Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cell Rep ; 43(4): 114105, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38619967

RESUMO

Natural killer (NK) cells are primary defenders against cancer precursors, but cancer cells can persist by evading immune surveillance. To investigate the genetic mechanisms underlying this evasion, we perform a genome-wide CRISPR screen using B lymphoblastoid cells. SPPL3, a peptidase that cleaves glycosyltransferases in the Golgi, emerges as a top hit facilitating evasion from NK cytotoxicity. SPPL3-deleted cells accumulate glycosyltransferases and complex N-glycans, disrupting not only binding of ligands to NK receptors but also binding of rituximab, a CD20 antibody approved for treating B cell cancers. Notably, inhibiting N-glycan maturation restores receptor binding and sensitivity to NK cells. A secondary CRISPR screen in SPPL3-deficient cells identifies B3GNT2, a transferase-mediating poly-LacNAc extension, as crucial for resistance. Mass spectrometry confirms enrichment of N-glycans bearing poly-LacNAc upon SPPL3 loss. Collectively, our study shows the essential role of SPPL3 and poly-LacNAc in cancer immune evasion, suggesting a promising target for cancer treatment.


Assuntos
Células Matadoras Naturais , Polissacarídeos , Humanos , Polissacarídeos/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Amino Açúcares/metabolismo , Genômica/métodos , Rituximab/farmacologia , Rituximab/metabolismo , Linhagem Celular Tumoral
2.
Sci Rep ; 14(1): 3146, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326464

RESUMO

Proinflammatory cytokines, such as (IL: interleukin) IL-6 and IL-17A, and complement fixation are critical in the immunopathogenesis of neuromyelitis optica spectrum disorders (NMOSD). Blocking the IL-6 receptor or the C5 complement pathway reduces relapse risk. However, the role of interleukin (IL)-6 and complement in aquaporin-4 (AQP4) autoimmunity remains unclear. To investigate the role of the anti-AQP4 immunoglobulin (AQP4-IgG)/AQP4 immunocomplex on the induction and profile of ex vivo cytokine and surface marker expression in peripheral blood mononuclear cells (PBMC) culture. Isolated PBMCs obtained from 18 patients with AQP4-IgG-seropositive-NMOSD (8 treatment-naive, 10 rituximab-treated) or ten healthy controls were cultured with AQP4-immunocomplex with or without complement. Changes in PBMC surface markers and cytokine expression were profiled using flow cytometry and ELISA. PBMCs derived from treatment-naive NMOSD patients stimulated with a complex mixture of serum complement proteins produced significant elevations of IL-17A and IL-6. Rituximab-treated patients also exhibited higher IL-6 but not IL-17A release. IL-6 and IL-17A elevations are not observed without complement. Co-stimulation of PBMCs with AQP4-IgG/AQP4 immunocomplex and complement prompts a Th17-biased response consistent with the inflammatory paradigm observed in NMOSD. A possible inflammation model is proposed via antigen-specific autoreactive peripheral blood cells, including NK/NKT cells.


Assuntos
Neuromielite Óptica , Humanos , Citocinas/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , Leucócitos Mononucleares/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Rituximab/metabolismo , Autoanticorpos , Aquaporina 4 , Proteínas do Sistema Complemento/metabolismo , Imunoglobulina G/metabolismo
3.
Protein Expr Purif ; 215: 106392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37952787

RESUMO

Cluster of differentiation 20 (CD20) is a nonglycosylated, multispanning transmembrane protein specifically integrated by B lymphocytes. Similar to CD20, another four-pass transmembrane protein, claudin 18.2, has attracted attention as an emerging therapeutic target for cancer. However, their poor solubility and toxic nature often hinder downstream applications, such as antibody drug development. Therefore, developing a cost-effective method for producing drug targets with multiple membrane-spanning domains is crucial. In this study, a high yield of recombinant CD20 was achieved through an E. coli-based in vitro coupled transcription-translation system. Surface plasmon resonance results showed that rituximab (an antileukemia drug) has nanomolar affinity with the CD20 protein, which aligns with published results. Notably, a previously hard-to-express claudin 18.2 recombinant protein was successfully expressed in the same reaction system by replacing its membrane-spanning domains with the transmembrane domains of CD20. The folding of the extracellular domain of the chimeric protein was verified using a commercial anti-claudin 18 antibody. This study provides a novel concept for promoting the expression of four-pass transmembrane proteins and lays the foundation for the large-scale industrial production of membrane-associated drug targets, similar to claudin 18.2.


