celular , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Fenótipo , Ribonucleoproteínas/biossíntese , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Antígeno SS-B
8.
J Exp Clin Cancer Res ; 37(1): 189, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103781

RESUMO

BACKGROUND: Makorin RING zinc finger-2 (MKRN2) belongs to the makorin RING zinc finger family and is a novel ubiquitin E3 ligase targeting the p65 subunit of NF-κB to negatively regulate inflammatory responses; however, the relationship between MKRN2 and tumorigenesis remains unclear. In this study, we clarified the role of MKRN2 in non-small cell lung cancer (NSCLC). METHODS: Tumor specimens collected from 261 NSCLC patients from 2013 to 2017 were retrieved from the Pathology Archive of the First Affiliated Hospital of China Medical University, and we performed assays to evaluate MKRN2 expression and to determine the impact of MKRN2 silencing and overexpression on NSCLC-cell migration and invasion. RESULTS: We demonstrated that MKRN2 expression was associated with lymph node metastasis, p-TNM stage, cancer-cell differentiation, and poor prognosis. By altering the expression of MKRN2 in selected cell lines, we found that MKRN2 inhibited cell migration and invasion through downregulation of the PI3K/Akt pathway. CONCLUSIONS: These results suggested that MKRN2 inhibited NSCLC progression by reducing the metastatic potential of cancer cells. Our findings provide critical insight into the association of MKRN2 expression with favorable clinicopathological characteristics in NSCLC patients and suggested that MKRN2 plays a role in inhibiting NSCLC development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ribonucleoproteínas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/fisiologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas/genética , Transdução de Sinais
10.
Protoplasma ; 255(2): 709-713, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28924627

RESUMO

Epidermal cells of leaf petioles, pedicles, and sepals in Caragana arborescens L. are characterized with a unique biogenesis of intracellular bodies, the presence of which continues during 10-12 days in spring, from budding till flowering and fruit inception. Initially, a nuclear body is formed as a derivative of the nucleolus at the beginning of elongation of the protodermal cells, whereas a cytoplasmic body is formed in the proximity of the nuclear envelope later. Nuclear bodies and cytoplasmic bodies do not contain DNA, lipids, and starch, and they consist of RNA tightly packaged with proteins mainly in the form of short thin fibrils with thickness of 6 nm. By the end of cell elongation and the beginning of differentiation, nuclear bodies disappear, while cytoplasmic bodies become surrounded by a homogenous zone (halo). Later, the bundles of parallel-oriented fibrils derived from the body radially pass through the homogenous zone and gradually disperse in the cytoplasm. In the differentiated epidermal cells, no traces of cytoplasmic bodies are observed; there is only one nucleolus in the nucleus. It is hypothesized that cytoplasmic bodies may function as an RNA depot, which is utilized later in cell metabolism during the formation of fruits and seeds.


Assuntos
Caragana/citologia , Citoplasma/metabolismo , Células Vegetais/metabolismo , Epiderme Vegetal/citologia , Ribonucleoproteínas/biossíntese , Caragana/ultraestrutura , Células Vegetais/ultraestrutura , Epiderme Vegetal/ultraestrutura
11.
Mol Cell Biochem ; 431(1-2): 21-27, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28210897

RESUMO

Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.


Assuntos
Cisplatino/farmacologia , Proteínas de Ligação a DNA/biossíntese , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/biossíntese , Ribonucleoproteínas/biossíntese , Regulação para Cima , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Linhagem Celular Tumoral , Ciclina D1/biossíntese , Ciclina D1/genética , Proteínas de Ligação a DNA/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/genética , Ribonucleoproteínas/genética , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
12.
Cell Biol Int ; 41(1): 2-7, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27862595

RESUMO

The advance in biochemical and microscopy techniques has revealed the complexity and intricate nucleoplasm structure. Several subcompartments were identified in nucleus and the importance of these subcompartments in processes crucial for normal nuclear activity has been demonstrated. In this mini-review, we will give an overview about the composition, function, and importance of the major nuclear subcompartments. Also, we will show the impact that perturbing these structures can cause in normal nuclear activity, and how these can contribute to the development of some human diseases.


