Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 42(22): 1821-1831, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37041411

RESUMO

Prostate cancer is the most commonly diagnosed noncutaneous cancer in American men. TDRD1, a germ cell-specific gene, is erroneously expressed in more than half of prostate tumors, but its role in prostate cancer development remains elusive. In this study, we identified a PRMT5-TDRD1 signaling axis that regulates the proliferation of prostate cancer cells. PRMT5 is a protein arginine methyltransferase essential for small nuclear ribonucleoprotein (snRNP) biogenesis. Methylation of Sm proteins by PRMT5 is a critical initiation step for assembling snRNPs in the cytoplasm, and the final snRNP assembly takes place in Cajal bodies in the nucleus. By mass spectrum analysis, we found that TDRD1 interacts with multiple subunits of the snRNP biogenesis machinery. In the cytoplasm, TDRD1 interacts with methylated Sm proteins in a PRMT5-dependent manner. In the nucleus, TDRD1 interacts with Coilin, the scaffold protein of Cajal bodies. Ablation of TDRD1 in prostate cancer cells disrupted the integrity of Cajal bodies, affected the snRNP biogenesis, and reduced cell proliferation. Taken together, this study represents the first characterization of TDRD1 functions in prostate cancer development and suggests TDRD1 as a potential therapeutic target for prostate cancer treatment.


Assuntos
Neoplasias da Próstata , Ribonucleoproteínas Nucleares Pequenas , Masculino , Humanos , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Testículo/metabolismo , Núcleo Celular/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proliferação de Células/genética , Células HeLa , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Proteomics ; 15(16): 2851-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25727850

RESUMO

Site-specific isomerization of uridines into pseudouridines in RNAs is catalyzed either by stand-alone enzymes or by box H/ACA ribonucleoprotein particles (sno/sRNPs). The archaeal box H/ACA sRNPs are five-component complexes that consist of a guide RNA and the aCBF5, aNOP10, L7Ae, and aGAR1 proteins. In this study, we performed pairwise incubations of individual constituents of archaeal box H/ACA sRNPs and analyzed their interactions by native MS to build a 2D-connectivity map of direct binders. We describe the use of native MS in combination with ion mobility-MS to monitor the in vitro assembly of the active H/ACA sRNP particle. Real-time native MS was used to monitor how box H/ACA particle functions in multiple-turnover conditions. Native MS also unambiguously revealed that a substrate RNA containing 5-fluorouridine (f(5) U) was hydrolyzed into 5-fluoro-6-hydroxy-pseudouridine (f(5) ho(6) Ψ). In terms of enzymatic mechanism, box H/ACA sRNP was shown to catalyze the pseudouridylation of a first RNA substrate, then to release the RNA product (S22 f(5) ho(6) ψ) from the RNP enzyme and reload a new substrate RNA molecule. Altogether, our native MS-based approaches provide relevant new information about the potential assembly process and catalytic mechanism of box H/ACA RNPs.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Espectrometria de Massas/métodos , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas Arqueais/análise , Ribonucleoproteínas Nucleares Pequenas/análise , Biologia de Sistemas
3.
PLoS One ; 9(11): e111780, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25369024

RESUMO

The localisation of poly(A) RNA in plant cells containing either reticular (Allium cepa) or chromocentric (Lupinus luteus, Arabidopsis thaliana) nuclei was studied through in situ hybridisation. In both types of nuclei, the amount of poly(A) RNA was much greater in the nucleus than in the cytoplasm. In the nuclei, poly(A) RNA was present in structures resembling nuclear bodies. The molecular composition as well as the characteristic ultrastructure of the bodies containing poly(A) RNA demonstrated that they were Cajal bodies. We showed that some poly(A) RNAs in Cajal bodies code for proteins. However, examination of the localisation of active RNA polymerase II and in situ run-on transcription assays both demonstrated that CBs are not sites of transcription and that BrU-containing RNA accumulates in these structures long after synthesis. In addition, it was demonstrated that accumulation of poly(A) RNA occurs in the nuclei and CBs of hypoxia-treated cells. Our findings indicated that CBs may be involved in the later stages of poly(A) RNA metabolism, playing a role storage or retention.


