Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
1.
Nephron ; 148(4): 264-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36617405

RESUMO

The clinical features of cerebellar vermis hypoplasia, oligophrenia, ataxia, coloboma, and hepatic fibrosis (COACH) characterize the rare autosomal recessive multisystem disorder called COACH syndrome. COACH syndrome belongs to the spectrum of Joubert syndrome and related disorders (JSRDs) and liver involvement distinguishes COACH syndrome from the rest of the JSRD spectrum. Developmental delay and oculomotor apraxia occur early but with time, these can improve and may not be readily apparent or no longer need active medical management. Congenital hepatic fibrosis and renal disease, on the other hand, may develop late, and the temporal incongruity in organ system involvement may delay the recognition of COACH syndrome. We present a case of a young adult presenting late to a Renal Genetics Clinic for evaluation of renal cystic disease with congenital hepatic fibrosis, clinically suspected to have autosomal recessive polycystic kidney disease. Following genetic testing, a reevaluation of his medical records from infancy, together with reverse phenotyping and genetic phasing, led to a diagnosis of COACH syndrome.


Assuntos
Anormalidades Múltiplas , Encéfalo/anormalidades , Vermis Cerebelar , Cerebelo/anormalidades , Colestase , Coloboma , Doenças Genéticas Inatas , Deficiência Intelectual , Hepatopatias , Malformações do Sistema Nervoso , Rim Policístico Autossômico Recessivo , Adulto Jovem , Humanos , Coloboma/diagnóstico , Coloboma/genética , Rim Policístico Autossômico Recessivo/diagnóstico , Rim Policístico Autossômico Recessivo/genética , Diagnóstico Tardio , Genótipo , Cirrose Hepática/genética , Ataxia/diagnóstico , Ataxia/genética , Deficiência Intelectual/genética , Deficiências do Desenvolvimento
3.
Ann Hum Genet ; 88(1): 58-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37905714

RESUMO

Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.


Assuntos
Rim Policístico Autossômico Recessivo , Receptores de Superfície Celular , Humanos , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , RNA , Fatores de Transcrição/química , Proteínas do Espermatozoide/química , Conformação Proteica
4.
Medicine (Baltimore) ; 102(50): e36573, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38115240

RESUMO

RATIONAL: The disease of Caroli is a rare congenital disorder, characterized by the dilated intrahepatic bile ducts, resulting from mutations in the PKHD1 gene. Caroli syndrome, characterized by dilated intrahepatic bile ducts with congenital hepatic fibrosis, is linked to autosomal recessive polycystic kidney disease. The clinical manifestations of Caroli disease are not typical, and Caroli disease is easy to be missed and misdiagnosed. Therefore, we reported this case in the hope of raising awareness of the disease among clinicians. PATIENT CONCERNS: The clinical manifestation of a 10-year-old girl was subcutaneous hemorrhage. DIAGNOSES: Magnetic resonance imaging (MRI ) indicates that the person may have Caroli disease, cirrhosis, splenomegaly, portal hypertension, esophagogastric fundal varices, or sponge kidneys. INTERVENTION: The patient was advised for liver transplantation. OUTCOMES: The patient parents did not take our treatment advice, and they asked to go to a better hospital for further treatment, so we did not give the patient any treatment. LESSONS: This case serves as a reminder that if we encounter a patient with hemophilia in our clinic, we should not only consider hematologic diseases and cirrhosis, but also perform an epigastric MRI and magnetic resonance cholangiopancreatography to rule out Caroli disease.


Assuntos
Doença de Caroli , Hipertensão Portal , Rim Policístico Autossômico Recessivo , Feminino , Humanos , Criança , Doença de Caroli/complicações , Doença de Caroli/diagnóstico , Cirrose Hepática/patologia , Rim Policístico Autossômico Recessivo/genética , Hemorragia/etiologia
5.
Adv Kidney Dis Health ; 30(5): 397-406, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38097330