Assuntos
Antígenos CD20 , Escherichia coli , Antígenos CD20/genética , Antígenos CD20/metabolismo , Escherichia coli/metabolismo , Rituximab/genética , Rituximab/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Claudinas/metabolismo
4.
Front Immunol ; 14: 1230017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790933

RESUMO

Background: Lactate, produced through glycolytic metabolism in the tumor microenvironment (TME), is implicated in tumorigenesis and progression in diverse cancers. However, the impact of lactate on the remodeling of the TME in diffuse large B-cell lymphoma (DLBCL) and its implications for therapy options remain unclear. Method: A lactate-related (LAR) scoring model was constructed in DLBCL patients using bioinformatic methods. CIBERSORT, XCELL, and ssGSEA algorithms were used to determine the correlation between LAR score and immune cell infiltration. Tumor Immune Dysfunction and Exclusion (TIDE), rituximab, cyclophosphamide, adriamycin, vincristine, and prednisone (R-CHOP) cohorts, and Genomics of Drug Sensitivity in Cancer (GDSC) were utilized to predict the therapeutic response of DLBCL patients. The impact of the hub gene STAT4 on tumor biological behavior and DNA methylation was experimentally validated or accessed by the TSIDE database. Results: The LAR scoring model was developed based on 20 prognosis-related lactate genes, which enabled the division of DLBCL patients into high- and low-risk groups based on the median LAR score. Patients with high-risk DLBCL exhibited significantly worse survival outcomes in both the training cohorts (GSE181063) and the validation cohorts (GSE10846, GSE32918, and GSE69053), as indicated by statistically significant differences (all P<0.05) and area under the curve (AUC) values exceeding 0.6. Immune analyses revealed that low-risk DLBCL patients had higher levels of immune cell infiltration and antitumor immune activation compared to high-risk DLBCL patients. Furthermore, DLBCL patients with high LAR scores were associated with a lower TIDE value and poor therapeutic efficacy of the R-CHOP regimen. GDSC analysis identified 18 drugs that exhibited significant response sensitivity in low-risk DLBCL patients. Moreover, in vitro experiments demonstrated that overexpression of the lactate key gene STAT4 could suppress proliferation and migration, induce cell cycle arrest, and promote cell apoptosis in DLBCL cells. Transcriptional expression and methylation of the STAT4 gene were found to be associated with immunomodulators and chemokines. Conclusion: The lactate-based gene signature effectively predicts the prognosis and regulates TME in DLBCL. Our study underscores the role of lactate gene, STAT4, as an important tumor suppressor in DLBCL. Modulating STAT4 could be a promising strategy for DLBCL in clinical practice.


Assuntos
Ácido Láctico , Linfoma Difuso de Grandes Células B , Humanos , Metilação de DNA , Rituximab/uso terapêutico , Rituximab/metabolismo , Prognóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Microambiente Tumoral/genética
5.
Cell Commun Signal ; 21(1): 188, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528446

RESUMO

BACKGROUND: Targeting influential factors in resistance to chemotherapy is one way to increase the effectiveness of chemotherapeutics. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway overexpresses in chronic lymphocytic leukemia (CLL) cells and appears to have a significant part in their survival and chemotherapy resistance. Here we produced novel nanoparticles (NPs) specific for CD20-expressing CLL cells with simultaneous anti-Nrf2 and cytotoxic properties. METHODS: Chitosan lactate (CL) was used to produce the primary NPs which were then respectively loaded with rituximab (RTX), anti-Nrf2 Small interfering RNA (siRNAs) and Cyclophosphamide (CP) to prepare the final version of the NPs (NP-Nrf2_siRNA-CP). All interventions were done on both peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMNCs). RESULTS: NP-Nrf2_siRNA-CP had satisfying physicochemical properties, showed controlled anti-Nrf2 siRNA/CP release, and were efficiently transfected into CLL primary cells (both PBMCs and BMNCs). NP-Nrf2_siRNA-CP were significantly capable of cell apoptosis induction and proliferation prevention marked by respectively decreased and increased anti-apoptotic and pro-apoptotic factors. Furthermore, use of anti-Nrf2 siRNA was corresponding to elevated sensitivity of CLL cells to CP. CONCLUSION: Our findings imply that the combination therapy of malignant CLL cells with RTX, CP and anti-Nrf2 siRNA is a novel and efficient therapeutic strategy that was capable of destroying malignant cells. Furthermore, the use of NPs as a multiple drug delivery method showed fulfilling properties; however, the need for further future studies is undeniable. Video Abstract.


