Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 688
Filtrar
1.
Sci Rep ; 14(1): 10947, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740811

RESUMO

The immunomodulatory effects of omega-3 and omega-6 fatty acids are a crucial subject of investigation for sustainable fish aquaculture, as fish oil is increasingly replaced by terrestrial vegetable oils in aquafeeds. Unlike previous research focusing on fish oil replacement with vegetable alternatives, our study explored how the omega-6 to omega-3 polyunsaturated fatty acid (PUFA) ratio in low-fish oil aquafeeds influences Atlantic salmon's antiviral and antibacterial immune responses. Atlantic salmon were fed aquafeeds rich in soy oil (high in omega-6) or linseed oil (high in omega-3) for 12 weeks and then challenged with bacterial (formalin-killed Aeromonas salmonicida) or viral-like (polyriboinosinic polyribocytidylic acid) antigens. The head kidneys of salmon fed high dietary omega-3 levels exhibited a more anti-inflammatory fatty acid profile and a restrained induction of pro-inflammatory and neutrophil-related genes during the immune challenges. The high-omega-3 diet also promoted a higher expression of genes associated with the interferon-mediated signaling pathway, potentially enhancing antiviral immunity. This research highlights the capacity of vegetable oils with different omega-6 to omega-3 PUFA ratios to modulate specific components of fish immune responses, offering insights for future research on the intricate lipid nutrition-immunity interplay and the development of novel sustainable low-fish oil clinical aquaculture feeds.


Assuntos
Aeromonas salmonicida , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Doenças dos Peixes , Salmo salar , Animais , Salmo salar/imunologia , Ácidos Graxos Ômega-6/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Aeromonas salmonicida/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia , Rim Cefálico/imunologia , Ração Animal , Óleo de Soja/farmacologia , Óleos de Peixe/farmacologia , Aquicultura/métodos
2.
Mol Immunol ; 170: 26-34, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38603988

RESUMO

Neutrophils represent an important asset of innate immunity. Neutrophils express myeloperoxidase (MPO) which is a heme-containing peroxidase involved in microbial killing. In this study, by using real-time quantitative PCR and Western blot analysis, the flounder MPO (PoMPO) was observed to be highly expressed in the head kidney, followed by spleen, gill, and intestine during ontogeny - during developmental stages from larvae to adults. Furthermore, PoMPO positive cells were present in major immune organs of flounder at all developmental stages, and the number of neutrophils was generally higher as the fish grew to a juvenile stage. In addition, flow cytometry analysis revealed that the proportion of PoMPO positive cells relative to leukocytes, in the peritoneal cavity, head kidney, and peripheral blood of flounder juvenile stage was 18.3 %, 34.8 %, and 6.0 %, respectively, which is similar to the adult stage in flounder as previously reported. The presence and tissue distribution of PoMPO during ontogeny suggests that PoMPO positive cells are indeed a player of the innate immunity at all developmental stages of flounder.


Assuntos
Linguado , Imunidade Inata , Neutrófilos , Peroxidase , Animais , Linguado/imunologia , Peroxidase/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Imunidade Inata/imunologia , Brânquias/imunologia , Rim Cefálico/imunologia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Proteínas de Peixes/genética , Citometria de Fluxo , Baço/imunologia
3.
Sci Total Environ ; 928: 172389, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615763

RESUMO

PFAAs (Perfluoroalkyl acids) are a class of bioaccumulative, persistent and ubiquitous environmental contaminants which primarily occupy the hydrosphere and its sediments. Currently, a paucity of toxicological information exists for short chain PFAAs and complex mixtures. In order to address these knowledge gaps, we performed a 3-week, aqueous exposure of rainbow trout to 3 different concentrations of a PFAA mixture (50, 100 and 500 ng/L) modeled after the composition determined in Lake Ontario. We conducted an additional set of exposures to individual PFAAs (25 nM each of PFOS (12,500 ng/L), PFOA (10,300 ng/L), PFBS (7500 ng/L) or PFBA (5300 ng/L) to evaluate differences in biological response across PFAA congeners. Untargeted proteomics and phosphorylated metabolomics were conducted on the blood plasma and head kidney tissue to evaluate biological response. Plasma proteomic responses to the mixtures revealed several unexpected outcomes including Similar proteomic profiles and biological processes as the PFOS exposure regime while being orders of magnitude lower in concentration and an atypical dose response in terms of the number of significantly altered proteins (FDR < 0.1). Biological pathway analysis revealed the low mixture, medium mixture and PFOS to significantly alter (FDR < 0.05) a number of processes including those involved in lipid metabolism, oxidative stress and the nervous system. We implicate plasma increases in PPARD and PPARG as being directly related to these biological processes as they are known to be important regulators in all 3 processes. In contrast to the blood plasma, the high mixture and PFOA exposure regimes caused the greatest change to the head kidney proteome, altering many proteins being involved in lipid metabolism, oxidative stress and inflammation. Our findings support the pleiotropic effect PFAAs have on aquatic organisms at environmentally relevant doses including those on PPAR signaling, metabolic dysregulation, immunotoxicity and neurotoxicity.