RESUMO

Polycystic kidney diseases are a group of monogenically inherited disorders characterized by cyst development in the kidney with defects in primary cilia function central to pathogenesis. Autosomal dominant polycystic kidney disease (ADPKD) has progressive cystogenesis and accounts for 5-10% of kidney failure (KF) patients. There are two major ADPKD genes, PKD1 and PKD2, and seven minor loci. PKD1 accounts for ∼80% of patients and is associated with the most severe disease (KF is typically at 55-65 years); PKD2 accounts for ∼15% of families, with KF typically in the mid-70s. The minor genes are generally associated with milder kidney disease, but for DNAJB11 and ALG5, the age at KF is similar to PKD2. PKD1 and PKD2 have a high level of allelic heterogeneity, with no single pathogenic variant accounting for >2% of patients. Additional genetic complexity includes biallelic disease, sometimes causing very early-onset ADPKD, and mosaicism. Autosomal dominant polycystic liver disease is characterized by severe PLD but limited PKD. The two major genes are PRKCSH and SEC63, while GANAB, ALG8, and PKHD1 can present as ADPKD or autosomal dominant polycystic liver disease. Autosomal recessive polycystic kidney disease typically has an infantile onset, with PKHD1 being the major locus and DZIP1L and CYS1 being minor genes. In addition, there are a range of mainly recessive syndromic ciliopathies with PKD as part of the phenotype. Because of the phenotypic and genic overlap between the diseases, employing a next-generation sequencing panel containing all known PKD and ciliopathy genes is recommended for clinical testing.


Assuntos
Ciliopatias , Hepatopatias , Rim Policístico Autossômico Dominante , Rim Policístico Autossômico Recessivo , Humanos , Rim Policístico Autossômico Dominante/genética , Mutação , Hepatopatias/genética , Rim Policístico Autossômico Recessivo/genética , Fenótipo
6.
Rev Assoc Med Bras (1992) ; 69(11): e20230334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909612

RESUMO

OBJECTIVE: Autosomal dominant polycystic kidney disease is an inherited kidney disorder with mutations in polycystin-1 or polycystin-2. Autosomal recessive polycystic kidney disease is a severe form of polycystic kidney disease that is characterized by enlarged kidneys and congenital hepatic fibrosis. Mutations at PKHD1 are responsible for all typical forms of autosomal recessive polycystic kidney disease. METHODS: We evaluated the children diagnosed with polycystic kidney disease between October 2020 and May 2022. The diagnosis was established by family history, ultrasound findings, and/or genetic analysis. The demographic, clinical, and laboratory findings were evaluated retrospectively. RESULTS: There were 28 children (male/female: 11:17) evaluated in this study. Genetic analysis was performed in all patients (polycystin-1 variants in 13, polycystin-2 variants in 7, and no variants in 8 patients). A total of 18 variants in polycystin-1 and polycystin-2 were identified and 9 (50%) of them were not reported before. A total of eight novel variants were identified as definite pathogenic or likely pathogenic mutations. There was no variant detected in the PKDH1 gene. CONCLUSION: Our results highlighted molecular features of Turkish children with polycystic kidney disease and demonstrated novel variations that can be utilized in clinical diagnosis and prognosis.


Assuntos
Rim Policístico Autossômico Recessivo , Humanos , Masculino , Criança , Feminino , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/diagnóstico , Rim Policístico Autossômico Recessivo/patologia , Canais de Cátion TRPP/genética , Estudos Retrospectivos , Receptores de Superfície Celular/genética , Rim/patologia , Mutação
7.
Semin Nephrol ; 43(4): 151434, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37996359

RESUMO

Cystic kidney diseases, when broadly defined, have a wide differential diagnosis extending from recessive diseases with a prenatal or pediatric diagnosis, to the most common autosomal-dominant polycystic kidney disease primarily affecting adults, and several other genetic or acquired etiologies that can manifest with kidney cysts. The most likely diagnoses to consider when assessing a patient with cystic kidney disease differ depending on family history, age stratum, radiologic characteristics, and extrarenal features. Accurate identification of the underlying condition is crucial to estimate the prognosis and initiate the appropriate management, identification of extrarenal manifestations, and counseling on recurrence risk in future pregnancies. There are significant differences in the clinical approach to investigating and managing kidney cysts in children compared with adults. Next-generation sequencing has revolutionized the diagnosis of inherited disorders of the kidney, despite limitations in access and challenges in interpreting the data. Disease-modifying treatments are lacking in the majority of kidney cystic diseases. For adults with rapid progressive autosomal-dominant polycystic kidney disease, tolvaptan (V2-receptor antagonist) has been approved to slow the rate of decline in kidney function. In this article, we examine the differences in the differential diagnosis and clinical management of cystic kidney disease in children versus adults, and we highlight the progress in molecular diagnostics and therapeutics, as well as some of the gaps meriting further attention.