Assuntos
Leucemia Linfocítica Crônica de Células B , Nanopartículas , Humanos , Rituximab/farmacologia , Rituximab/metabolismo , Rituximab/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucócitos Mononucleares/metabolismo , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Ciclofosfamida/metabolismo , RNA Interferente Pequeno/metabolismo
6.
Sci Transl Med ; 15(705): eade3341, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37467318

RESUMO

Allogeneic natural killer (NK) cell adoptive transfer has shown the potential to induce remissions in relapsed or refractory leukemias and lymphomas, but strategies to enhance NK cell survival and function are needed to improve clinical efficacy. Here, we demonstrated that NK cells cultured ex vivo with interleukin-15 (IL-15) and nicotinamide (NAM) exhibited stable induction of l-selectin (CD62L), a lymphocyte adhesion molecule important for lymph node homing. High frequencies of CD62L were associated with elevated transcription factor forkhead box O1 (FOXO1), and NAM promoted the stability of FOXO1 by preventing proteasomal degradation. NK cells cultured with NAM exhibited metabolic changes associated with elevated glucose flux and protection against oxidative stress. NK cells incubated with NAM also displayed enhanced cytotoxicity and inflammatory cytokine production and preferentially persisted in xenogeneic adoptive transfer experiments. We also conducted a first-in-human phase 1 clinical trial testing adoptive transfer of NK cells expanded ex vivo with IL-15 and NAM (GDA-201) combined with monoclonal antibodies in patients with relapsed or refractory non-Hodgkin lymphoma (NHL) and multiple myeloma (MM) (NCT03019666). Cellular therapy with GDA-201 and rituximab was well tolerated and yielded an overall response rate of 74% in 19 patients with advanced NHL. Thirteen patients had a complete response, and 1 patient had a partial response. GDA-201 cells were detected for up to 14 days in blood, bone marrow, and tumor tissues and maintained a favorable metabolic profile. The safety and efficacy of GDA-201 in this study support further development as a cancer therapy.


Assuntos
Interleucina-15 , Linfoma não Hodgkin , Humanos , Interleucina-15/metabolismo , Niacinamida/metabolismo , Linfoma não Hodgkin/terapia , Linfoma não Hodgkin/metabolismo , Rituximab/metabolismo , Células Matadoras Naturais
7.
Front Immunol ; 14: 1303959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304256

RESUMO

Introduction: Non-Hodgkin Lymphoma (NHL) is a heterogeneous lymphoproliferative malignancy with B cell origin. Combinatorial treatment of rituximab, cyclophsphamide, hydroxydaunorubicin, oncovin, prednisone (R-CHOP) is the standard treatment regimen for NHL, yielding a complete remission (CR) rate of 40-50%. Unfortunately, considerable patients undergo relapse after CR or initial treatment, resulting in poor clinical implications. Patient's response to chemotherapy varies widely from static disease to cancer recurrence and later is primarily associated with the development of multi-drug resistance (MDR). The immunosuppressive cells within the tumor microenvironment (TME) have become a crucial target for improving the therapy efficacy. However, a better understanding of their involvement is needed for distinctive response of NHL patients after receiving chemotherapy to design more effective front-line treatment algorithms based on reliable predictive biomarkers. Methods: Peripheral blood from 61 CD20+ NHL patients before and after chemotherapy was utilized for immunophenotyping by flow-cytometry at different phases of treatment. In-vivo and in-vitro doxorubicin (Dox) resistance models were developed with murine Dalton's lymphoma and Jurkat/Raji cell-lines respectively and impact of responsible immune cells on generation of drug resistance was studied by RT-PCR, flow-cytometry and colorimetric assays. Gene silencing, ChIP and western blot were performed to explore the involved signaling pathways. Results: We observed a strong positive correlation between elevated level of CD33+CD11b+CD14+CD15- monocytic MDSCs (M-MDSC) and MDR in NHL relapse cohorts. We executed the role of M-MDSCs in fostering drug resistance phenomenon in doxorubicin-resistant cancer cells in both in-vitro, in-vivo models. Moreover, in-vitro supplementation of MDSCs in murine and human lymphoma culture augments early expression of MDR phenotypes than culture without MDSCs, correlated well with in-vitro drug efflux and tumor progression. We found that MDSC secreted cytokines IL-6, IL-10, IL-1ß are the dominant factors elevating MDR expression in cancer cells, neutralization of MDSC secreted IL-6, IL-10, IL-1ß reversed the MDR trait. Moreover, we identified MDSC secreted IL-6/IL-10/IL-1ß induced STAT1/STAT3/NF-κß signaling axis as a targeted cascade to promote early drug resistance in cancer cells. Conclusion: Our data suggests that screening patients for high titre of M-MDSCs might be considered as a new potential biomarker and treatment modality in overcoming chemo-resistance in NHL patients.


Assuntos
Linfoma não Hodgkin , Linfoma , Células Supressoras Mieloides , Humanos , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Rituximab/metabolismo , Vincristina/farmacologia , Vincristina/uso terapêutico , Interleucina-10/metabolismo , Prednisona/farmacologia , Prednisona/uso terapêutico , Interleucina-6/metabolismo , Recidiva Local de Neoplasia/metabolismo , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/metabolismo , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/metabolismo , Linfoma/metabolismo , Biomarcadores/metabolismo , Resistência a Múltiplos Medicamentos , Microambiente Tumoral/fisiologia
8.
Front Immunol ; 13: 929339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389667

RESUMO

Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by 'Don´t Eat Me!' signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.