Assuntos
Arabidopsis/citologia , Corpos Enovelados/ultraestrutura , Lupinus/citologia , Cebolas/citologia , Poli A/análise , RNA de Plantas/análise , Corpos Enovelados/química , RNA Mensageiro/análise , Ribonucleoproteínas Nucleares Pequenas/análise
4.
J Cell Biol ; 207(2): 189-99, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25332162

RESUMO

Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidroliases/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , RNA de Transferência/genética , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Fuso Acromático/metabolismo , Adenosina Trifosfatases/análise , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Cromatina/ultraestrutura , Proteínas de Ligação a DNA/análise , Hidroliases/análise , Hidroliases/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/análise , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/ultraestrutura
5.
Proteomics ; 13(9): 1417-22, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23456960

RESUMO

Simple protein separation by 1DE is a widely used method to reduce sample complexity and to prepare proteins for mass spectrometric identification via in-gel digestion. While several automated solutions are available for in-gel digestion particularly of small cylindric gel plugs derived from 2D gels, the processing of larger 1D gel-derived gel bands with liquid handling work stations is less well established in the field. Here, we introduce a digestion device tailored to this purpose and validate its performance in comparison to manual in-gel digestion. For relative quantification purposes, we extend the in-gel digestion procedure by iTRAQ labeling of the tryptic peptides and show that automation of the entire workflow results in robust quantification of proteins from samples of different complexity and dynamic range. We conclude that automation improves accuracy and reproducibility of our iTRAQ workflow as it minimizes the variability in both, digestion and labeling efficiency, the two major causes of irreproducible results in chemical labeling approaches.


Assuntos
Eletroforese/instrumentação , Eletroforese/métodos , Proteínas/análise , Automação , Bicarbonatos/química , Desenho de Equipamento , Células HeLa , Humanos , Ovalbumina/análise , Ovalbumina/isolamento & purificação , Proteínas/isolamento & purificação , Reprodutibilidade dos Testes , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/isolamento & purificação , Soroalbumina Bovina/análise , Soroalbumina Bovina/isolamento & purificação , Espectrometria de Massas em Tandem , Fluxo de Trabalho
6.
Nucleus ; 3(3): 290-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22572953

RESUMO

We have raised antibodies against the profilin of Chironomus tentans to study the location of profilin relative to chromatin and to active genes in salivary gland polytene chromosomes. We show that a fraction of profilin is located in the nucleus, where profilin is highly concentrated in the nucleoplasm and at the nuclear periphery. Moreover, profilin is associated with multiple bands in the polytene chromosomes. By staining salivary glands with propidium iodide, we show that profilin does not co-localize with dense chromatin. Profilin associates instead with protein-coding genes that are transcriptionally active, as revealed by co-localization with hnRNP and snRNP proteins. We have performed experiments of transcription inhibition with actinomycin D and we show that the association of profilin with the chromosomes requires ongoing transcription. However, the interaction of profilin with the gene loci does not depend on RNA. Our results are compatible with profilin regulating actin polymerization in the cell nucleus. However, the association of actin with the polytene chromosomes of C. tentans is sensitive to RNase, whereas the association of profilin is not, and we propose therefore that the chromosomal location of profilin is independent of actin.


Assuntos
Profilinas/análise , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Núcleo Celular/metabolismo , Chironomidae/crescimento & desenvolvimento , Chironomidae/metabolismo , Dactinomicina/farmacologia , Drosophila melanogaster/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/análise , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Larva/metabolismo , Dados de Sequência Molecular , Cromossomos Politênicos/metabolismo , Profilinas/genética , Profilinas/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Glândulas Salivares/metabolismo , Alinhamento de Sequência , Transcrição Gênica/efeitos dos fármacos
7.
Curr Opin Chem Biol ; 15(6): 864-70, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22057211

RESUMO

Splicing is an essential eukaryotic process in which introns are excised from precursors to messenger RNAs and exons ligated together. This reaction is catalyzed by a multi-MegaDalton machine called the spliceosome, composed of 5 small nuclear RNAs (snRNAs) and a core set of ∼100 proteins minimally required for activity. Because of the spliceosome's size, its low abundance in cellular extracts, and its highly dynamic assembly pathway, analysis of the kinetics of splicing and the conformational rearrangements occurring during spliceosome assembly and disassembly has proven extraordinarily challenging. Here, we review recent progress in combining chemical biology methodologies with single molecule fluorescence techniques to provide a window into splicing in real time. These methods complement ensemble measurements of splicing in vivo and in vitro to facilitate kinetic dissection of pre-mRNA splicing.