Assuntos
Cistos , Neoplasias Renais , Rim Policístico Autossômico Dominante , Rim Policístico Autossômico Recessivo , Adulto , Gravidez , Feminino , Criança , Humanos , Rim Policístico Autossômico Recessivo/diagnóstico , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/terapia , Rim , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Cistos/diagnóstico , Cistos/genética , Cistos/terapia
8.
J Mol Med (Berl) ; 101(9): 1141-1151, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37584738

RESUMO

Autosomal-recessive polycystic kidney disease (ARPKD; MIM #263200) is a severe, hereditary, hepato-renal fibrocystic disorder that causes early childhood morbidity and mortality. Mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which encodes the protein fibrocystin/polyductin complex (FPC), cause all typical forms of ARPKD. Several mouse lines carrying diverse, genetically engineered disruptions in the orthologous Pkhd1 gene have been generated, but none expresses the classic ARPKD renal phenotype. In the current study, we characterized a spontaneous mouse Pkhd1 mutation that is transmitted as a recessive trait and causes cysticliver (cyli), similar to the hepato-biliary disease in ARPKD, but which is exacerbated by age, sex, and parity. We mapped the mutation to Chromosome 1 and determined that an insertion/deletion mutation causes a frameshift within Pkhd1 exon 48, which is predicted to result in a premature termination codon (UGA). Pkhd1cyli/cyli (cyli) mice exhibit a severe liver pathology but lack renal disease. Further analysis revealed that several alternatively spliced Pkhd1 mRNA, all containing exon 48, were expressed in cyli kidneys, but in lower abundance than in wild-type kidneys, suggesting that these transcripts escaped from nonsense-mediated decay (NMD). We identified an AAAAAT motif in exon 48 upstream of the cyli mutation which could enable ribosomal frameshifting, thus potentially allowing production of sufficient amounts of FPC for renoprotection. This mechanism, expressed in a species-specific fashion, may help explain the disparities in the renal phenotype observed between Pkhd1 mutant mice and patients with PKHD1-related disease. KEY MESSAGES: The Pkhd1cyli/cyli mouse expresses cystic liver disease, but no kidney phenotype. Pkhd1 mRNA expression is decreased in cyli liver and kidneys compared to wild-type. Ribosomal frameshifting may be responsible for Pkhd1 mRNA escape from NMD. Pkhd1 mRNA escape from NMD could contribute to the absent kidney phenotype.


Assuntos
Hepatopatias , Rim Policístico Autossômico Recessivo , Pré-Escolar , Camundongos , Humanos , Animais , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/patologia , Rim/metabolismo , Mutação , Fatores de Transcrição/genética , RNA Mensageiro/genética , Receptores de Superfície Celular/genética
11.
FASEB J ; 37(7): e23008, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37318790

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD) is caused primarily by mutations in PKHD1, encoding fibrocystin (FPC), but Pkhd1 mutant mice failed to reproduce the human phenotype. In contrast, the renal lesion in congenital polycystic kidney (cpk) mice, with a mutation in Cys1 and cystin protein loss, closely phenocopies ARPKD. Although the nonhomologous mutation diminished the translational relevance of the cpk model, recent identification of patients with CYS1 mutations and ARPKD prompted the investigations described herein. We examined cystin and FPC expression in mouse models (cpk, rescued-cpk (r-cpk), Pkhd1 mutants) and mouse cortical collecting duct (CCD) cell lines (wild type (wt), cpk). We found that cystin deficiency caused FPC loss in both cpk kidneys and CCD cells. FPC levels increased in r-cpk kidneys and siRNA of Cys1 in wt cells reduced FPC. However, FPC deficiency in Pkhd1 mutants did not affect cystin levels. Cystin deficiency and associated FPC loss impacted the architecture of the primary cilium, but not ciliogenesis. No reduction in Pkhd1 mRNA levels in cpk kidneys and CCD cells suggested posttranslational FPC loss. Studies of cellular protein degradation systems suggested selective autophagy as a mechanism. In support of the previously described function of FPC in E3 ubiquitin ligase complexes, we demonstrated reduced polyubiquitination and elevated levels of functional epithelial sodium channel in cpk cells. Therefore, our studies expand the function of cystin in mice to include inhibition of Myc expression via interaction with necdin and maintenance of FPC as functional component of the NEDD4 E3 ligase complexes. Loss of FPC from E3 ligases may alter the cellular proteome, contributing to cystogenesis through multiple, yet to be defined, mechanisms.