Assuntos
Antígeno CD47 , Leucemia Linfocítica Crônica de Células B , Humanos , Antígeno CD47/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Rituximab/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Linhagem Celular Tumoral , Fagocitose , Macrófagos , Anticorpos/metabolismo , Antígenos CD/metabolismo
9.
Front Immunol ; 13: 986018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211443

RESUMO

Background and objectives: Several autoantibodies against proteins located at the node of Ranvier has been identified in patients with chronic inflammatory demyelinating polyneuropathy (CIDP) in the last few years. Then a new concept, autoimmune nodo-paranodopathies was proposed. Cases of Caspr1 autoantibodies are the most rare. Here we describe an anti-Caspr1 nodopathy patient, summarized his clinical, physiological and pathological features. Case presentation: We present the case of a 56-year-old male patient with proprioceptive loss, ataxia, coarse tremor and distal limb weakness without any painess and cranial involvement. Electrophysiological studies showed prolonged distal motor latencies, conduction slowing and reduced amplitude distal compound muscle action potential (CMAP) amplitude. Antibodies against the nodes of Ranvier in serum samples revealed a positive finding for the anti-Caspr1 antibody (1:10).Myelinated fiber loss could be revealed in nerve biopsy. Longitudinal ultrathin sections of the nodal region was discovered in electron microscope, the paranodal/nodal architecture was destructed. It was lack of transverse bands and enlargement of the space between the axon and the paranodal loops was seen. The patient improved obviously after three times immunoadsorption(IA) therapy. Conclusion: Anti-Caspr1 nodopathy patient may present atypical symptoms without any neuropathic pain and cranial palsy. The destruction of paranodal/nodal architecture could be observed in nerve biopsy, which may be caused by the lost of axoglial complex formed by NF155, CNTN1 and Caspr1. Antibodies detection is important for the diagnosis, while IA therapy could be regarded as an option for the patients allergic to rituximab (RTX).


Assuntos
Fatores de Crescimento Neural , Nós Neurofibrosos , Autoanticorpos , Moléculas de Adesão Celular/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Rituximab/metabolismo
10.
Monoclon Antib Immunodiagn Immunother ; 41(5): 260-274, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36306517

RESUMO

In past few years many rituximab (RTX) biosimilars have been launched in India. Biosimilars are products that are similar in terms of quality, safety, and efficacy to its innovator product and are expected to offer improved affordability. The less clinical examination is a significant source of reduction in the cost of development of a biosimilar. However, this clinical relief is predicated on the assumption that there is analytical similarity between the biosimilar and the innovator product. Therefore, the role of National Control Laboratory become very important to ensure the quality of these drugs by carrying out analytical characterization at the point of drug product release level as when referred by National Regulatory Authority for quality evaluation. To assess the similarity between innovator and biosimilars, different physicochemical and biological quality attributes were assessed. A multitude of state-of-the-art analysis of N = 3 RTX biosimilars marketed in India revealed that the impurity profiles of these biosimilars measured by charge variant analysis (cation exchange chromatography-high performance liquid chromatography [HPLC], capillary zone electrophoresis, and capillary isoelectric focusing), aggregates profiling (size exclusion chromatography-HPLC), fragments analysis (capillary electrophoresis-sodium dodecyl sulfate) were found to be significantly varying as compared with the innovator product. There were significant variations in acidic variants (p = 0.023) and basic variants (p = 0.0005), isoelectric point value (p < 0.0001), aggregates (p = 0.0231), and fragments (p < 0.0001) of biosimilars were found as that of innovator product. However, these differences were not affecting the biological activity in the cell-based potency analysis by complement-dependent cytotoxicity (CDC) assay (p = 0.1026), antibody-dependent cell-mediated cytotoxicity (ADCC) (p = 0.3736), and binding assay by flow cytometer fluorescence-activated cell sorting (p = 0.4005) of these biosimilars as compared with the innovator product.


Assuntos
Medicamentos Biossimilares , Medicamentos Biossimilares/química , Rituximab/química , Rituximab/metabolismo , Anticorpos Monoclonais , Eletroforese Capilar/métodos , Citotoxicidade Celular Dependente de Anticorpos
11.
Sci Rep ; 12(1): 12297, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853959

