Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
PLoS Pathog ; 19(5): e1011393, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37235600

RESUMO

To gain a better insight of how Copper (Cu) ions toxify cells, metabolomic analyses were performed in S. aureus strains that lacks the described Cu ion detoxification systems (ΔcopBL ΔcopAZ; cop-). Exposure of the cop- strain to Cu(II) resulted in an increase in the concentrations of metabolites utilized to synthesize phosphoribosyl diphosphate (PRPP). PRPP is created using the enzyme phosphoribosylpyrophosphate synthetase (Prs) which catalyzes the interconversion of ATP and ribose 5-phosphate to PRPP and AMP. Supplementing growth medium with metabolites requiring PRPP for synthesis improved growth in the presence of Cu(II). A suppressor screen revealed that a strain with a lesion in the gene coding adenine phosphoribosyltransferase (apt) was more resistant to Cu. Apt catalyzes the conversion of adenine with PRPP to AMP. The apt mutant had an increased pool of adenine suggesting that the PRPP pool was being redirected. Over-production of apt, or alternate enzymes that utilize PRPP, increased sensitivity to Cu(II). Increasing or decreasing expression of prs resulted in decreased and increased sensitivity to growth in the presence of Cu(II), respectively. We demonstrate that Prs is inhibited by Cu ions in vivo and in vitro and that treatment of cells with Cu(II) results in decreased PRPP levels. Lastly, we establish that S. aureus that lacks the ability to remove Cu ions from the cytosol is defective in colonizing the airway in a murine model of acute pneumonia, as well as the skin. The data presented are consistent with a model wherein Cu ions inhibits pentose phosphate pathway function and are used by the immune system to prevent S. aureus infections.


Assuntos
Cobre , Staphylococcus aureus , Animais , Camundongos , Staphylococcus aureus/metabolismo , Via de Pentose Fosfato , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo , Fosforribosil Pirofosfato/metabolismo , Adenina
2.
Nat Struct Mol Biol ; 30(3): 391-402, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36747094

RESUMO

The universally conserved enzyme phosphoribosyl pyrophosphate synthetase (PRPS) assembles filaments in evolutionarily diverse organisms. PRPS is a key regulator of nucleotide metabolism, and mutations in the human enzyme PRPS1 lead to a spectrum of diseases. Here we determine structures of human PRPS1 filaments in active and inhibited states, with fixed assembly contacts accommodating both conformations. The conserved assembly interface stabilizes the binding site for the essential activator phosphate, increasing activity in the filament. Some disease mutations alter assembly, supporting the link between filament stability and activity. Structures of active PRPS1 filaments turning over substrate also reveal coupling of catalysis in one active site with product release in an adjacent site. PRPS1 filaments therefore provide an additional layer of allosteric control, conserved throughout evolution, with likely impact on metabolic homeostasis. Stabilization of allosteric binding sites by polymerization adds to the growing diversity of assembly-based enzyme regulatory mechanisms.


Assuntos
Ribose-Fosfato Pirofosfoquinase , Humanos , Sítio Alostérico , Mutação , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo
3.
Mol Pharmacol ; 103(4): 199-210, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669880