Assuntos
Núcleo Celular/metabolismo , Animais , Ciclo Celular , Doença , Humanos , RNA/metabolismo , Ribonucleoproteínas/biossíntese , Frações Subcelulares/metabolismo
13.
J Virol Methods ; 239: 75-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27840076

RESUMO

Developments in recombinant virus techniques have been crucial to understand the mechanisms of virulence acquisition and study the replication of many different negatively stranded RNA viruses. However, such technology has been lacking for infectious salmon anaemia virus (ISAV) until recently. This was due in part to the lack of a Polymerase I promoter in Atlantic salmon to drive the production of recombinant vRNA. Therefore, the present study investigated a different alternative to produce ISAV recombinant vRNA, based on Mouse Pol I promoter/terminator sequences and expression in baby hamster kidney (BHK-21) cells. As a first step, a pathogenic ISAV was demonstrated to replicate and produce viable virions in BHK-21 cells. This indicated that the virus could use the mammalian cellular and nuclear machinery to produce vRNA segments and viral proteins, albeit in a limited capacity. Co-transfection of vRNA expressing plasmids with cytomegalovirus (CMV) promoter constructs coding for the three viral polymerase and nucleoprotein led to the generation of functional ribonucleoproteins (RNPs) which expressed either, green fluorescence protein (GFP) or firefly luciferase (FF). Further experiments demonstrated that a 21h incubation at 37°C was optimal for RNPs production. Inhibition by ribavirin confirmed that FF expression was linked to specific RNPs polymerase transcription. The present minigenome system provides a novel and alternative approach to investigate various aspects of ISAV replication and potentially those of other negatively stranded RNA viruses. Expression of RNPs in mammalian cells could also provide a method for the rapid screening of anti-viral compounds targeting ISAV replication.


Assuntos
Isavirus/genética , Isavirus/fisiologia , Ribonucleoproteínas/biossíntese , Replicação Viral , Animais , Linhagem Celular , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Fluorescência Verde/química , Isavirus/isolamento & purificação , Luciferases/química , RNA , RNA Viral/genética , Proteínas Recombinantes de Fusão/biossíntese , Ribavirina/farmacologia , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/isolamento & purificação , Salmo salar/virologia , Proteínas Virais/genética
14.
Mol Reprod Dev ; 84(1): 76-87, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27893173

RESUMO

Atlantic salmon is a valuable commercial aquaculture species that would benefit economically and environmentally by controlling precocious puberty and preventing escapees from reproducing with wild populations. One solution to both these challenges is the production of sterile individuals by inhibiting the formation of germ cells, but achieving this requires more information on the specific factors that control germ cell formation. Here, we identified and characterized novel factors that are preferentially expressed in Atlantic salmon germ cells by screening for gonad-specific genes using available adult multi-tissue transcriptomes. We excluded genes with expression in tissues other than gonads based on quantity of reads, and then a subset of genes was selected for verification in a multi-tissue PCR screen. Four gonad-specific genes (bmp15l, figla, smc1bl, and larp6l) were chosen for further characterization, namely: germ cell specificity, investigated by comparing mRNA abundance in wild-type and germ cell-free gonads by quantitative real-time PCR, and cellular location, visualized by in situ hybridization. All four genes were expressed in both testis and ovary, and preferentially within the germ cells of both sexes. These genes may be essential players in salmon germ cell development, and could be important for future studies aiming to understand and control reproduction. Mol. Reprod. Dev. 84: 76-87, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteína Morfogenética Óssea 15/biossíntese , Proteínas de Ciclo Celular/biossíntese , Proteínas de Peixes/biossíntese , Células Germinativas/metabolismo , Ribonucleoproteínas/biossíntese , Salmo salar/metabolismo , Animais , Feminino , Células Germinativas/citologia , Masculino
15.
Tumour Biol ; 37(11): 14585-14594, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27614686