Assuntos
Rim Policístico Autossômico Recessivo , Humanos , Camundongos , Animais , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/patologia , Proteoma/metabolismo , Receptores de Superfície Celular/metabolismo , Rim/metabolismo , Fatores de Transcrição/metabolismo , Células Epiteliais/metabolismo
12.
Genes (Basel) ; 14(6)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37372416

RESUMO

Polycystic Kidney Diseases (PKDs) consist of a genetically and phenotypically heterogeneous group of inherited disorders characterized by numerous renal cysts. PKDs include autosomal dominant ADPKD, autosomal recessive ARPKD and atypical forms. Here, we analyzed 255 Italian patients using an NGS panel of 63 genes, plus Sanger sequencing of exon 1 of the PKD1 gene and MPLA (PKD1, PKD2 and PKHD1) analysis. Overall, 167 patients bore pathogenic/likely pathogenic variants in dominant genes, and 5 patients in recessive genes. Four patients were carriers of one pathogenic/likely pathogenic recessive variant. A total of 24 patients had a VUS variant in dominant genes, 8 patients in recessive genes and 15 patients were carriers of one VUS variant in recessive genes. Finally, in 32 patients we could not reveal any variant. Regarding the global diagnostic status, 69% of total patients bore pathogenic/likely pathogenic variants, 18.4% VUS variants and in 12.6% of patients we could not find any. PKD1 and PKD2 resulted to be the most mutated genes; additional genes were UMOD and GANAB. Among recessive genes, PKHD1 was the most mutated gene. An analysis of eGFR values showed that patients with truncating variants had a more severe phenotype. In conclusion, our study confirmed the high degree of genetic complexity at the basis of PKDs and highlighted the crucial role of molecular characterization in patients with suspicious clinical diagnosis. An accurate and early molecular diagnosis is essential to adopt the appropriate therapeutic protocol and represents a predictive factor for family members.


Assuntos
Rim Policístico Autossômico Dominante , Rim Policístico Autossômico Recessivo , Humanos , Canais de Cátion TRPP/genética , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Recessivo/diagnóstico , Rim Policístico Autossômico Recessivo/genética , Éxons , Genes Reguladores , Fatores de Transcrição/genética
13.
Expert Opin Ther Targets ; 27(4-5): 325-346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37243567

RESUMO

INTRODUCTION: Renal ciliopathies represent a collection of genetic disorders characterized by deficiencies in the biogenesis, maintenance, or functioning of the ciliary complex. These disorders, which encompass autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and nephronophthisis (NPHP), typically result in cystic kidney disease, renal fibrosis, and a gradual deterioration of kidney function, culminating in kidney failure. AREAS COVERED: Here we review the advances in basic science and clinical research into renal ciliopathies which have yielded promising small compounds and drug targets, within both preclinical studies and clinical trials. EXPERT OPINION: Tolvaptan is currently the sole approved treatment option available for ADPKD patients, while no approved treatment alternatives exist for ARPKD or NPHP patients. Clinical trials are presently underway to evaluate additional medications in ADPKD and ARPKD patients. Based on preclinical models, other potential therapeutic targets for ADPKD, ARPKD, and NPHP look promising. These include molecules targeting fluid transport, cellular metabolism, ciliary signaling and cell-cycle regulation. There is a real and urgent clinical need for translational research to bring novel treatments to clinical use for all forms of renal ciliopathies to reduce kidney disease progression and prevent kidney failure.