RESUMO

6-Mercaptopurine (6-MP) is a key component in maintenance therapy for childhood acute lymphoblastic leukemia (ALL). Recent next-generation sequencing analysis of childhood ALL clarified the emergence of the relapse-specific mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism. In this scenario, minor clones of leukemia cells could acquire the 6-MP-resistant phenotype as a result of the NT5C2 or PRPS1 mutation during chemotherapy (including 6-MP treatment) and confer disease relapse after selective expansion. Thus, to establish new therapeutic modalities overcoming 6-MP resistance in relapsed ALL, human leukemia models with NT5C2 and PRPS1 mutations in the intrinsic genes are urgently required. Here, mimicking the initiation process of the above clinical course, we sought to induce two relapse-specific hotspot mutations (R39Q mutation of the NT5C2 gene and S103N mutation of the PRPS1 gene) into a human lymphoid leukemia cell line by homologous recombination (HR) using the CRISPR/Cas9 system. After 6-MP selection of the cells transfected with Cas9 combined with single-guide RNA and donor DNA templates specific for either of those two mutations, we obtained the sublines with the intended NT5C2-R39Q and PRPS1-S103N mutation as a result of HR. Moreover, diverse in-frame small insertion/deletions were also confirmed in the 6-MP-resistant sublines at the target sites of the NT5C2 and PRPS1 genes as a result of nonhomologous end joining. These sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations in the 6-MP sensitivity and development of therapy overcoming the thiopurine resistance of leukemia cells. SIGNIFICANCE STATEMENT: Mimicking the initiation process of relapse-specific mutations of the NT5C2 and PRPS1 genes in childhood acute lymphoblastic leukemia treated with 6-mercaptopurine (6-MP), this study sought to introduce NT5C2-R39Q and PRPS1-S103N mutations into a human lymphoid leukemia cell line by homologous recombination using the CRISPR/Cas9 system. In the resultant 6-MP-resistant sublines, the intended mutations and diverse in-frame small insertions/deletions were confirmed, indicating that the obtained sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations.


Assuntos
Mercaptopurina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mercaptopurina/farmacologia , Sistemas CRISPR-Cas/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Recidiva , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/uso terapêutico , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo
4.
Front Immunol ; 13: 989263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203561

RESUMO

Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is the first enzyme in the de novo purine nucleotide synthesis pathway and is essential for cell development. However, the effect of PRPS1 on melanoma proliferation and metastasis remains unclear. This study aimed to investigate the regulatory mechanism of PRPS1 in the malignant progression of melanoma. Here, we found PRPS1 was upregulated in melanoma and melanoma cells. In addition, our data indicated that PRPS1 could promote the proliferation and migration and invasion of melanoma both in vitro and in vivo. PRPS1 also could inhibit melanoma cell apoptosis. Furthermore, we found NRF2 is an upstream transcription factor of PRPS1 that drive malignant progression of melanoma.


Assuntos
Melanoma , Ribose-Fosfato Pirofosfoquinase , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nucleotídeos de Purina , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo , Síndrome , Regulação para Cima
5.
Cells ; 11(12)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35741038

RESUMO

Phosphoribosyl pyrophosphate synthetase (PRS EC 2.7.6.1) is a rate-limiting enzyme that irreversibly catalyzes the formation of phosphoribosyl pyrophosphate (PRPP) from ribose-5-phosphate and adenosine triphosphate (ATP). This key metabolite is required for the synthesis of purine and pyrimidine nucleotides, the two aromatic amino acids histidine and tryptophan, the cofactors nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), all of which are essential for various life processes. Despite its ubiquity and essential nature across the plant and animal kingdoms, PRPP synthetase displays species-specific characteristics regarding the number of gene copies and architecture permitting interaction with other areas of cellular metabolism. The impact of mutated PRS genes in the model eukaryote Saccharomyces cerevisiae on cell signalling and metabolism may be relevant to the human neuropathies associated with PRPS mutations. Human PRPS1 and PRPS2 gene products are implicated in drug resistance associated with recurrent acute lymphoblastic leukaemia and progression of colorectal cancer and hepatocellular carcinoma. The investigation of PRPP metabolism in accepted model organisms, e.g., yeast and zebrafish, has the potential to reveal novel drug targets for treating at least some of the diseases, often characterized by overlapping symptoms, such as Arts syndrome and respiratory infections, and uncover the significance and relevance of human PRPS in disease diagnosis, management, and treatment.