Assuntos
Corantes Fluorescentes/análise , Microscopia de Fluorescência/métodos , Precursores de RNA/análise , Splicing de RNA/genética , RNA Nuclear Pequeno/análise , Ribonucleoproteínas Nucleares Pequenas/análise , Spliceossomos/metabolismo , Coloração e Rotulagem/métodos , Biotina/química , Biotina/metabolismo , Éxons , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Íntrons , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Fúngico/análise , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Spliceossomos/química , Spliceossomos/genética , Estreptavidina/química , Estreptavidina/metabolismo
8.
Nucleic Acids Res ; 35(12): 3928-44, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17537823

RESUMO

Previous compositional studies of pre-mRNA processing complexes have been performed in vitro on synthetic pre-mRNAs containing a single intron. To provide a more comprehensive list of polypeptides associated with the pre-mRNA splicing apparatus, we have determined the composition of the bulk pre-mRNA processing machinery in living cells. We purified endogenous nuclear pre-mRNA processing complexes from human and chicken cells comprising the massive (>200S) supraspliceosomes (a.k.a. polyspliceosomes). As expected, RNA components include a heterogeneous mixture of pre-mRNAs and the five spliceosomal snRNAs. In addition to known pre-mRNA splicing factors, 5' end binding factors, 3' end processing factors, mRNA export factors, hnRNPs and other RNA binding proteins, the protein components identified by mass spectrometry include RNA adenosine deaminases and several novel factors. Intriguingly, our purified supraspliceosomes also contain a number of structural proteins, nucleoporins, chromatin remodeling factors and several novel proteins that were absent from splicing complexes assembled in vitro. These in vivo analyses bring the total number of factors associated with pre-mRNA to well over 300, and represent the most comprehensive analysis of the pre-mRNA processing machinery to date.


Assuntos
Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteínas/análise , Spliceossomos/química , Animais , Linhagem Celular , Galinhas/metabolismo , Ciclofilinas/análise , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas/análise , Humanos , Espectrometria de Massas , Proteínas Nucleares/análise , Peptídeos/análise , Peptídeos/isolamento & purificação , Proteômica , RNA Helicases/análise , Precursores de RNA/isolamento & purificação , RNA Mensageiro/isolamento & purificação , RNA Nuclear Pequeno/análise , RNA Nuclear Pequeno/isolamento & purificação , Proteínas de Ligação a RNA/análise , Ribonucleoproteínas/isolamento & purificação , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/biossíntese , Fatores de Processamento de Serina-Arginina
9.
Nucleic Acids Res ; 35(3): 923-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17251193

RESUMO

Lsm proteins are ubiquitous, multifunctional proteins that are involved in the processing and/or turnover of many, if not all, RNAs in eukaryotes. They generally interact only transiently with their substrate RNAs, in keeping with their likely roles as RNA chaperones. The spliceosomal U6 snRNA is an exception, being stably associated with the Lsm2-8 complex. The U6 snRNA is generally considered to be intrinsically nuclear but the mechanism of its nuclear retention has not been demonstrated, although La protein has been implicated. We show here that the complete Lsm2-8 complex is required for nuclear accumulation of U6 snRNA in yeast. Therefore, just as Sm proteins effect nuclear localization of the other spliceosomal snRNPs, the Lsm proteins mediate U6 snRNP localization except that nuclear retention is the likely mechanism for the U6 snRNP. La protein, which binds only transiently to the nascent U6 transcript, has a smaller, apparently indirect, effect on U6 localization that is compatible with its proposed role as a chaperone in facilitating U6 snRNP assembly.


Assuntos
Núcleo Celular/química , RNA Nuclear Pequeno/análise , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Núcleo Celular/metabolismo , Deleção de Genes , Capuzes de RNA/fisiologia , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo , beta Carioferinas/metabolismo
10.
RNA ; 13(1): 30-43, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17105994

RESUMO

In eukaryotes the seven Sm core proteins bind to U1, U2, U4, and U5 snRNAs. In Trypanosoma brucei, Sm proteins have been implicated in binding both spliced leader (SL) and U snRNAs. In this study, we examined the function of these Sm proteins using RNAi silencing and protein purification. RNAi silencing of each of the seven Sm genes resulted in accumulation of SL RNA as well as reduction of several U snRNAs. Interestingly, U2 was unaffected by the loss of SmB, and both U2 and U4 snRNAs were unaffected by the loss of SmD3, suggesting that these snRNAs are not bound by the heptameric Sm complex that binds to U1, U5, and SL RNA. RNAi silencing and protein purification showed that U2 and U4 snRNAs were bound by a unique set of Sm proteins that we termed SSm (specific spliceosomal Sm proteins). This is the first study that identifies specific core Sm proteins that bind only to a subset of spliceosomal snRNAs.