Assuntos
Ciliopatias , Rim Policístico Autossômico Dominante , Rim Policístico Autossômico Recessivo , Insuficiência Renal , Humanos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Recessivo/genética , Rim
14.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G404-G414, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36880660

RESUMO

Systemic and portal hypertension, liver fibrosis, and hepatomegaly are manifestations associated with autosomal recessive polycystic kidney disease (ARPKD), which is caused by malfunctions of fibrocystin/polyductin (FPC). The goal is to understand how liver pathology occurs and to devise therapeutic strategies to treat it. We injected 5-day-old Pkhd1del3-4/del3-4 mice for 1 mo with the cystic fibrosis transmembrane conductance regulator (CFTR) modulator VX-809 designed to rescue processing and trafficking of CFTR folding mutants. We used immunostaining and immunofluorescence techniques to evaluate liver pathology. We assessed protein expression via Western blotting. We detected abnormal biliary ducts consistent with ductal plate abnormalities, as well as a greatly increased proliferation of cholangiocytes in the Pkhd1del3-4/del3-4 mice. CFTR was present in the apical membrane of cholangiocytes and increased in the Pkhd1del3-4/del3-4 mice, consistent with a role for apically located CFTR in enlarged bile ducts. Interestingly, we also found CFTR in the primary cilium, in association with polycystin (PC2). Localization of CFTR and PC2 and overall length of the cilia were increased in the Pkhd1del3-4/del3-4 mice. In addition, several of the heat shock proteins; 27, 70, and 90 were upregulated, suggesting that global changes in protein processing and trafficking had occurred. We found that a deficit of FPC leads to bile duct abnormalities, enhanced cholangiocyte proliferation, and misregulation of heat shock proteins, which all returned toward wild type (WT) values following VX-809 treatment. These data suggest that CFTR correctors can be useful as therapeutics for ARPKD. Given that these drugs are already approved for use in humans, they can be fast-tracked for clinical use.NEW & NOTEWORTHY ARPKD is a multiorgan genetic disorder resulting in newborn morbidity and mortality. There is a critical need for new therapies to treat this disease. We show that persistent cholangiocytes proliferation occurs in a mouse model of ARPKD along with mislocalized CFTR and misregulated heat shock proteins. We found that VX-809, a CFTR modulator, inhibits proliferation and limits bile duct malformation. The data provide a therapeutic pathway for strategies to treat ADPKD.


Assuntos
Rim Policístico Autossômico Recessivo , Humanos , Camundongos , Animais , Rim Policístico Autossômico Recessivo/tratamento farmacológico , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Receptores de Superfície Celular/metabolismo , Cirrose Hepática/complicações , Proteínas de Choque Térmico/metabolismo
15.
Am J Case Rep ; 24: e938507, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36691356

RESUMO

BACKGROUND The polycystic kidney and hepatic disease 1 (PKHD1) gene codes for fibrocystin-polyductin, a protein that takes part in cell-signaling for cell differentiation, especially in kidney tubules and bile ducts. A homozygous or compound heterozygous defect in this gene can cause autosomal recessive polycystic kidney disease (ARPKD). Polycystic liver disease (PCLD) can also be caused by single heterozygous variants in the PKHD1 gene. ARPKD presents with renal insufficiency and cystic dilatation of bile ducts, although disease is not expected with a single heterozygous mutation. PCLD presents with multiple cysts in the liver and dilated bile ducts as well, but with less of an impact on the kidneys than with ARPKD. Our purpose in publishing this report is to introduce an as-yet unknown variant to the body of genetic defects associated with ARPKD and PCLD, as well as to argue for the likely pathogenicity of the variant according to the prevailing criteria used for classifying gene variants. CASE REPORT We present a patient with a de novo PKHD1 variant currently classified as a variant of unknown significance manifesting with bilaterally enlarged cystic kidneys and echogenic cystic structures in the hepatic portal system, indicative of cystic disease. CONCLUSIONS Given this patient's liver and kidney presentation that does not fully align with either ARPKD or PCLD, the authors believe that the single heterozygous variant in this patient's PKHD1 gene is worthy of reporting. This new single heterozygous variant in PKHD1 gene causing cystic kidney and cystic hepatic disease in the patient should be considered 'likely pathogenic' according to the criteria set by the American College of Medical Genetics.