Assuntos
Fosforribosil Pirofosfato , Peixe-Zebra , Trifosfato de Adenosina/química , Animais , Humanos , NAD , Recidiva Local de Neoplasia , Fosforribosil Pirofosfato/metabolismo , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Peixe-Zebra/metabolismo
6.
Biochem Genet ; 60(4): 1380-1401, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35039981

RESUMO

Neuroblastoma is a malignant tumor originating from the primitive neural crest. Circular RNA (circRNA) Kinesin Superfamily Protein 2A (circKIF2A, also known as hsa_circ_0129276) has been reported to be upregulated in neuroblastoma. However, the molecular mechanism of circKIF2A participated in neuroblastoma is poorly defined. We analyzed the expression levels of circKIF2A, microRNA-377-3p (miR-377-3p), and phosphoribosyl pyrophosphate synthetase 1 (PRPS1) in neuroblastoma tissues and cell lines (SK-N-AS and LAN-6) and explored their roles. The expression levels of CircKIF2A and PRPS1 were increased and that of miR-377-3p were decreased in 21 neuroblastoma tissues and cells. Functionally, the silencing of circKIF2A inhibited cell proliferation, migration, invasion, and glycolysis, boosted apoptosis in neuroblastoma cells in vitro, and blocked the growth of subcutaneously transplanted tumors in nude mice. Mechanically, circKIF2A could work as a sponge of miR-377-3p to enhance PRPS1 expression. CircKIF2A knockdown impedes cell proliferation, metastasis, and glycolysis partly by regulating the miR-377-3p/PRPS1 axis, suggesting that targeting circKIF2A can be a feasible therapeutic strategy for neuroblastoma.


Assuntos
MicroRNAs , Neuroblastoma , RNA Circular , Ribose-Fosfato Pirofosfoquinase , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Neuroblastoma/genética , RNA Circular/genética , Ribose-Fosfato Pirofosfoquinase/genética
7.
Cell Death Differ ; 29(1): 206-217, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465890

RESUMO

Cells coordinate their behaviors with the mechanical properties of the extracellular matrix (ECM). Tumor cells frequently harbor an enhanced nucleotide synthesis, presumably to meet the increased demands for rapid proliferation. Nevertheless, how ECM rigidity regulates nucleotide metabolism remains elusive. Here we show that shift from stiff to soft matrix blunts glycolysis-derived nucleotide synthesis in tumor cells. Soft ECM results in TNF receptor-associated factor 2 (TRAF2)-dependent K29 ubiquitination and degradation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2. Recruitment of TRAF2 to PRPS1/2 requires phosphorylation of PRPS1 S285 or PRPS2 T285, which is mediated by low stiffness-activated large tumor suppressor (LATS)1/2 kinases. Further, non-phosphoryable or non-ubiquitinatable PRPS1/2 mutations maintain PRPS1/2 expression and nucleotide synthesis at low stiffness, and promote tumor growth and metastasis. Our findings demonstrate that PRPS1/2 stability and nucleotide metabolism is ECM rigidity-sensitive, and thereby highlight a regulatory cascade underlying mechanics-guided tumor metabolism reprogramming.


Assuntos
Fosforribosil Pirofosfato , Ribose-Fosfato Pirofosfoquinase , Ligases/metabolismo , Nucleotídeos/metabolismo , Fosforilação , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo
8.
Immunol Invest ; 51(5): 1423-1436, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34251965