Assuntos
Fluorocarbonos , Rim Cefálico , Oncorhynchus mykiss , Proteoma , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/fisiologia , Fluorocarbonos/toxicidade , Proteoma/metabolismo , Rim Cefálico/efeitos dos fármacos , Rim Cefálico/metabolismo
4.
Dev Comp Immunol ; 156: 105165, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38499166

RESUMO

Renibacterium salmoninarum causes Bacterial Kidney Disease (BKD) in several fish species. Atlantic lumpfish, a cleaner fish, is susceptible to R. salmoninarum. To profile the transcriptome response of lumpfish to R. salmoninarum at early and chronic infection stages, fish were intraperitoneally injected with either a high dose of R. salmoninarum (1 × 109 cells dose-1) or PBS (control). Head kidney tissue samples were collected at 28- and 98-days post-infection (dpi) for RNA sequencing. Transcriptomic profiling identified 1971 and 139 differentially expressed genes (DEGs) in infected compared with control samples at 28 and 98 dpi, respectively. At 28 dpi, R. salmoninarum-induced genes (n = 434) mainly involved in innate and adaptive immune response-related pathways, whereas R. salmoninarum-suppressed genes (n = 1537) were largely connected to amino acid metabolism and cellular processes. Cell-mediated immunity-related genes showed dysregulation at 98 dpi. Several immune-signalling pathways were dysregulated in response to R. salmoninarum, including apoptosis, alternative complement, JAK-STAT signalling, and MHC-I dependent pathways. In summary, R. salmoninarum causes immune suppression at early infection, whereas lumpfish induce a cell-mediated immune response at chronic infection. This study provides a complete depiction of diverse immune mechanisms dysregulated by R. salmoninarum in lumpfish and opens new avenues to develop immune prophylactic tools to prevent BKD.


Assuntos
Doenças dos Peixes , Perfilação da Expressão Gênica , Rim Cefálico , Imunidade Inata , Renibacterium , Transcriptoma , Animais , Rim Cefálico/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Renibacterium/imunologia , Renibacterium/genética , Imunidade Inata/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunidade Adaptativa/genética , Peixes/imunologia , Peixes/microbiologia , Doença Crônica , Perciformes/imunologia , Perciformes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Nefropatias/imunologia , Nefropatias/microbiologia , Nefropatias/genética , Nefropatias/veterinária , Micrococcaceae/genética , Micrococcaceae/imunologia
5.
Mar Biotechnol (NY) ; 26(2): 261-275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353762

RESUMO

The role of hepcidins, antimicrobial peptides involved in iron metabolism, immunity, and inflammation, is studied. First, gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs) were incubated with λ-carrageenin to study the expression of hepcidin and iron metabolism-related genes. While the expression of most of the genes studied was upregulated, the expression of ferroportin gene (slc40a) was downregulated. In the second part of the study, seabream specimens were injected intramuscularly with λ-carrageenin or buffer (control). The expression of the same genes was evaluated in the head kidney, liver, and skin at different time points after injection. The expression of Hamp1m, ferritin b, and ferroportin genes (hamp1, fthb, and slc40a) was upregulated in the head kidney of fish from the λ-carrageenin-injected group, while the expression of Hamp2C and Hamp2E genes (hamp2.3 and hamp2.7) was downregulated. In the liver, the expression of hamp1, ferritin a (ftha), slc40a, Hamp2J, and Hamp2D (hamp2.5/6) genes was downregulated in the λ-carrageenin-injected group. In the skin, the expression of hamp1 and (Hamp2A Hamp2C) hamp2.1/3/4 genes was upregulated in the λ-carrageenin-injected group. A bioinformatic analysis was performed to predict the presence of transcription factor binding sites in the promoter region of hepcidins. The primary sequence of hepcidin was conserved among the different mature peptides, although changes in specific amino acid residues were identified. These changes affected the charge, hydrophobicity, and probability of hepcidins being antimicrobial peptides. This study sheds light on the poorly understood roles of hepcidins in fish. The results provide insight into the regulatory mechanisms of inflammation in fish and could contribute to the development of new strategies for treat inflammation in farm animals.