Assuntos
Proteínas de Protozoários/metabolismo , RNA de Protozoário/metabolismo , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Animais , Biologia Computacional , Dados de Sequência Molecular , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/química , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética
11.
RNA ; 13(1): 116-28, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17095540

RESUMO

The deposition of proteins onto newly spliced mRNAs has far reaching consequences for their subsequent metabolism. We affinity-purified spliced human mRNPs under physiological conditions from HeLa nuclear extract and present the first comprehensive inventory of their protein composition as determined by mass spectrometry. Several proteins previously not known to be mRNP-associated were detected, including the DEAD-box helicases DDX3, DDX5, and DDX9, and the ELG, hNHN1, BCLAF1, and TRAP150 proteins. The association of some of the newly identified mRNP proteins was shown to be splicing-dependent, but not to require EJC formation. Initial recruitment of EJC proteins to the spliceosome did not require an EJC binding platform at the -20/24 region of the 5' exon. Finally, while recruitment of EJC proteins and stable EJC formation were not dependent on the cap binding complex, several of the newly identified mRNP proteins required the latter for their association with mRNPs. These results provide novel insights into the composition of spliced mRNPs and the requirements for the association of mRNP proteins with the newly spliced mRNA.


Assuntos
Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Sequência de Bases , Éxons , Células HeLa , Heparina/química , Humanos , Espectrometria de Massas , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/metabolismo
12.
Nucleic Acids Res ; 34(10): 2925-32, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16738131

RESUMO

Neuronal degeneration in spinal muscular atrophy (SMA) is caused by reduced expression of the survival of motor neuron (SMN) protein. The SMN protein is ubiquitously expressed and is present both in the cytoplasm and in the nucleus where it localizes in Cajal bodies. The SMN complex plays an essential role for the biogenesis of spliceosomal U-snRNPs. In this article, we have used an RNA interference approach in order to analyse the effects of SMN depletion on snRNP assembly in HeLa cells. Although snRNP profiles are not perturbed in SMN-depleted cells, we found that SMN depletion gives rise to cytoplasmic accumulation of a GFP-SmB reporter protein. We also demonstrate that the SMN protein depletion induces defects in Cajal body formation with coilin being localized in multiple nuclear foci and in nucleolus instead of canonical Cajal bodies. Interestingly, the coilin containing foci do not contain snRNPs but appear to co-localize with U85 scaRNA. Because Cajal bodies represent the location in which snRNPs undergo 2'-O-methylation and pseudouridylation, our results raise the possibility that SMN depletion might give rise to a defect in the snRNA modification process.


Assuntos
Corpos Enovelados/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Autoantígenos/análise , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Citoplasma/química , Células HeLa , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/análise , Interferência de RNA , RNA Nuclear Pequeno/análise , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/análise , Proteínas do Complexo SMN , Proteínas Centrais de snRNP , Pequeno RNA não Traduzido
13.
Mol Biol Cell ; 17(7): 3221-31, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16687569

RESUMO

Cajal bodies (CBs) have been implicated in the nuclear phase of the biogenesis of spliceosomal U small nuclear ribonucleoproteins (U snRNPs). Here, we have investigated the distribution of the CB marker protein coilin, U snRNPs, and proteins present in C/D box small nucleolar (sno)RNPs in cells depleted of hTGS1, SMN, or PHAX. Knockdown of any of these three proteins by RNAi interferes with U snRNP maturation before the reentry of U snRNA Sm cores into the nucleus. Strikingly, CBs are lost in the absence of hTGS1, SMN, or PHAX and coilin is dispersed in the nucleoplasm into numerous small foci. This indicates that the integrity of canonical CBs is dependent on ongoing U snRNP biogenesis. Spliceosomal U snRNPs show no detectable concentration in nuclear foci and do not colocalize with coilin in cells lacking hTGS1, SMN, or PHAX. In contrast, C/D box snoRNP components concentrate into nuclear foci that partially colocalize with coilin after inhibition of U snRNP maturation. We demonstrate by siRNA-mediated depletion that coilin is required for the condensation of U snRNPs, but not C/D box snoRNP components, into nucleoplasmic foci, and also for merging these factors into canonical CBs. Altogether, our data suggest that CBs have a modular structure with distinct domains for spliceosomal U snRNPs and snoRNPs.