RESUMO

BACKGROUND: Phosphoribosyl pyrophosphate synthetases 2 (PRPS2) is reported as an oncogene in various cancers. However, the role of PRPS2 in cisplatin (DDP) resistance of non-small cell lung cancer (NSCLC) remains unclear. The present study aimed to explore the effect of PRPS2 in DDP resistance of NSCLC. METHODS: mRNA expression levels of genes were detected by RT-PCR. Enzyme-linked immunosorbent assay (ELISA) and Western blot were used to detect protein expression levels. Cell viability was determined by the MTT assay and colony formation assay. Cell apoptosis was detected using nucleosome ELISA assay and caspase-3 activity assay. PRPS2 silencing was achieved using siRNA transfection. Exosomes of cultured cells were isolated through ultracentrifugation. RESULTS: Elevated PRPS2 was correlated with DDP resistance and poor prognosis in NSCLC patients. PRPS2 silencing enhanced sensitivity of DDP-resistant cells to DDP treatment. NSCLC cell-derived exosome induced M2 macrophage polarization. PRPS2 was enriched in the exosomes of NSCLC cells. Exosomal PRPS2 mediated M2 macrophage polarization to promote DDP resistance of NSCLC cells. CONCLUSIONS: In conclusion, PRPS2 potentiates resistance to DDP by promoting exosome-mediated macrophage M2 polarization in NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Macrófagos , Ribose-Fosfato Pirofosfoquinase , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , MicroRNAs/genética , Prognóstico , Ribose-Fosfato Pirofosfoquinase/genética
9.
Intern Med ; 61(11): 1749-1751, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34803094

RESUMO

The PRPS1 gene encodes phosphoribosyl pyrophosphate synthetase 1 (PRS-1). The phenotypes associated with PRPS1 mutations include DFN2 (mild PRS-1 deficiency), X-linked Charcot-Marie-Tooth disease type 5 (CMTX5) (moderate PRS-1 deficiency), Arts syndrome (severe PRS-1 deficiency), and PRS-1 superactivity1. CMTX5 is a very rare hereditary neuropathy characterized by deafness, optic atrophy, and polyneuropathy. We herein report a Japanese patient with CMTX5 who had a novel hemizygous mutation c.82 G>C in PRPS1. Despite showing a typical clinical picture, the decrease in enzyme activity measured in the patient's erythrocytes was milder than in previously reported cases.


Assuntos
Doença de Charcot-Marie-Tooth , Polineuropatias , Doença de Charcot-Marie-Tooth/genética , Perda Auditiva Central , Humanos , Japão , Transtornos Musculares Atróficos , Mutação/genética , Atrofias Ópticas Hereditárias , Ribose-Fosfato Pirofosfoquinase/genética
10.
J Cell Mol Med ; 25(22): 10521-10533, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636169

RESUMO

In chemotherapy for childhood acute lymphoblastic leukaemia (ALL), maintenance therapy consisting of oral daily mercaptopurine and weekly methotrexate is important. NUDT15 variant genotype is reportedly highly associated with severe myelosuppression during maintenance therapy, particularly in Asian and Hispanic populations. It has also been demonstrated that acquired somatic mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism, are detectable in a portion of relapsed childhood ALL. To directly confirm the significance of the NUDT15 variant genotype and NT5C2 and PRPS1 mutations in thiopurine sensitivity of leukaemia cells in the intrinsic genes, we investigated 84 B-cell precursor-ALL (BCP-ALL) cell lines. Three and 14 cell lines had homozygous and heterozygous variant diplotypes of the NUDT15 gene, respectively, while 4 and 2 cell lines that were exclusively established from the samples at relapse had the NT5C2 and PRPS1 mutations, respectively. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with DNA-incorporated thioguanine levels after exposure to thioguanine at therapeutic concentration. Considering the continuous exposure during the maintenance therapy, we evaluated in vitro mercaptopurine sensitivity after 7-day exposure. Mercaptopurine concentrations lethal to 50% of the leukaemia cells were comparable to therapeutic serum concentration of mercaptopurine. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with mercaptopurine sensitivity in 83 BCP-ALL and 23 T-ALL cell lines. The present study provides direct evidence to support the general principle showing that both inherited genotype and somatically acquired mutation are crucially implicated in the drug sensitivity of leukaemia cells.