Assuntos
Proteínas de Peixes , Hepcidinas , Inflamação , Dourada , Animais , Dourada/genética , Dourada/metabolismo , Dourada/imunologia , Hepcidinas/genética , Hepcidinas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Inflamação/genética , Inflamação/metabolismo , Fígado/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Rim Cefálico/metabolismo , Ferro/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/efeitos dos fármacos , Pele/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Regiões Promotoras Genéticas
6.
Fish Shellfish Immunol ; 147: 109469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423488

RESUMO

Inducible nitric oxide (NO) synthase (iNOS) is a key immune mediator for production of inflammatory mediator NO from l-arginine. Tight regulation of iNOS expression and enzyme activity is critical for proper NO productions under inflammation and infection conditions. However, the regulatory mechanism for iNOS expression and enzyme activity in fish remains largely unknown. Here, we show that extracellular ATP treatment significantly up-regulates iNOS gene expression and enzyme activity, and consequently leads to enhanced NO production in Cyprinus carpio head kidney macrophages (HKMs). We further show that the extracellular ATP-induced iNOS enzyme activity and NO production can be attenuated by pharmacological inhibition of the ATP-gated P2X4 and P2X7 receptors with their respective specific antagonists, but enhanced by overexpression of P2X4 and P2X7 receptors in grass carp ovary cells. In contrast, adenosine administration significantly reduces iNOS gene expression, enzyme activity and NO production in carp HKMs, and these inhibitory effects can be reversed by pharmacological inhibition of adenosine receptors with the antagonist XAC. Furthermore, LPS- and poly(I:C)-induced iNOS gene expression, enzyme activity, and NO production are significantly attenuated by blockade of P2X4 and P2X7 receptors with their respective specific antagonists in carp HKMs, while overexpression of P2X and P2X7 receptors results in enhanced iNOS gene expression, enzyme activity and NO production in LPS- and poly(I:C)-treated grass carp ovary cells. Taken together, we firstly report an opposite role of extracellular ATP/adenosine-mediated purinergic signaling in modulating iNOS-NO system activity in fish.


Assuntos
Adenosina , Carpas , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Carpas/metabolismo , Lipopolissacarídeos/farmacologia , Rim Cefálico/metabolismo , Macrófagos/metabolismo , Trifosfato de Adenosina/metabolismo , Expressão Gênica
7.
Sci Total Environ ; 918: 170503, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38301776

RESUMO

Reactive oxygen species (ROS) over-production and oxidative stress resulted from climate change and environmental pollution seriously endangered global fish populations and healthy development of marine aquaculture. Peroxiredoxins (Prxs), a highly conserved family of thiol-specific antioxidants, can mitigate ROS and protect cells from oxidative stress. We previously demonstrated that large yellow croaker PrxIV (LcPrxIV) could not only regulate the pro-inflammatory responses, but also scavenge ROS. However, the underlying mechanism how LcPrxIV regulated immune response and redox homeostasis remains unknown. MicroRNAs (miRNAs) are non-coding RNAs that play important roles in the regulation of various biological processes. In this study, mRNA and miRNA expression profiles from LYCK-pcDNA3.1 and LYCK-PrxIV cells, with or without oxidative stress stimulated by H2O2 were evaluated using high-throughput sequencing. A series of differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs), as well as DEM-DEG pairs were identified from each two-group comparison, respectively. GO and KEGG functional analyses indicated that most significant DEGs were associated with signaling pathways related to oxidative stress and immune response. Subsequent DEM-DEG interaction analysis revealed that miR-731 and miR-1388 may be involved in both redox regulation and immune response via synergistic effect with LcPrxIV. Interestingly, miR-731 could regulate the expression of different down-stream DEGs under different stimulations of LcPrxIV over-expression, H2O2, or both. Moreover, miR-731 could cause the DEG, γ-glutamyl hydrolase (GGH), to be expressed in opposite ways under different stimulations. On the other hand, the expression of miR-1388 could be negatively or positively regulated under the stimulation of LcPrxIV over-expression with or without oxidative stress, thus regulating gene expression of different mRNAs. Based on these results, we speculate that LcPrxIV may participate in immune response or redox regulation by regulating the expression of different down-stream genes through controlling the expression level of a certain miRNA or by regulating the varieties of expressed miRNAs.