RESUMO

Podocytes are highly specialized cells playing a key role in the filtration function of the kidney. A damaged podocyte ultrastructure is associated with a reorganization of the actin cytoskeleton and accompanied with a loss of adhesion to the glomerular basement membrane leading to proteinuria in many forms of glomerular diseases, e.g. nephrotic syndrome. If the first-line therapy with glucocorticoids fails, alternative immunosuppressive agents are used, which are known to have the potential to stabilize the actin cytoskeleton. A new option for preventing relapses in steroid dependent nephrotic syndrome is the monoclonal antibody rituximab, which, in addition to its B-cell depleting effect, is assumed to have direct effects on podocytes. We here provide data on the non-immunological off-target effects of the immunosuppressant rituximab on podocyte structure and dynamics in an in vitro puromycin aminonucleoside model of podocyte injury. A conditionally immortalized human podocyte cell line was used. Differentiated podocytes were treated with puromycin aminonucleoside and rituximab. Our studies focussed on analyzing the structure of the actin cytoskeleton, cellular adhesion and apoptosis using immunofluorescence staining and protein biochemistry methods. Treatment with rituximab resulted in a stabilization of podocyte actin stress fibers in the puromycin aminonucleoside model, leading to an improvement in cell adhesion. A lower apoptosis rate was observed after parallel treatment with puromycin aminonucleoside and rituximab visualized by reduced nuclear fragmentation. Consistent with this data, Western-blot analyses demonstrated that rituximab directly affects the caspase pathways by inhibiting the activation of Caspases-8, -9 and -3, suggesting that rituximab may inhibit apoptosis. In conclusion, our results indicate an important role of the immunosuppressant rituximab in terms of stability and morphogenesis of podocytes, involving apoptosis pathways. This could help to improve therapeutical concepts for patients with proteinuria mediated by diseased podocytes.


Assuntos
Síndrome Nefrótica , Podócitos , Apoptose , Células Cultivadas , Humanos , Imunossupressores/metabolismo , Imunossupressores/farmacologia , Síndrome Nefrótica/induzido quimicamente , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Puromicina/farmacologia , Puromicina Aminonucleosídeo/metabolismo , Puromicina Aminonucleosídeo/farmacologia , Rituximab/metabolismo , Rituximab/farmacologia
12.
J Immunol ; 209(2): 379-390, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35768150

RESUMO

NK cells are promising cellular therapeutics against hematological and solid malignancies. Immunogenetic studies have identified that various activating killer cell Ig-like receptors (KIRs) are associated with cancer outcomes. Specifically, KIR2DS2 has been associated with reduced incidence of relapse following transplant in hematological malignancies and improved outcomes in solid tumors, but the mechanism remains obscure. Therefore, we investigated how KIR2DS2 expression impacts NK cell function. Using a novel flow cytometry panel, we show that human NK cells with high KIR2DS2 expression have enhanced spontaneous activation against malignant B cell lines, liver cancer cell lines, and primary chronic lymphocytic leukemia cells. Surface expression of CD16 was increased on KIR2DS2high NK cells, and, accordingly, KIR2DS2high NK cells had increased activation against lymphoma cells coated with the clinically relevant anti-CD20 Abs rituximab and obinutuzumab. Bulk RNA sequencing revealed that KIR2DS2high NK cells have upregulation of NK-mediated cytotoxicity, translation, and FCGR gene pathways. We developed a novel single-cell RNA-sequencing technique to identify KIR2DS2+ NK cells, and this confirmed that KIR2DS2 is associated with enhanced NK cell-mediated cytotoxicity. This study provides evidence that KIR2DS2 marks a population of NK cells primed for anticancer activity and indicates that KIR2DS2 is an attractive target for NK-based therapeutic strategies.


Assuntos
Células Matadoras Naturais , Receptores KIR , Antígenos CD20/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo , Rituximab/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico
13.
Front Immunol ; 13: 826152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464461

RESUMO

B cell abnormalities are common in systemic lupus erythematosus (SLE), and include expansion of double negative (DN) and age-associated-like B cells (ABC-like). We aimed to investigate rituximab (RTX) effects on DN and ABC-like B-cell subsets and, when possible, also secondary effects on T cells. Fifteen SLE patients, fulfilling the ACR 1982 criteria, starting RTX and followed longitudinally up to two years, were analyzed for B- and T- lymphocyte subsets using multicolor flow cytometry. DN were defined as IgD-CD27- and ABC-like as CD11c+CD21- within the DN gate. Additional phenotyping was performed adding CXCR5 in the B-cell panel. Cellular changes were further analyzed in the context of the generation of anti-drug antibodies (ADA) against RTX and clinical information. The SLE patients were mainly females (86.6%), of median age 36.7 (29.8-49.4) years and disease duration of 6.1 (1.6-11.8) years. Within the DN subset, ABC-like (IgD-CD27-CD11c+CD21-) B cell frequency reduced from baseline median level of 20.4% to 11.3% (p=0.03), at early follow-up. The DN B cells were further subdivided based on CXCR5 expression. Significant shifts were observed at the early follow-up in the DN2 sub-cluster (CD11c+CXCR5-), which reduced significantly (-15.4 percentage points, p=0.02) and in the recently described DN3 (CD11c-CXCR5-) which increased (+13 percentage points, p=0.03). SLE patients treated with RTX are at high risk of developing ADA. In our cohort, the presence of ADA at 6 months was associated with lower frequencies of DN cells and to a more pronounced expansion of plasmablasts at early follow-up. The frequency of follicular helper T cells (TFH, CD4+PD-1+CXCR5+) and of peripheral helper T cells (TPH, CD4+PD-1+CXCR5-) did not change after RTX. A sub-cluster of PD-1highCD4+ T cells showed a significant decrease at later follow-up compared to early follow-up (p=0.0039). It is well appreciated that RTX transiently influences B cells. Here, we extend these observations to cell phenotypes which are believed to directly contribute to autoimmunity in SLE. We show early transient effects of RTX on ABC-like memory B cells, later effects on PD-1high CD4+ cells, and possible implications for RTX immunogenicity. Further insight in such effects and their monitoring may be of clinical relevance.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Adulto , Antígeno CD11c/metabolismo , Feminino , Humanos , Imunoglobulina D/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR5/metabolismo , Rituximab/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Linfócitos T Auxiliares-Indutores
14.
Hum Gene Ther ; 33(13-14): 740-756, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35331006