Assuntos
5'-Nucleotidase/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mercaptopurina/farmacologia , Mutação , Polimorfismo Genético , Pirofosfatases/genética , Ribose-Fosfato Pirofosfoquinase/genética , Alelos , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Genótipo , Humanos
11.
Aging (Albany NY) ; 13(3): 4063-4078, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33493137

RESUMO

Pluripotent stem cells (PSCs) have a unique energetic and biosynthetic metabolism compared with typically differentiated cells. However, the metabolism profiling of PSCs and its underlying mechanism are still unclear. Here, we report PSCs metabolism profiling and identify the purine synthesis enzymes, phosphoribosyl pyrophosphate synthetase 1/2 (PRPS1/2), are critical for PSCs stemness and survival. Ultra-high performance liquid chromatography/mass spectroscopy (UHPLC-MS) analysis revealed that purine synthesis intermediate metabolite levels in PSCs are higher than that in somatic cells. Ectopic expression of PRPS1/2 did not improve purine biosynthesis, drug resistance, or stemness in PSCs. However, knockout of PRPS1 caused PSCs DNA damage and apoptosis. Depletion of PRPS2 attenuated PSCs stemness and assisted PSCs differentiation. Our finding demonstrates that PRPS1/2-mediated purine biosynthesis is critical for pluripotent stem cell stemness and survival.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes/metabolismo , Purinas/biossíntese , Ribose-Fosfato Pirofosfoquinase/genética , Apoptose/genética , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Sobrevivência Celular/genética , Cromatografia Líquida , Dano ao DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Espectrometria de Massas , Metaboloma , Nucleotídeos de Purina , Purinas/metabolismo , Ribose-Fosfato Pirofosfoquinase/metabolismo
12.
Zhonghua Nan Ke Xue ; 26(2): 128-133, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-33346415

RESUMO

OBJECTIVE: To investigate the expression of phosphoribosyl pyrophosphate synthase 2 (PRPS2) in the human testis and its clinical significance. METHODS: Using quantitative real-time PCR (qRT-PCR) and immunohistochemistry, we detected the expression of PRPS2 mRNA in the testis tissue of the men with normal spermatogenesis or mile, moderate or severe hypospermatogenesis (HS) and that of the PRPS2 protein in the testicular biopsy tissue of 67 adult males. Then, we analyzed the relationship of the PRPS2 expressions with the testicular histological types and clinical parameters of the subjects. RESULTS: The expression of PRPS2 mRNA in the testis tissue was significantly higher in the normal spermatogenesis group than in the moderate and severe HS groups (P < 0.01). The positive expression of the PRPS2 protein was 70.0% in the normal spermatogenesis group, 66.7% in the mild HS group, 50.0% in the moderate HS group and 23.8% in the severe HS group, significantly higher in the normal spermatogenesis and mild HS groups than in the moderate and severe HS groups (P < 0.01). No significant correlation, however, was observed between the PRPS2 expression and clinical parameters of the subjects (P > 0.05). CONCLUSIONS: PRPS2 is lowly expressed in the testis tissue of the men with hypospermatogenesis and its expression level may help the diagnosis of male infertility and the prediction of the spermatogenic function of the testis.


Assuntos
Infertilidade Masculina/genética , Oligospermia/genética , Ribose-Fosfato Pirofosfoquinase/genética , Testículo/enzimologia , Adulto , Humanos , Masculino , Espermatogênese
13.
Neuroreport ; 31(17): 1225-1235, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33105440