Assuntos
MicroRNAs , Perciformes , Animais , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Rim Cefálico/metabolismo , Peróxido de Hidrogênio/metabolismo , Perciformes/metabolismo , Oxirredução , Perfilação da Expressão Gênica
8.
Fish Shellfish Immunol ; 146: 109357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181891

RESUMO

Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Regulação da Expressão Gênica , Rim Cefálico , Células Endoteliais , Perfilação da Expressão Gênica/veterinária , Transcriptoma , RNA Nuclear Pequeno , Mamíferos
9.
J Fish Dis ; 47(2): e13888, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950508

RESUMO

Tenacibaculum dicentrarchi is the second most important pathogen in Chilean salmon farming. This microorganism causes severe skin lesions on the body surface of farmed fish. The bacterium can also adhere to surfaces and form biofilm, survive in fish skin mucus, and possess different systems for iron acquisition. However, the virulence mechanisms are still not fully elucidated. Outer membrane vesicles (OMV) are nanostructures released by pathogenic Gram-negative bacteria during growth, but none has been described yet for T. dicentrarchi. In this study, we provide the first reported evidence of the fish pathogen T. dicentrarchi producing and releasing OMV from 24 h after incubation, increasing thereafter until 120 h. Analyses were conducted with T. dicentrarchi TdCh05, QCR29, and the type strain CECT 7612T . The OMV sizes, determined via scanning electron microscopy, ranged from 82.25 nm to 396.88 nm as per the strain and incubation time point (i.e., 24 to 120 h). SDS-PAGE revealed that the number of protein bands evidenced a drastically downward trend among the T. dicentrarchi strains. In turn, the OMV shared five proteins (i.e., 22.2, 31.9, 47.7, 56.3, and 107.1 kDa), but no protein pattern was identical. A heterogeneous amount of protein, RNA, and DNA were obtained, depending on the time at which OMV were extracted. Purified OMV were biologically active and induced a cytotoxic effect in macrophage-enriched cell cultures from rainbow trout (Oncorhynchus mykiss) head kidneys. This is the first step towards understanding the role that OMV could play in the pathogenesis of T. dicentrarchi.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Tenacibaculum , Animais , Rim Cefálico , Doenças dos Peixes/microbiologia , Macrófagos , Tenacibaculum/genética
10.
Fish Shellfish Immunol ; 143: 109214, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977544

RESUMO

As one of short-chain fatty acids, butyrate is an important metabolite of dietary fiber by the fermentation of gut commensals. Our recent study uncovered that butyrate promoted IL-22 production in fish macrophages to augment the host defense. In the current study, we further explored the underlying signaling pathways in butyrate-induced IL-22 production in fish macrophages. Our results showed that butyrate augmented the IL-22 expression in head kidney macrophages (HKMs) of turbot through binding to G-protein receptor 41 (GPR41) and GPR43. Moreover, histone deacetylase 3 (HDAC3) inhibition apparently up-regulated the butyrate-enhanced IL-22 generation, indicating HDACs were engaged in butyrate-regulated IL-22 secretion. In addition, butyrate triggered the STAT3/HIF-1α signaling to elevate the IL-22 expression in HKMs. Importantly, the evidence in vitro and in vivo was provided that butyrate activated autophagy in fish macrophages via IL-22 signaling, which contributing to the elimination of invading bacteria. In conclusion, we clarified in the current study that butyrate induced STAT3/HIF-1α/IL-22 signaling pathway via GPCR binding and HDAC3 inhibition in fish macrophages to activate autophagy that was involved in pathogen clearance in fish macrophages.