Assuntos
Corpos Enovelados/metabolismo , Corpos Enovelados/ultraestrutura , Proteínas Nucleares/análise , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/biossíntese , Núcleo Celular/química , Núcleo Celular/ultraestrutura , Corpos Enovelados/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Células HeLa , Humanos , Metilação , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Mutação , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inibidores , Proteínas de Transporte Nucleocitoplasmático/genética , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U4-U6/análise , Proteínas do Complexo SMN , Spliceossomos/metabolismo , Spliceossomos/ultraestrutura
14.
Reproduction ; 130(4): 453-65, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16183863

RESUMO

During mouse preimplantation development, two isozymes of protein kinase C (PKC), delta and epsilon, transiently localize to nuclei at the early four-cell stage. In order to study their functions at this stage, we altered the subcellular localization of these isozymes (ratio of nuclear to cytoplasmic concentrations) with peptides that specifically activate or inhibit translocation of each isozyme. The effects of altering nuclear concentration of each isozyme on transcription (5-bromouridine 5'-triphosphate (BrUTP) incorporation), amount and distribution of small nuclear ribonucleoproteins (snRNPs), nucleolar dynamics (immunocytochemistry for Smith antigen (Sm) protein) and the activity of embryonic alkaline phosphatase (EAP; histochemistry) were examined. We found that nuclear concentration of PKC epsilon correlated with total mRNA transcription. Higher nuclear concentrations of both PKC delta and epsilon decreased storage of snRNPs in Cajal bodies and decreased the number of nucleoli, but did not affect the nucleoplasmic concentration of snRNPs. Inhibiting translocation of PKC delta out of the nucleus at the early four-cell stage decreased cytoplasmic EAP activity, whereas inhibiting translocation of PKC epsilon increased EAP activity slightly. These results indicate that translocation of PKC delta and epsilon in and out of nuclei at the early four-cell stage in mice can affect transcription or message processing, and that sequestration of these PKC in nuclei can also affect the activity of a cytoplasmic protein (EAP).


Assuntos
Blastômeros/enzimologia , Proteína Quinase C-delta/análise , Proteína Quinase C-épsilon/análise , Transcrição Gênica , Fosfatase Alcalina/metabolismo , Animais , Autoantígenos , Transporte Biológico , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Núcleo Celular/enzimologia , Células Cultivadas , Citoplasma/enzimologia , Imuno-Histoquímica/métodos , Camundongos , Microscopia Confocal , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo , Translocação Genética , Proteínas Centrais de snRNP
15.
Biochem Biophys Res Commun ; 333(2): 550-4, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15963469

RESUMO

Snu13p is a bifunctional yeast protein involved in both messenger RNA splicing as well as ribosomal RNA maturation. Snu13p initiates assembly of ribonucleoprotein particles by interacting with a conserved RNA motif called kink turn. Unlike its archaeal homolog, L7Ae, Snu13p displays differential specificity for functionally distinct kink turns. Thus, the structures of Snu13p at different functional states, including those alone and bound with RNAs, are required to understand how the protein differentially interacts with kink turns. Although the structure of the human homolog of Snu13p bound with a spliceosomal RNA is known, there has not been a report of a structure of free Snu13p. This has hindered our ability to understand the structural basis for Snu13p's substrate specificity. We report a crystal structure of free Snu13p at 1.9A and a detailed structural comparison with its homologs. We show that free Snu13p has nearly an identical conformation as that of its human homolog bound with RNA. Interestingly, both eukaryotic proteins exhibit notable structural differences in their central beta-sheets as compared to their archaeal homolog, L7Ae. The observed structural differences offer a possible explanation to the observed difference in RNA specificity between Snu13p and L7Ae.