RESUMO

Neuroblastoma is an important problem in children. Long noncoding RNAs (lncRNAs) exhibit important roles in tumorigenicity of neuroblastoma. However, the role and mechanism of lncRNA small nucleolar RNA host gene 16 (SNHG16) in neuroblastoma tumorigenicity remain poorly understood. Forty-six neuroblastoma samples and 28 normal tissues were harvested. The levels of SNHG16, microRNA-15b-5p (miR-15b-5p), and phosphoribosyl pyrophosphate synthetase 1 (PRPS1) were detected via quantitative reverse transcription PCR or western blot. Cell proliferation as well as cycle distribution were measured via 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide or flow cytometry. Cell metastasis was investigated via epithelial-mesenchymal transition or transwell assay. The target relationship of miR-15b-5p and SNHG16 or PRPS1 was explored via starBase and dual-luciferase reporter assay. The role of SNHG16 in neuroblastoma in vivo was analyzed using a xenograft model. We found SNHG16 and PRPS1 levels were increased in neuroblastoma tissues and cells. SNHG16 knockdown inhibited cell proliferation, increased the cell cycle distribution at G0/G1 phase, and decreased the cells at S phase. SNHG16 overexpression caused an opposite effect. SNHG16 silence suppressed neuroblastoma cell metastasis. PRPS1 knockdown constrained cell proliferation and metastasis and regulated cell cycle distribution. miR-15b-5p was sponged by SNHG16 and directly targeted PRPS1. miR-15b-5p knockdown or PRPS1 overexpression mitigated the influence of SNHG16 silence on cell cycle, proliferation, and metastasis. SNHG16 knockdown reduced xenograft tumor growth. In conclusion, SNHG16 downregulation suppressed neuroblastoma tumorigenicity by regulating cell cycle, proliferation, and metastasis via miR-15b-5p/PRPS1 axis.


Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , MicroRNAs/metabolismo , Neuroblastoma/metabolismo , RNA Longo não Codificante/metabolismo , Ribose-Fosfato Pirofosfoquinase/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Criança , Técnicas de Silenciamento de Genes/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Neuroblastoma/genética , Neuroblastoma/patologia , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , Ribose-Fosfato Pirofosfoquinase/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
Eur J Med Genet ; 63(11): 104033, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32781272

RESUMO

We describe two sporadic and two familial cases with loss-of-function variants in PRPS1, which is located on the X chromosome and encodes phosphoribosyl pyrophosphate synthetase 1 (PRS-1). We illustrate the clinical variability associated with decreased PRS-1 activity, ranging from mild isolated hearing loss to severe encephalopathy. One of the variants we identified has already been reported with a phenotype similar to our patient's, whereas the other three were unknown. The clinical and biochemical information we provide will hopefully contribute to gain insight into the correlation between genotype and phenotype of this rare condition, both in females and in males. Moreover, our observation of a new family in which hemizygous males display hearing loss without any neurological or ophthalmological symptoms prompts us to suggest analysing PRPS1 in cases of isolated hearing loss. Eventually, PRPS1 variants should be considered as a differential diagnosis of mitochondrial disorders.


Assuntos
Ataxia/genética , Surdocegueira/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Mutação com Perda de Função , Fenótipo , Ribose-Fosfato Pirofosfoquinase/genética , Ataxia/patologia , Criança , Surdocegueira/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Linhagem
15.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650483

RESUMO

While a plethora of genetic techniques have been developed over the past century, modifying specific sequences of the fruit fly genome has been a difficult, if not impossible task. clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 truly redefined molecular genetics and provided new tools to model human diseases in Drosophila melanogaster. This is particularly true for genes whose protein sequences are highly conserved. Phosphoribosyl pyrophosphate synthetase (PRPS) is a rate-limiting enzyme in nucleotide metabolism whose missense mutations are found in several neurological disorders, including Arts syndrome. In addition, PRPS is deregulated in cancer, particularly those that become resistant to cancer therapy. Notably, Drosophila PRPS shares about 90% protein sequence identity with its human orthologs, making it an ideal gene to study via CRISPR/Cas9. In this review, we will summarize recent findings on PRPS mutations in human diseases including cancer and on the molecular mechanisms by which PRPS activity is regulated. We will also discuss potential applications of Drosophila CRISPR/Cas9 to model PRPS-dependent disorders and other metabolic diseases that are associated with nucleotide metabolism.