Assuntos
Butiratos , Linguados , Animais , Butiratos/metabolismo , Linguados/metabolismo , Rim Cefálico/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Autofagia , Interleucina 22
11.
Fish Shellfish Immunol ; 143: 109205, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918582

RESUMO

Polystyrene microplastics (PM) is a pressing global environmental concern, posing substantial risks to aquatic ecosystems. Microalgal astaxanthin (MA), a heme pigment, safeguards cells against oxidative damage induced by free radicals, which contributes to various health conditions, including aging, inflammation and chronic diseases. Herein, we investigated the potential of MA in ameliorating the immunotoxicity of PM on carp (Cyprinus carpio L.) based on head kidney lymphocytes treated with PM (250 µM) and/or MA (100 µM). Firstly, CCK8 results showed that PM resulted in excessive death of head kidney lymphocytes. Secondly, head kidney lymphocytes treated with PM had a higher proportion of necroptosis, and the levels of necroptosis-related genes in head kidney lymphocytes were increased. Thirdly, the relative red fluorescence intensity of JC-1 and MitoSox showed decreased mitochondrial membrane potential and increased mtROS in head kidney lymphocytes treated with PM. MitoTracker® Green FM fluorescence analysis revealed enhanced mitochondrial Ca2+ levels in PM-treated lymphocytes, corroborating the association between PM exposure and elevated intracellular Ca2+ dynamics. PM exposure resulted in upregulation of calcium homeostasis-related gene (Orail, CAMKIIδ and SLC8A1) in lymphocytes. Subsequent investigations revealed that PM exposure reduced miR-25-5p expression while increasing levels of MCU, MICU1, and MCUR1. Notably, these effects were counteracted by treatment with MA. Furthermore, PM led to the elevated secretion of inflammatory factors (IFN-γ, IL-1ß, IL-2 and TNF-α), thereby inducing immune dysfunction in head kidney lymphocytes. Encouragingly, MA treatment effectively mitigated the immunotoxic effects induced by PM, demonstrating its potential in ameliorating necroptosis, mitochondrial dysfunction and immune impairment via regulating the miR-25-5p/MCU axis in lymphocytes. This study sheds light on safeguarding farmed fish against agrobiological threats posed by PM, highlighting the valuable applications of MA in aquaculture.


Assuntos
Carpas , MicroRNAs , Animais , Microplásticos/efeitos adversos , Poliestirenos/toxicidade , Plásticos/efeitos adversos , Carpas/metabolismo , Necroptose , Ecossistema , Rim Cefálico/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Linfócitos/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Homeostase
12.
Fish Shellfish Immunol ; 142: 109140, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37797868

RESUMO

Rainbow trout (Oncorhynchus mykiss) is an important cold-water fish widely cultivated in China. The frequent occurrence of viral diseases caused by infectious hematopoietic necrosis virus (IHNV) seriously restricted the healthy development of the rainbow trout farming industry. However, the immune defense mechanism induced by IHNV in rainbow trout has not been fully elucidated. In the present study, we detected mRNA and miRNA expression profiles in rainbow trout head kidney after IHNV infection using RNA-seq and identified key immune-related genes and miRNAs. The results showed that a total of 7486 genes and 277 miRNAs were differentially expressed, and numerous differentially expressed genes (DEGs) enriched in the immune-related pathways such as Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathway were significantly up-regulated, including LGP2, MDA5, TRIM25, IRF3, IRF7, TLR3, TLR7, TLR8, MYD88, and IFN1. Integration analysis identified six miRNAs (miR-141-y, miR-200-y, miR-144-y, miR-2188-y, miR-725-y, and miR-203-y) that target at least six key immune-related genes (TRIM25, LGP2, TLR3, TLR7, IRF3, and IRF7). Further, we verified selected immune-related mRNAs and miRNAs through qRT-PCR and confirmed the reliability of the RNA-seq results. These findings improve our understanding of the immune mechanism of rainbow trout infected with IHNV and provide basic data for future breeding for disease resistance in rainbow trout.