RESUMO

This study investigated the significance of La-related protein 1 (LARP1) in the development and progression of colorectal cancer (CRC). Quantitative real-time polymerase chain reaction and Western blot analyses were carried out to determine the mRNA and protein expression of LARP1 in CRC tumor tissues and paired adjacent normal mucosa. The expression of LARP1 was upregulated in CRC. Immunohistochemical analysis using tissue microarray was performed. A positive correlation between LARP1 and proliferating cell nuclear antigen (PCNA) in the area of proliferation was observed using the Spearman's correlation coefficient test (r = 0.332, P < 0.01). The elevated expression of LARP1 significantly correlated with T stage (P = 0.02), N stage (P = 0.006), M stage (P < 0.001), American Joint Committee on Cancer (AJCC) stage (P = 0.04), differentiation rank (P < 0.001), and PCNA level (P < 0.001). In addition, the inhibitory effect of LARP1 knockdown on CRC cell proliferation was demonstrated using Cell Counting Kit-8 (CCK8) and colony-forming cell (CFC) assays. Multivariate analysis showed that LARP1 was an independent prognostic factor for overall survival (OS; hazard rate (HR) = 0.244; 95 % confidence interval (CI), 0.078-0.769; P = 0.016) and disease-free survival (DFS; HR = 0.281; 95 % CI, 0.086-0.917; P = 0.035) in CRC patients. LARP1 plays an important role in the proliferation of colorectal cancer and represents a new prognostic indicator.


Assuntos
Autoantígenos/biossíntese , Autoantígenos/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Antígeno Nuclear de Célula em Proliferação/biossíntese , RNA Mensageiro/biossíntese , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/biossíntese , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise Serial de Tecidos , Antígeno SS-B
16.
PLoS Genet ; 12(5): e1006027, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27138552

RESUMO

Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/genética , RNA Ribossômico 23S/genética , Proteínas de Ligação a RNA/genética , Adaptação Fisiológica/genética , Arabidopsis/crescimento & desenvolvimento , Temperatura Baixa/efeitos adversos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mutação , Fenótipo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/biossíntese , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas/genética
17.
Antiviral Res ; 127: 32-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26777733

RESUMO

The tripartite motif protein 21 (TRIM21) is a ubiquitously expressed E3 ubiquitin ligase and an intracellular antibody receptor. TRIM21 mediates antibody-dependent intracellular neutralization (ADIN) in cytosol and provides an intracellular immune response to protect host defense against pathogen infection. In this study, swine TRIM21 (sTRIM21) was cloned and its role in ADIN was investigated. The expression of sTRIM21 is induced by type I interferon in PK-15 cells. sTRIM21 restricts FMDV infection in the presence of FMDV specific antibodies. Furthermore, sTRIM21 interacts with Fc fragment of swine immunoglobulin G (sFc) fused VP1 of FMDV and thereby causing its degradation. Both the RING and SPRY domains are essential for sTRIM21 to degrade sFc-fused VP1. These results suggest that the intracellular neutralization features of FMDV contribute to the antiviral activity of sTRIM21. sTRIM21 provide another intracellular mechanism to inhibit FMDV infection in infected cells.


Assuntos
Anticorpos Neutralizantes/imunologia , Citosol/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Ribonucleoproteínas/imunologia , Ribonucleoproteínas/farmacologia , Animais , Especificidade de Anticorpos/imunologia , Antivirais , Clonagem Molecular , Citoplasma , Citosol/metabolismo , Citosol/virologia , Febre Aftosa/imunologia , Febre Aftosa/virologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Testes de Neutralização , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas/genética , Análise de Sequência de DNA , Suínos
18.
PLoS One ; 11(1): e0147224, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800152

RESUMO

Pinus massoniaia Lamb has gained more and more attention as the most important tree species for timber and forestation in South China. Gene expression studies are of great importance to identify new and elite cultivars. Real-time quantitative PCR, a highly sensitive and specific method, is commonly used in the analysis of gene expression. The appropriate reference genes must be employed to normalize the calculation program for ascertaining repeatable and significant results. Herein, eleven housekeeping genes were evaluated during different stages of P. massoniana post nematode inoculation in this study. Three statistical approaches such as geNorm, NormFinder and BestKeeper were selected to analyze the stability of candidate genes. The results indicated that U2af and ß-TUB were the most stable reference genes. These two genes could be used for the normalization in most of the experiments of P. massoniana, while Histone and AK were the least stable ones. In addition, EF expressed at the lowest average Ct value was the most abundant candidate gene. As an important gene associated with defense mechanisms, ABC transporter was analyzed by qRT-PCR, and the results were used to confirm the reliability of two genes. The selected reference genes in the present study will be conducive to future gene expression normalized by qRT-PCR in P. massoniana.