Assuntos
Ataxia/genética , Surdocegueira/genética , Drosophila melanogaster/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Ribose-Fosfato Pirofosfoquinase/genética , Animais , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Edição de Genes/métodos , Humanos , Mutação/genética
16.
Reproduction ; 160(2): 193-203, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413846

RESUMO

Cloned pigs generated by the somatic cell transfer nuclear (SCNT) technique are highly valuable for agriculture, biomedicine, and life sciences. However, the neonatal mortality rate of cloned pigs is very high. The reasons causing the massive loss of cloned pigs during their neonatal ages are unclear. In the present study, we found that the neonatal death of cloned pigs was associated with aberrant purine metabolism, impaired renal morphology and function, and decreased hepatic Hprt1 expression. The downregulation of Hprt1, a key purine metabolism regulation gene, in the liver was responsible for the elevation of an important purine metabolite, uric acid, in the serum, causing abnormalities in kidney morphology and function and leading to death of neonatal cloned pigs. This study provided insights into the pathophysiological mechanisms underlying the neonatal death of clone pigs, and results will help improve their survival rate.


Assuntos
Clonagem de Organismos/efeitos adversos , Hipoxantina Fosforribosiltransferase/metabolismo , Rim/fisiopatologia , Fígado/fisiopatologia , Mortalidade/tendências , Técnicas de Transferência Nuclear/efeitos adversos , Ribose-Fosfato Pirofosfoquinase/metabolismo , Animais , Feminino , Humanos , Hipoxantina Fosforribosiltransferase/genética , Masculino , Ribose-Fosfato Pirofosfoquinase/genética , Suínos
17.
J Cell Mol Med ; 24(12): 6704-6715, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32391636

RESUMO

Patients with relapsed/refractory Burkitt's lymphoma (BL) have a dismal prognosis. Current research efforts aim to increase cure rates by identifying high-risk patients in need of more intensive or novel therapy. The 8q24 chromosomal translocation of the c-Myc gene, a main molecular marker of BL, is related to the metabolism by regulating phosphoribosyl pyrophosphate synthetase 2 (PRPS2). In our study, BL showed significant resistance to thiopurines. PRPS2 homologous isoenzyme, PRPS1, was demonstrated to play the main role in thiopurine resistance. c-Myc did not have direct effects on thiopurine resistance in BL for only driving PRPS2. PRPS1 wild type (WT) showed different resistance to 6-mercaptopurine (6-mp) in different metabolic cells because it could be inhibited by adenosine diphosphate or guanosine diphosphate negative feedback. PRPS1 A190T mutant could dramatically increase thiopurine resistance in BL. The interim analysis of the Treatment Regimen for Children or Adolescent with mature B cell non-Hodgkin's lymphoma in China (CCCG-B-NHL-2015 study) confirms the value of high-dose methotrexate (MTX) and cytarabine (ARA-C) in high-risk paediatric patients with BL. However, there remains a subgroup of patients with lactate dehydrogenase higher than four times of the normal value (4N) for whom novel treatments are needed. Notably, we found that the combination of thiopurines and the phosphoribosylglycinamide formyltransferase (GART) inhibitor lometrexol could serve as a therapeutic strategy to overcome thiopurine resistance in BL.


Assuntos
Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mercaptopurina/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , Ribose-Fosfato Pirofosfoquinase/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HEK293 , Humanos , Mercaptopurina/farmacologia , Mutação/genética , Nucleotídeos/metabolismo , Tetra-Hidrofolatos/farmacologia , Tetra-Hidrofolatos/uso terapêutico
18.
Dev Dyn ; 249(8): 1018-1031, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32243675

RESUMO

BACKGROUND: The self-assembly of metabolic enzymes into filaments or foci highlights an intriguing mechanism for the regulation of metabolic activity. Recently, we identified the conserved polymerization of phosphoribosyl pyrophosphate synthetase (PRPS), which catalyzes the first step in purine nucleotide synthesis, in yeast and cultured mammalian cells. While previous work has revealed that loss of PRPS activity regulates retinal development in zebrafish, the extent to which PRPS filament formation affects tissue development remains unknown. RESULTS: By generating novel alleles in the zebrafish PRPS paralogs, prps1a and prps1b, we gained new insight into the role of PRPS filaments during eye development. We found that mutations in prps1a alone are sufficient to generate abnormally small eyes along with defects in head size, pigmentation, and swim bladder inflation. Furthermore, a loss-of-function mutation that truncates the Prps1a protein resulted in the failure of PRPS filament assembly. Lastly, in mutants that fail to assemble PRPS filaments, we observed disorganization of the actin network in the lens fibers. CONCLUSIONS: The truncation of Prps1a blocked PRPS filament formation and resulted in a disorganized lens fiber actin network. Altogether, these findings highlight a potential role for PRPS filaments during lens fiber organization in zebrafish.