Assuntos
Doenças dos Peixes , Vírus da Necrose Hematopoética Infecciosa , MicroRNAs , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Animais , Vírus da Necrose Hematopoética Infecciosa/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , MicroRNAs/genética , Receptor 7 Toll-Like , Receptor 3 Toll-Like , Rim Cefálico/metabolismo , Reprodutibilidade dos Testes , Imunidade Inata/genética
13.
Fish Shellfish Immunol ; 142: 109127, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813155

RESUMO

Piscirickettsia salmonis, an intracellular bacterium in salmon aquaculture, is a big challenge because it is responsible for 54.2% of Atlantic salmon mortalities. In recent years, the high relevance of Alternative Splicing (AS) as a molecular mechanism associated with infectious conditions and host-pathogen interaction processes, especially in host immune activation, has been observed. Several studies have highlighted the role of AS in the host's immune response during viral, bacterial, and endoparasite infection. In the present study, we evaluated AS transcriptome profiles during P. salmonis infection in the two most used study models, SHK-1 cell line and salmon head kidney tissue. First, the SHK-1 cell line was exposed to P. salmonis infection at 0-, 7-, and 14-days post-infection (dpi). Following, total RNA was extracted for Illumina sequencing. On the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same P. salmonis strayingwase used. For both study models, the highest number of differentially alternative splicing (DAS) events was observed at 7 dpi, 16,830 DAS events derived from 9213 DAS genes in SHK-1 cells, and 13,820 DAS events from 7684 DAS genes in salmon HK. Alternative first exon (AF) was the most abundant AS type in the three infection times analyzed, representing 31% in SHK-1 cells and 228.6 in salmon HK; meanwhile, mutually exclusive exon (MX) was the least abundant. Notably, functional annotation of DAS genes in SHK-1 cells infected with P. salmonis showed a high presence of genes related to nucleotide metabolism. In contrast, the salmon head kidney exhibited many GO terms associated with immune response. Our findings reported the role of AS during P. salmonis infection in Atlantic salmon. These studies would contribute to a better understanding of the molecular bases that support the pathogen-host interaction, evidencing the contribution of AS regulating the transcriptional host response.


Assuntos
Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Transcriptoma , Salmo salar/genética , Rim Cefálico , Processamento Alternativo , Piscirickettsia/fisiologia , Linhagem Celular , Infecções por Piscirickettsiaceae/genética , Infecções por Piscirickettsiaceae/veterinária
14.
Fish Shellfish Immunol ; 139: 108923, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37394017

RESUMO

CD27 is a member of the TNF-receptor superfamily and plays various roles in immunities. However, the detailed information and mechanism of CD27 in bony fish immunity remain unclear. Therefore, in this research, certain interesting roles of CD27 in Nile tilapia (On-CD27) were determined. On-CD27 was largely expressed in the immune organs, head kidney, and spleen, and was sharply induced during bacterial infection. The in vitro tests suggested On-CD27 was involved in regulating inflammatory responses, activating immune-related signal pathways, and inducing apoptosis and pyroptosis progress. The scRNA data and in vivo experiments indicated that On-CD27 is mainly expressed in CD4+ T cells and involved in both innate and adaptive immunities. The present data provide a theoretical principle for further research on the mechanisms of CD27 in the innate and adaptive immunities of fish.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Proteínas de Peixes , Baço , Rim Cefálico , Streptococcus agalactiae/fisiologia , Imunidade Inata/genética , Regulação da Expressão Gênica
15.
Artigo em Inglês | MEDLINE | ID: mdl-37390763

RESUMO

For Chinese sucker (Myxocyprinus asiaticus), passing through a dam with fast flow and cold water are always unavoidable, and this process can cause stress, disease or even death. In this study, comparative transcriptome analysis was conducted to investigate the potential immune mechanism in head kidney of M. asiaticus with swimming fatigue stress and cold stress after fatigue. In general, a total of 181,781 unigenes were generated, and 38,545 differentially expressed genes (DEGs) were identified. In these DEGs, 22,593, 7286 and 8666 DEGs were identified among groups of fatigue vs. cold, control vs. cold, and control vs. fatigue, respectively. Enrichment analysis revealed these DEGs were involved in coagulation cascades and complement, natural killer cell mediated cytotoxicity, antigen processing and presentation, Toll-like receptor signaling pathways, and chemokine signaling pathway. Notably, immune genes including heat shock protein 4a (HSP4a), HSP70 and HSP90α genes were significantly up-regulated in fishes with cold stress after fatigue. Differently, more immune genes in control vs. cold compared with that in control vs. fatigue were significantly down-regulated expression, such as claudin-15-like, Toll-like receptor 13, antimicrobial peptide (hepcidin), immunoglobulin, CXCR4 chemokine receptor, T-cell receptor, complement factor B/C2-A3, and interleukin 8. In this study, the number of DEGs in the head kidney was less than that our previous study in the spleen, which we speculated was more sensitive to changes in water temperature than the head kidney. In summary, lots of immune-related genes in the head kidney were down-regulated under cold stress after fatigue, suggesting that M. asiaticus might have experienced severe immunosuppression in the process of passing through the dam.