RESUMO

Intravenous onasemnogene abeparvovec is approved for the treatment of spinal muscular atrophy in children < 2 years. For later-onset patients, intrathecal onasemnogene abeparvovec may be advantageous over intravenous administration. Recently, microscopic dorsal root ganglion (DRG) changes were observed in nonhuman primates (NHPs) following intrathecal onasemnogene abeparvovec administration. To characterize these DRG findings, two NHP studies evaluating intrathecal onasemnogene abeparvovec administration were conducted: a 12-month study with a 6-week interim cohort and a 13-week study with a 2-week interim cohort. The latter investigated the potential impact of prednisolone or rituximab plus everolimus on DRG toxicity. An additional 6-month, single-dose, intravenous NHP study conducted in parallel evaluated onasemnogene abeparvovec safety (including DRG toxicity) with or without prednisolone coadministration. Intrathecal onasemnogene abeparvovec administration was well tolerated and not associated with clinical observations. Microscopic onasemnogene abeparvovec-related changes were observed in the DRG and trigeminal ganglion (TG) and included mononuclear cell inflammation and/or neuronal degeneration, which was colocalized with high vector transcript expression at 6 weeks postdose. Incidence and severity of DRG changes were generally decreased after 52 weeks compared with 6 weeks postdose. Other onasemnogene abeparvovec-related microscopic findings of axonal degeneration, mononuclear cell infiltrates and/or gliosis in the spinal cord, dorsal spinal nerve root/spinal nerves, and/or peripheral nerves were absent or found at decreased incidences and/or severities after 52 weeks. DRG and/or TG microscopic findings following intravenous onasemnogene abeparvovec dosing included minimal to slight neuronal degeneration and mononuclear cell inflammation at 6 weeks and 6 months postdose. Nervous system microscopic findings following intrathecal onasemnogene abeparvovec (≥1.2 × 1013 vg/animal) trended toward resolution after 52 weeks, supporting nonprogression of changes, including in the DRG. Onasemnogene abeparvovec-related DRG findings were not associated with electrophysiology changes and were not ameliorated by prednisolone or rituximab plus everolimus coadministration. The pathogenesis is possibly a consequence of increased vector genome transduction and/or transgene expression.


Assuntos
Everolimo , Gânglios Espinais , Animais , Everolimo/metabolismo , Gânglios Espinais/metabolismo , Humanos , Inflamação/metabolismo , Macaca fascicularis , Prednisolona/metabolismo , Prednisolona/uso terapêutico , Rituximab/metabolismo
15.
Blood ; 139(18): 2770-2781, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35226739

RESUMO

Small ubiquitin-like modifier (SUMO) is a member of a ubiquitin-like protein superfamily. SUMOylation is a reversible posttranslational modification that has been implicated in the regulation of various cellular processes including inflammatory responses and expression of type 1 interferons (IFN1). In this report, we have explored the activity of the selective small molecule SUMOylation inhibitor subasumstat (TAK-981) in promoting antitumor innate immune responses. We demonstrate that treatment with TAK-981 results in IFN1-dependent macrophage and natural killer (NK) cell activation, promoting macrophage phagocytosis and NK cell cytotoxicity in ex vivo assays. Furthermore, pretreatment with TAK-981 enhanced macrophage phagocytosis or NK cell cytotoxicity against CD20+ target cells in combination with the anti-CD20 antibody rituximab. In vivo studies demonstrated enhanced antitumor activity of TAK-981 and rituximab in CD20+ lymphoma xenograft models. Combination of TAK-981 with anti-CD38 antibody daratumumab also resulted in enhanced antitumor activity. TAK-981 is currently being studied in phase 1 clinical trials (#NCT03648372, #NCT04074330, #NCT04776018, and #NCT04381650; www.clinicaltrials.gov) for the treatment of patients with lymphomas and solid tumors.