Assuntos
Modelos Químicos , Modelos Moleculares , RNA/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Spliceossomos/química , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Cristalografia , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleolares Pequenas/análise , Proteínas de Saccharomyces cerevisiae/análise , Homologia de Sequência de Aminoácidos
16.
Mol Cell Biol ; 25(13): 5543-51, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15964810

RESUMO

Reduction of the survival of motor neurons (SMN) protein levels causes the motor neuron degenerative disease spinal muscular atrophy, the severity of which correlates with the extent of reduction in SMN. SMN, together with Gemins 2 to 7, forms a complex that functions in the assembly of small nuclear ribonucleoprotein particles (snRNPs). Complete depletion of the SMN complex from cell extracts abolishes snRNP assembly, the formation of heptameric Sm cores on snRNAs. However, what effect, if any, reduction of SMN protein levels, as occurs in spinal muscular atrophy patients, has on the capacity of cells to produce snRNPs is not known. To address this, we developed a sensitive and quantitative assay for snRNP assembly, the formation of high-salt- and heparin-resistant stable Sm cores, that is strictly dependent on the SMN complex. We show that the extent of Sm core assembly is directly proportional to the amount of SMN protein in cell extracts. Consistent with this, pulse-labeling experiments demonstrate a significant reduction in the rate of snRNP biogenesis in low-SMN cells. Furthermore, extracts of cells from spinal muscular atrophy patients have a lower capacity for snRNP assembly that corresponds directly to the reduced amount of SMN. Thus, SMN determines the capacity for snRNP biogenesis, and our findings provide evidence for a measurable deficiency in a biochemical activity in cells from patients with spinal muscular atrophy.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Atrofia Muscular Espinal/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Animais , Biotinilação , Extratos Celulares/análise , Linhagem Celular , Linhagem Celular Transformada , Transformação Celular Viral , Galinhas , Citoplasma/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Herpesvirus Humano 4 , Humanos , Cinética , Modelos Biológicos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/patologia , Radioisótopos de Fósforo , Ligação Proteica , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/análise , Proteínas do Complexo SMN , Sensibilidade e Especificidade , Transcrição Gênica
17.
Biochem Biophys Res Commun ; 332(2): 585-92, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15896718

RESUMO

Although Alzheimer's Abeta peptide has been shown to form beta-sheet structure, a high-resolution molecular structure is still unavailable to date. A search for a sequence neighbor using Abeta(10-42) as the query in the Protein Data-Bank (PDB) revealed that an RNA binding protein, AF-Sm1 from Archaeoglobus fulgidus (PDB entry: 1i4k chain Z), shared 36% identical residues. Using AF-Sm1 as a template, we built a molecular model of Abeta(10-42) by applying comparative modeling methods. The model of Abeta(10-42) contains an antiparallel beta-sheet formed by residues 16-23 and 32-41. Hydrophobic surface constituted by residues 17-20 (LVFF) separates distinctly charged regions. Residues that interact with RNA in the AF-Sm1 crystal structure were found to be conserved in Abeta. Using a native gel we demonstrate for the first time that RNA can interact with Abeta and selectively retard the formation of fibrils or higher-order oligomers. We hypothesize that in a similar fashion to AF-Sm1, RNA interacts with Abeta in the beta-hairpin (beta-turn-beta) structure and prevents fibril formation.


Assuntos
Peptídeos beta-Amiloides/química , Proteínas Arqueais/química , Modelos Químicos , Modelos Moleculares , Ribonucleoproteínas Nucleares Pequenas/química , Sequência de Aminoácidos , Peptídeos beta-Amiloides/análise , Proteínas Arqueais/análise , Sítios de Ligação , Simulação por Computador , Dimerização , Dados de Sequência Molecular , Complexos Multiproteicos/análise , Complexos Multiproteicos/química , Ligação Proteica , Conformação Proteica , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/química , Ribonucleoproteínas Nucleares Pequenas/análise , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
18.
Eur J Histochem ; 49(1): 67-74, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15823798

RESUMO

The localization and abundance of the estrogen receptor activation factor (E-RAF) and a small nuclear ribonucleoprotein (snRNP) complex containing three proteins, p32, p55 and p60, which interact with the nuclear estrogen receptor II (nER II), have been studied in rat endometrial epithelial cells by means of immunofluorescence and high resolution quantitative immunocytochemistry. In the cytoplasm E-RAF is associated with the rough endoplasmic reticulum. In the nucleus it is mainly localized at the interchromatin space, and surrounding the clumps of compact or semi-condensed chromatin. Quantitative analyses show that the abundance of E-RAF in the nucleus increases after ovariectomy and decreases 3 minutes after estradiol administration. These results are in agreement with the currently available biochemical data. Double immunolocalizations demonstrate that p32, p55, p60 co-localize with other splicing-related protein. High resolution immunolocalization shows that p32, p55, p60 are associated with perichromatin fibrils (co-transcriptional splicing) and with clusters of interchromatin granules (storage of splicing-related molecules). The nuclear abundance of the snRNP complex decreases with ovariectomy, increases within 3 minutes after estradiol administration and remains higher than that in ovariectomized animals for 27 minutes. These results strongly support the previous data on the role of nER-II in the regulation of mRNA transcription and its export from the nucleus to the cytoplasm.