Assuntos
Resposta ao Choque Frio , Cipriniformes , Animais , Rim Cefálico/metabolismo , Resposta ao Choque Frio/genética , Natação , Perfilação da Expressão Gênica , Transcriptoma
16.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375283

RESUMO

A simple and rapid method for the extraction of D-series resolvins (RvD1, RvD2, RvD3, RvD4, RvD5) released into Leibovitz's L-15 complete medium by head kidney cells from Atlantic salmon and the further determination of liquid chromatography triple quadrupole mass spectrometry is proposed. A three-level factorial design was proposed to select the optimal concentrations of internal standards that were used in the evaluation of the performance parameters, such as linear range (0.1-50 ng mL-1), limits of detection and quantification (0.05 and 0.1 ng mL-1, respectively), and recovery values ranging from 96.9 to 99.8%. The optimized method was used to determine the stimulated production of resolvins by head kidney cells exposed to docosahexaenoic acid, and the results indicated that it is possible that the production was controlled by circadian responses.


Assuntos
Ácidos Docosa-Hexaenoicos , Salmo salar , Animais , Rim Cefálico , Cromatografia Líquida/métodos , Extração Líquido-Líquido
17.
J Fish Biol ; 103(5): 965-973, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37344374

RESUMO

Nephrons are generally not distributed in the head kidney of teleost. Nonetheless, in this study, the nephron structure was identified in the head kidney of three species of Sebastes (Sebastes inermis, Sebastes schlegelii and Sebastes thompsoni). The kidney is Y shaped, with the development in the head kidney. The nephron structure was confirmed in the head kidney and body kidney. In addition, the nephron consisted of renal corpuscles and tubules, and the renal corpuscle consisted of the Bowman's capsule and glomerulus. Histologically, previous studies reported that the nephron structure is similar to that of other marine teleost. The renal tubule is a simple columnar epithelial layer with microvilli and cilia on the free surface, which is observed as a brush border. The Rrk (relative area ratio of kidney to body surface) was 5.14%, 7.58% and 5.17% in S. inermis, S. schlegelii and S. thompsoni, respectively. The Gar (glomerular area ratio of the head kidney) was higher in the central area than in the peripheral area, and species, which showed significant difference (P < 0.05), were in the following order: S. thompsoni (1.60%) > S. schlegelii (0.90%) > S. inermis (0.66%).


Assuntos
Néfrons , Perciformes , Animais , Rim Cefálico , Rim , Peixes
18.
Ecotoxicology ; 32(5): 553-568, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37173532

RESUMO

Studies on heavy metal induced toxicity have been conducted in many water bodies across the globe and such effects have been evaluated in various fish species. The present study was designed to determine the load of some heavy metals in select sites in Southern Assam, India, along with estimating their concentration in tissues of Channa punctatus Bloch. inhabiting those niches. The effect of heavy metals in oxystress generation, genotoxicity and subsequent immune response in fish was also evaluated. In all of these sites, the concentration of Hg, Cd, Pb and Cr were above the permissible ranges while their concentrations were several folds higher in the piscine tissues due to bioaccumulation and possible biomagnification. Kidney showed the highest metal pollution index followed by liver and gills. Generation of ROS was significantly elevated and that in turn triggered oxystress, as is evident from enhanced lipid peroxidation, protein carbonylation and respiratory burst activity. These were in association with the compromised antioxidant enzyme levels with concomitant damage to DNA as evident from Comet parameters. The innate immune potential was significantly impaired as evident from the compromised cell adhesion, phagocytosis, intracellular killing activity in head kidney macrophages (HKM) along with decreased release of nitric oxide (NO) and myeloperoxidase (MPO). Immunosuppression was further validated at protein levels where compromised release of cytokines viz. TNF-α, IL-1ß, IL-6, IL-10 and IL-12 and cell signaling molecules iNOS and NF-κß were noted. Thus the present study indicates genotoxicity along with a compromise in immune status of Channa punctatus Bloch. living in a habitat laden with heavy metals.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Bioacumulação , Rim Cefálico/metabolismo , Estresse Oxidativo , Peixes/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Macrófagos/metabolismo , Imunomodulação , Imunidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
19.
Genes (Basel) ; 14(4)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37107663