Assuntos
Cristalino/embriologia , Cristalino/crescimento & desenvolvimento , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Actinas/metabolismo , Sacos Aéreos/embriologia , Alelos , Animais , Olho/embriologia , Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Microscopia de Fluorescência , Mutação , Pigmentação , Polimerização , Retina/embriologia , Epitélio Pigmentado da Retina/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
19.
Anat Rec (Hoboken) ; 303(3): 544-555, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30874365

RESUMO

Hereditary deafness is often a neurosensory disorder and affects the quality of life of humans. Only three X-linked genes (POU class 3 homeobox 4 (POU3F4), phosphoribosyl pyrophosphate synthetase 1 (PRPS1), and small muscle protein X-linked (SMPX)) are known to be involved in nonsyndromic hearing loss. Four PRPS1 missense mutations have been found to associate with X-linked nonsyndromic sensorineural deafness (DFNX1/DFN2) in humans. However, a causative relationship between PRPS1 mutations and hearing loss in humans has not been well studied in any animal model. Phosphoribosyl pyrophosphate synthetase 1 (PRS-I) is highly conserved in vertebrate taxa. In this study, we used the zebrafish as a model to investigate the auditory role of zebrafish orthologs (prps1a and prps1b) of the human PRPS1 gene with whole mount in situ hybridization, reverse transcription polymerase chain reaction, phenotypic screening, confocal imaging, and electrophysiological methods. We found that both prps1a and prps1b genes were expressed in the inner ear of zebrafish. Splice-blocking antisense morpholino oligonucleotides (MO1 and MO2) caused exon-2 skip and intron-2 retention of prps1a and exon-2 skip and intron-1 retention of prps1b to knock down functions of the genes, respectively. MO1 and MO2 morphants had smaller otic vesicles and otoliths, fewer inner ear hair cells, and lower microphonic response amplitude and sensitivity than control zebrafish. Therefore, knockdown of either prps1a or prps1b resulted in significant sensorineural hearing loss in zebrafish. We conclude that the prps1 genes are essential for hearing in zebrafish, which has the potential to help us understand the biology of human deafness DFNX1/DFN2. Anat Rec, 303:544-555, 2020. © 2019 American Association for Anatomy.


Assuntos
Genes Ligados ao Cromossomo X , Perda Auditiva Neurossensorial/genética , Ribose-Fosfato Pirofosfoquinase/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Mutação , Linhagem
20.
J Cell Biochem ; 121(1): 661-671, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31385362

RESUMO

Glioblastoma multiforme (GBM) is a refractory tumor with poor prognosis and requires more effective treatment regimens. It has been confirmed that long noncoding RNAs (lncRNAs) substantially regulate various human disease including GBM. However, the biological roles and its underlying molecular mechanisms still need to be further investigated. In this study, the biological function and potential molecular mechanism of lncHAS2-AS1 in GBM were explored. It was discovered that HAS2-AS1 was elevated in glioma tissues and correlated with the prognosis of patients with glioma. Reduction of HAS2-AS1 suppressed the migration and invasion in vitro and in vivo. The transcription factor STAT1 could raise HAS2-AS1 by binding to its promoter region. Besides, HAS2-AS1 could adjust PRPS1 via sponging miR-608 in a direct manner. On the whole, the results of this study evidence that HAS2-AS1 is an oncogene and a potential therapeutic target for GBM.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Ribose-Fosfato Pirofosfoquinase/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...