Assuntos
Endométrio/metabolismo , Células Epiteliais/metabolismo , Estradiol/farmacologia , Proteínas/metabolismo , Receptores de Estrogênio/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Animais , Endométrio/citologia , Endométrio/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Feminino , Imuno-Histoquímica/métodos , Proteínas/análise , Proteínas/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Estrogênio/análise , Receptores de Estrogênio/efeitos dos fármacos , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/efeitos dos fármacos
19.
Differentiation ; 73(2-3): 99-108, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15811133

RESUMO

In some species of insects, oocytes have vesicular organelles, termed accessory nuclei (ANs). The ANs form by budding off from the nuclear envelope of the oocyte and are filled with translucent matrix containing dense inclusions. One type of these inclusions contains coilin and small nuclear ribonucleoproteins (snRNPs) and is homologous to Cajal bodies. We describe the early events in the morphogenesis of Cajal bodies in the ANs (ANCBs) of the common wasp, Vespula germanica, and show that they contain survival of motor neurons (SMN) protein. We present evidence that in the wasp, ANCBs form by the gradual accumulation of aggregates composed of SMN and small nuclear RNAs. We also show that ANCBs break down and disperse within the ANs as the ANs, which initially surround the oocyte nucleus, localize to the oocyte cortex. The components of dispersed ANCBs are retained within ANs until the end of oogenesis, which suggests that their function may be required at the onset of embryonic development. Because the morphology and behavior of ANs and their Cajal body-like inclusions are conserved in two other hymenopteran species, these features might be characteristic of all hymenopterans.


Assuntos
Núcleo Celular/ultraestrutura , Corpos Enovelados/ultraestrutura , Vespas/citologia , Animais , Hibridização In Situ , Microscopia Imunoeletrônica , Oócitos/citologia , Ribonucleoproteínas Nucleares Pequenas/análise , Vitelogeninas/genética , Vespas/genética
20.
Chromosoma ; 113(6): 316-23, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15616868

RESUMO

In the oocyte nuclei (germinal vesicle or GV) of a variety of avian species, prominent spherical entities termed protein bodies (PBs) arise at the centromeric regions of the lampbrush chromosomes (LBCs). In spite of the obvious protein nature of PBs, nothing is known about their composition. We show that an antibody against DNA topoisomerase II (topo II), the DNA unwinding enzyme, recognizes PBs from chaffinch and pigeon oocytes. In later chaffinch oocytes, the PBs fuse to form a karyosphere, which is also labeled by the anti-topo II antibody. Furthermore, we show that proteins characteristic of Cajal bodies and B-snurposomes are not found in PBs, despite morphological similarities among these structures. Using immunoelectron microscopy and immunofluorescent laser scanning microscopy we demonstrated that topo II localizes predominantly in the dense material of PBs. Two antigens of approximately 170 kDa (which corresponds to topo II) and approximately 100 kDa were revealed with the antibody against topo II on immunoblots of avian GV proteins. We propose that the smaller protein results from oocyte specific topo II cleavage, since it was not detected in nuclei from testis cells. This represents the first report of a defined protein in the centromeric PBs on avian LBCs.


Assuntos
Antígenos de Neoplasias/imunologia , Proteínas Aviárias/análise , Aves/genética , Centrômero/química , Estruturas Cromossômicas/química , DNA Topoisomerases Tipo II/imunologia , Proteínas de Ligação a DNA/imunologia , Proteínas Nucleares/análise , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Neoplasias/análise , Estruturas Cromossômicas/ultraestrutura , Columbidae/genética , DNA Topoisomerases Tipo II/análise , Proteínas de Ligação a DNA/análise , Masculino , Proteínas Nucleares/imunologia , Oócitos/química , Oócitos/crescimento & desenvolvimento , Passeriformes/genética , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/análise , Testículo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...