RESUMO

The development of vaccines against sea lice in salmon farming is complex, expensive, and takes several years for commercial availability. Recently, transcriptome studies in sea louse have provided valuable information for identifying relevant molecules with potential use for fish vaccines. However, the bottleneck is the in vivo testing of recombinant protein candidates, the dosage, and the polyvalent formulation strategies. This study explored a cell-based approach to prospect antigens as candidate vaccines against sea lice by comparison with immunized fish. Herein, SHK-1 cells and Atlantic salmon head kidney tissue were exposed to the antigen cathepsin identified from the sea louse Caligus rogercresseyi. The cathepsin protein was cloned and recombinantly expressed in Escherichia coli, and then SHK-1 cell lines were stimulated with 100 ng/mL cathepsin recombinant for 24 h. In addition, Atlantic salmons were vaccinated with 30 ug/mL recombinant protein, and head kidney samples were then collected 30 days post-immunization. SHK-1 cells and salmon head kidney exposed to cathepsin were analyzed by Illumina RNA sequencing. The statistical comparisons showed differences in the transcriptomic profiles between SHK-1 cells and the salmon head kidney. However, 24.15% of the differentially expressed genes were shared. Moreover, putative gene regulation through lncRNAs revealed tissue-specific transcription patterns. The top 50 up and downregulated lncRNAs were highly correlated with genes involved in immune response, iron homeostasis, pro-inflammatory cytokines, and apoptosis. Also, highly enriched pathways related to the immune system and signal transduction were shared between both tissues. These findings highlight a novel approach to evaluating candidate antigens for sea lice vaccine development, improving the antigens screening in the SHK-1 cell line model.


Assuntos
Ftirápteros , RNA Longo não Codificante , Salmo salar , Animais , Transcriptoma , Salmo salar/genética , Rim Cefálico
20.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835242

RESUMO

Streptococcus iniae is a Gram-positive bacterium and is considered a harmful aquaculture pathogen worldwide. In this study, S. iniae strains were isolated from East Asian fourfinger threadfin fish (Eleutheronema tetradactylum) reared on a farm in Taiwan. A transcriptome analysis of the head kidney and spleen was performed in the fourfinger threadfin fish 1 day after infection using the Illumina HiSeq™ 4000 platform for RNA-seq to demonstrate the host immune mechanism against S. iniae. A total of 7333 genes based on the KEGG database were obtained after the de novo assembly of transcripts and functional annotations. Differentially expressed genes (DEGs) (2-fold difference) were calculated by comparing the S. iniae infection and phosphate-buffered saline control group gene expression levels in each tissue sample. We identified 1584 and 1981 differentially expressed genes in the head kidney and spleen, respectively. Based on Venn diagrams, 769 DEGs were commonly identified in both the head kidney and spleen, and 815 and 1212 DEGs were specific to the head kidney and spleen, respectively. The head-kidney-specific DEGs were enriched in ribosome biogenesis. The spleen-specific and common DEGs were found to be significantly enriched in immune-related pathways such as phagosome, Th1, and Th2 cell differentiation; complement and coagulation cascades; hematopoietic cell lineage; antigen processing and presentation; and cytokine-cytokine receptor interactions, based on the KEGG database. These pathways contribute to immune responses against S. iniae infection. Inflammatory cytokines (IL-1ß, IL-6, IL-11, IL-12, IL-35, and TNF) and chemokines (CXCL8 and CXCL13) were upregulated in the head kidney and spleen. Neutrophil-related genes, including phagosomes, were upregulated post-infection in the spleen. Our results could offer a strategy for the treatment and prevention of S. iniae infection in fourfinger threadfin fish.


Assuntos
Doenças dos Peixes , Infecções Estreptocócicas , Animais , Peixes , Rim Cefálico , Baço , Streptococcus iniae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...