Assuntos
Linfoma , Sumoilação , Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD20 , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Macrófagos/metabolismo , Rituximab/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico
16.
Int Immunopharmacol ; 100: 108112, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34521023

RESUMO

More than 100 monoclonal antibodies (mAbs) have been approved by FDA. The mechanism of action (MoA) involves in neutralization of a specific target via the Fab region and Fc effector functions through Fc region, while the latter include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). ADCP has been recognized one of the most important MoAs, especially for anti-cancer mAbs in recent years. However, traditional bioassays measuring ADCP always introduced primary macrophages and flow cytometry, which are difficult to handle and highly variable. In this study, we engineered a monoclonal Jurkat/NFAT/CD32a-FcεRIγ effector cell line that stably expresses CD32a-FcεRIγ chimeric receptor and NFAT-controlled luciferase. The corresponding mAb could bind with the membrane antigens on the target cells with its Fab fragment and CD32a-FcεRIγ on the effector cells with its Fc fragment, leading to the crosslinking of CD32a-FcεRIγ and the resultant expression of subsequent NFAT-controlled luciferase, which represents the bioactivity of ADCP based on the MoA of the mAb. With rituximab as the model mAb, Raji cells as the target cells, and Jurkat/NFAT/CD32a-FcεRIγ cells as the effector cells, we adopted the strategy of Design of Experiment (DoE) to optimize the bioassay. Then we fully validated the established bioassay according to ICH-Q2(R1), which proved the good assay performance characteristics of the bioassay, including specificity, accuracy, precision, linearity, stability and robustness. This RGA can be applied to evaluate the -ADCP bioactivity for anti-CD20 mAbs in lot release, stability testing as well as biosimilar comparability. The engineered cells may also potentially be used to evaluate the ADCP bioactivity of mAbs with other targets.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Bioensaio , Genes Reporter , Linfoma de Células B/tratamento farmacológico , Fagocitose/efeitos dos fármacos , Rituximab/farmacologia , Antineoplásicos Imunológicos/metabolismo , Humanos , Células Jurkat , Luciferases/genética , Luciferases/metabolismo , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Reprodutibilidade dos Testes , Rituximab/metabolismo
17.
Mol Biotechnol ; 63(11): 1016-1029, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34185248

RESUMO

Plants are promising drug-production platforms with high economic efficiency, stability, and convenience in mass production. However, studies comparing the equivalency between the original antibodies and those produced in plants are limited. Amino acid sequences that constitute the Fab region of an antibody are diverse, and the post-transcriptional modifications that occur according to these sequences in animals and plants are also highly variable. In this study, rituximab, a blockbuster antibody drug used in the treatment of non-Hodgkin's lymphoma, was produced in Nicotiana benthamiana leaves and Arabidopsis thaliana callus, and was compared to the original rituximab produced in CHO cells. Interestingly, the epitope recognition and antigen-binding abilities of rituximab from N. benthamiana leaves were almost lost. In the case of rituximab produced in A. thaliana callus, the specific binding ability and CD20 capping activity were maintained, but the binding affinity was less than 50% of that of original rituximab from CHO cells. These results suggest that different plant species exhibit different binding affinities. Accordingly, in addition to the differences in PTMs between mammals and plants, the differences between the species must also be considered in the process of producing antibodies in plants.


Assuntos
Antígenos CD20/metabolismo , Arabidopsis/metabolismo , Nicotiana/metabolismo , Folhas de Planta/química , Rituximab/metabolismo , Animais , Afinidade de Anticorpos , Antígenos CD20/química , Antineoplásicos Imunológicos/isolamento & purificação , Antineoplásicos Imunológicos/metabolismo , Arabidopsis/genética , Cricetinae , Humanos , Folhas de Planta/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Rituximab/biossíntese , Rituximab/genética , Rituximab/isolamento & purificação , Nicotiana/genética
18.
Cancer Sci ; 112(7): 2607-2624, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33938097