Assuntos
Hepatopatias , Rim Policístico Autossômico Recessivo , Humanos , Rim Policístico Autossômico Recessivo/complicações , Rim Policístico Autossômico Recessivo/genética , Rim/metabolismo , Mutação , Fatores de Transcrição/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
16.
Physiol Rep ; 10(21): e15510, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36353932

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD) is an inherited pathology caused mainly by mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene, which usually leads to end-stage renal disease. Previous studies suggested that the P2X purinoreceptor 4 (P2X4 R) may play an important role in the progression of ARPKD. To test this hypothesis, we assessed the chronic effects of ivermectin (P2X4 R allosteric modulator) and 5-BDBD (P2X4 R antagonist) on the development of ARPKD in PCK/CrljCrl-Pkhd1pck/CRL (PCK) rats. Our data indicated that activation of ATP-mediated P2X4 R signaling with ivermectin for 6 weeks in high dose (50 mg/L; water supplementation) decreased the total body weight of PCK rats while the heart and kidney weight remained unaffected. Smaller doses of ivermectin (0.5 or 5 mg/L, 6 weeks) or the inhibition of P2X4 R signaling with 5-BDBD (18 mg/kg/day, food supplement for 8 weeks) showed no effect on electrolyte balance or the basic physiological parameters. Furthermore, cystic index analysis for kidneys and liver revealed no effect of smaller doses of ivermectin (0.5 or 5 mg/L) and 5-BDBD on the cyst development of PCK rats. We observed a slight increase in the cystic liver index on high ivermectin dose, possibly due to the cytotoxicity of the drug. In conclusion, this study revealed that pharmacological modulation of P2X4 R by ivermectin or 5-BDBD does not affect the development of ARPKD in PCK rats, which may provide insights for future studies on investigating the therapeutic potential of adenosine triphosphate (ATP)-P2 signaling in PKD diseases.


Assuntos
Rim Policístico Autossômico Recessivo , Ratos , Animais , Rim Policístico Autossômico Recessivo/tratamento farmacológico , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/patologia , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Ratos Sprague-Dawley , Modelos Animais de Doenças , Trifosfato de Adenosina
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(10): 1103-1106, 2022 Oct 10.
Artigo em Chinês | MEDLINE | ID: mdl-36184092

RESUMO

OBJECTIVE: To explore the clinical characteristics and molecular pathogenesis of a child with autosomal dominant polycystic kidney disease (ARPKD). METHODS: Prenatal ultrasound, clinical feature and family history of the child were analyzed. Whole exome sequencing was carried out for the child. Candidate variants were verified by Sanger sequencing. RESULTS: The child has featured premature birth with very low weight, neonatal respiratory distress, metabolic acidosis, and congenital nephrotic syndrome. Gene sequencing revealed that he has harbored compound heterozygous variants of the PKHD1 gene (NM_138694), including c.3885T>A (p.Tyr1295*) in exon 32 and c.7812_7816dupTGATA (p.Thr2606Metfs*63) in exon 49, which were respectively inherited from his mother and father. CONCLUSION: The compound heterozygous variants of the PKHD1 gene probably underlay the disease in this child.


Assuntos
Rim Policístico Autossômico Recessivo , Criança , Éxons , Feminino , Testes Genéticos , Humanos , Recém-Nascido , Masculino , Mutação , Rim Policístico Autossômico Recessivo/genética , Gravidez , Receptores de Superfície Celular/genética
18.
Sci Adv ; 8(38): eabq0866, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36129975

RESUMO

Organoids serve as a novel tool for disease modeling in three-dimensional multicellular contexts. Static organoids, however, lack the requisite biophysical microenvironment such as fluid flow, limiting their ability to faithfully recapitulate disease pathology. Here, we unite organoids with organ-on-a-chip technology to unravel disease pathology and develop therapies for autosomal recessive polycystic kidney disease. PKHD1-mutant organoids-on-a-chip are subjected to flow that induces clinically relevant phenotypes of distal nephron dilatation. Transcriptomics discover 229 signal pathways that are not identified by static models. Mechanosensing molecules, RAC1 and FOS, are identified as potential therapeutic targets and validated by patient kidney samples. On the basis of this insight, we tested two U.S. Food and Drug Administration-approved and one investigational new drugs that target RAC1 and FOS in our organoid-on-a-chip model, which suppressed cyst formation. Our observations highlight the vast potential of organoid-on-a-chip models to elucidate complex disease mechanisms for therapeutic testing and discovery.


Assuntos
Rim Policístico Autossômico Recessivo , Descoberta de Drogas , Drogas em Investigação , Humanos , Dispositivos Lab-On-A-Chip , Organoides/metabolismo , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...