Assuntos
Resistência à Doença/genética , Pinus/genética , Pinus/imunologia , Doenças das Plantas/imunologia , Tylenchida/imunologia , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Animais , China , Perfilação da Expressão Gênica , Genes Essenciais/genética , Genes de Plantas/genética , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Pinus/parasitologia , Doenças das Plantas/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas/genética , Fator de Processamento U2AF , Tubulina (Proteína)/biossíntese , Tubulina (Proteína)/genética , Tylenchida/patogenicidade
19.
Mol Neurobiol ; 53(7): 4631-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26307612

RESUMO

Malignant astrocytomas are the most common primary brain tumors. The critical characterizes of astrocyomas are their aggressive and infiltrative in the brain, which leads to uncontrollable by conventional forms of therapy. MicroRNAs are small RNAs that had been found to regulate their targets by specific binding to the 3'-untranslated region (3'UTR) of mRNA. Recent advances in understanding the molecular biology of these tumors have revealed that microRNA (miRNA) disruption may play important roles in the pathogenesis of astrocytomas. And some of the miRNA alterations were found in the serum of astrocytoma patients. In this study, we studied the expression profile of miR-128, in the different stages of astrocytoma tissues and two human astrocytoma cell lines, A172 and T98G cells. We found that the levels of miR-128 are decreased in the A172 and T98G cells when compared to normal human astrocyte (NHA). Furthermore, the levels of miR-128 decreased gradually to the pathological stages of astrocytomas. We also identified that TROVE2 is a novel target of miR-128 by the luciferase reporter system. Furthermore, the expression levels of TROVE2 are dramatically increased with the pathological stages increasing. Finally, the levels of TROVE2 are negatively correlated with miR-128 in astrocytoma tissues. Our data provided novel evidence for the miR-128 and TROVE2 in the development of human astrocytomas.


Assuntos
Astrocitoma/genética , Autoantígenos/genética , Neoplasias Encefálicas/genética , MicroRNAs/genética , RNA Citoplasmático Pequeno/genética , Ribonucleoproteínas/genética , Transcriptoma/genética , Astrocitoma/metabolismo , Astrocitoma/patologia , Autoantígenos/biossíntese , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , MicroRNAs/biossíntese , Gradação de Tumores/métodos , RNA Citoplasmático Pequeno/biossíntese , Ribonucleoproteínas/biossíntese
20.
PLoS Genet ; 11(10): e1005564, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26447709

RESUMO

Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes required for virulence in pathogenic fungi. Pseudohyphal growth is controlled through a regulatory network encompassing conserved MAPK (Ste20p, Ste11p, Ste7p, Kss1p, and Fus3p), protein kinase A (Tpk2p), Elm1p, and Snf1p kinase pathways; however, the scope of these pathways is not fully understood. Here, we implemented quantitative phosphoproteomics to identify each of these signaling networks, generating a kinase-dead mutant in filamentous S. cerevisiae and surveying for differential phosphorylation. By this approach, we identified 439 phosphoproteins dependent upon pseudohyphal growth kinases. We report novel phosphorylation sites in 543 peptides, including phosphorylated residues in Ras2p and Flo8p required for wild-type filamentous growth. Phosphoproteins in these kinase signaling networks were enriched for ribonucleoprotein (RNP) granule components, and we observe co-localization of Kss1p, Fus3p, Ste20p, and Tpk2p with the RNP component Igo1p. These kinases localize in puncta with GFP-visualized mRNA, and KSS1 is required for wild-type levels of mRNA localization in RNPs. Kss1p pathway activity is reduced in lsm1Δ/Δ and pat1Δ/Δ strains, and these genes encoding P-body proteins are epistatic to STE7. The P-body protein Dhh1p is also required for hyphal development in Candida albicans. Collectively, this study presents a wealth of data identifying the yeast phosphoproteome in pseudohyphal growth and regulatory interrelationships between pseudohyphal growth kinases and RNPs.


Assuntos
Hifas/genética , Fosfotransferases/biossíntese , Ribonucleoproteínas/biossíntese , Saccharomyces cerevisiae/genética , Candida albicans/genética , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Fenótipo , Fosforilação , Fosfotransferases/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...