RESUMO

Chemotherapy for non-Hodgkin lymphoma (NHL) in the hemodialysis (HD) patient is a challenging situation. Because many drugs are predominantly eliminated by the kidneys, chemotherapy in the HD patient requires special considerations concerning dose adjustments to avoid overdose and toxicities. Conversely, some drugs are removed by HD and may expose the patient to undertreatment, therefore the timing of drug administration in relation to HD sessions must be carefully planned. Also, the metabolites of some drugs show different toxicities and dialysability as compared with the parent drug, therefore this must also be catered for. However, the pharmacokinetics of many chemotherapeutics and their metabolites in HD patients are unknown, and the fact that NHL patients are often treated with distinct multiagent chemotherapy regimens makes the situation more complicated. In a realm where uncertainty prevails, case reports and case series reporting on actual treatment and outcomes are extremely valuable and can aid physicians in decision making from drug selection to dosing. We carried out an exhaustive review of the literature and adopted 48 manuscripts consisting of 66 HD patients undergoing 71 chemotherapy regimens for NHL, summarized the data, and provide recommendations concerning dose adjustments and timing of administration for individual chemotherapeutics where possible. The chemotherapy regimens studied in this review include, but are not limited to, rituximab, cyclophosphamide + vincristine + prednisolone (CVP) and cyclophosphamide + doxorubicin + vincristine + prednisolone (CHOP)-like regimens, chlorambucil, ibrutinib, bendamustine, methotrexate, platinum compounds, cytarabine, gemcitabine, etoposide, ifosfamide, melphalan, busulfan, fludarabine, mogamulizumab, brentuximab vedotin, and 90 Y-ibritumomab tiuxetan.


Assuntos
Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Linfoma não Hodgkin/tratamento farmacológico , Diálise Renal , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Antineoplásicos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Criança , Ciclofosfamida/administração & dosagem , Ciclofosfamida/metabolismo , Doxorrubicina/administração & dosagem , Doxorrubicina/metabolismo , Esquema de Medicação , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Rim/metabolismo , Masculino , Pessoa de Meia-Idade , Prednisona/administração & dosagem , Prednisona/metabolismo , Rituximab/administração & dosagem , Rituximab/metabolismo , Vincristina/administração & dosagem , Vincristina/metabolismo , Adulto Jovem
19.
Clin Epigenetics ; 13(1): 33, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33573703

RESUMO

BACKGROUND: Although R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) remains the standard chemotherapy regimen for diffuse large B cell lymphoma (DLBCL) patients, not all patients are responsive to the scheme, and there is no effective method to predict treatment response. METHODS: We utilized 5hmC-Seal to generate genome-wide 5hmC profiles in plasma cell-free DNA (cfDNA) from 86 DLBCL patients before they received R-CHOP chemotherapy. To investigate the correlation between 5hmC modifications and curative effectiveness, we separated patients into training (n = 56) and validation (n = 30) cohorts and developed a 5hmC-based logistic regression model from the training cohort to predict the treatment response in the validation cohort. RESULTS: In this study, we identified thirteen 5hmC markers associated with treatment response. The prediction performance of the logistic regression model, achieving 0.82 sensitivity and 0.75 specificity (AUC = 0.78), was superior to existing clinical indicators, such as LDH and stage. CONCLUSIONS: Our findings suggest that the 5hmC modifications in cfDNA at the time before R-CHOP treatment are associated with treatment response and that 5hmC-Seal may potentially serve as a clinical-applicable, minimally invasive approach to predict R-CHOP treatment response for DLBCL patients.


Assuntos
5-Metilcitosina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Ácidos Nucleicos Livres/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , 5-Metilcitosina/sangue , 5-Metilcitosina/metabolismo , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Farmacológicos/metabolismo , Estudos de Coortes , Ciclofosfamida/metabolismo , Ciclofosfamida/uso terapêutico , Desmetilação do DNA/efeitos dos fármacos , Doxorrubicina/metabolismo , Doxorrubicina/uso terapêutico , Feminino , Humanos , Modelos Logísticos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prednisona/metabolismo , Prednisona/uso terapêutico , Rituximab/metabolismo , Rituximab/uso terapêutico , Sensibilidade e Especificidade , Vincristina/metabolismo , Vincristina/uso terapêutico
20.
J Pharm Sci ; 110(4): 1661-1667, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482230

RESUMO

The influence of the glycosylation profile of IgG on biological activity is known, but it is not clear which glycoforms have the highest impact on the main mechanism of action. The aim of this study was to design a mathematical model for predicting the antibody-dependent cellular cytotoxicity (ADCC) activity and the Fc gamma IIIa receptors' (FcɣRIIIa) relative binding of rituximab drug products based on their glycosylation profile. An additional goal was to identify the glycoforms that have the greatest impact on these mechanisms of action. For these purposes, the glycosylation profile was examined by hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC), ADCC was assessed using a Promega kit, and FcɣRIIIa's binding affinity was assessed by surface plasmon resonance (SPR) analysis of a group of >50 rituximab drug products. Based on the results, mathematical models for the ADCC and FcɣRIIIa binding affinity prediction were designed using JMP 13.2.0. The quality of the model and the influence of sample size and heterogeneity on the reliability were verified. The results allow for the evaluation of rituximab drug products' activity based on their glycosylation profile and show that with a sufficiently large and differentiated dataset, it is possible to generate models for different monoclonal antibodies.


Assuntos
Anticorpos Monoclonais , Citotoxicidade Celular Dependente de Anticorpos , Glicosilação , Reprodutibilidade dos Testes , Rituximab/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...