Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791300

RESUMO

The increase in atmospheric CO2 concentration is a significant factor in triggering global warming. CO2 is essential for plant photosynthesis, but excessive CO2 can negatively impact photosynthesis and its associated physiological and biochemical processes. The tetraploid Robinia pseudoacacia L., a superior and improved variety, exhibits high tolerance to abiotic stress. In this study, we investigated the physiological and proteomic response mechanisms of the tetraploid R. pseudoacacia under high CO2 treatment. The results of our physiological and biochemical analyses revealed that a 5% high concentration of CO2 hindered the growth and development of the tetraploid R. pseudoacacia and caused severe damage to the leaves. Additionally, it significantly reduced photosynthetic parameters such as Pn, Gs, Tr, and Ci, as well as respiration. The levels of chlorophyll (Chl a and b) and the fluorescent parameters of chlorophyll (Fm, Fv/Fm, qP, and ETR) also significantly decreased. Conversely, the levels of ROS (H2O2 and O2·-) were significantly increased, while the activities of antioxidant enzymes (SOD, CAT, GR, and APX) were significantly decreased. Furthermore, high CO2 induced stomatal closure by promoting the accumulation of ROS and NO in guard cells. Through a proteomic analysis, we identified a total of 1652 DAPs after high CO2 treatment. GO functional annotation revealed that these DAPs were mainly associated with redox activity, catalytic activity, and ion binding. KEGG analysis showed an enrichment of DAPs in metabolic pathways, secondary metabolite biosynthesis, amino acid biosynthesis, and photosynthetic pathways. Overall, our study provides valuable insights into the adaptation mechanisms of the tetraploid R. pseudoacacia to high CO2.


Assuntos
Dióxido de Carbono , Clorofila , Fotossíntese , Proteínas de Plantas , Proteômica , Robinia , Tetraploidia , Dióxido de Carbono/metabolismo , Robinia/metabolismo , Robinia/genética , Robinia/fisiologia , Proteômica/métodos , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteoma/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Antioxidantes/metabolismo
2.
Environ Pollut ; 345: 123456, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307241

RESUMO

The role of rhizobia in alleviating cadmium (Cd) stress in woody legumes is still unclear. Therefore, two types of black locust (Robinia pseudoacacia L.) with high and low Cd accumulation abilities were selected from 11 genotypes in China, and the effects of rhizobium (Mesorhizobium huakuii GP1T11) inoculation on the growth, CO2 and H2O gas exchange parameters, Cd accumulation, and the absorption of mineral elements of the high (SX) and low Cd-accumulator (HB) were compared. The results showed that rhizobium-inoculation significantly increased biomass, shoot Cd contents, Cd accumulation, root-to-shoot translocation factor (TF) and the absorption and accumulation of mineral elements in both SX and HB. Rhizobium-inoculation increased chlorophyll a and carotenoid contents, and the intercellular carbon dioxide concentrations in HB plants. Under Cd exposure, the high-accumulator SX exhibited a significant decrease in photosynthetic CO2 fixation (Pn) and an enhanced accumulation of Cd in leaves, but coped with Cd exposure by increasing chlorophyll synthesis, regulating stomatal aperture (Gs), controlling transpiration (Tr), and increasing the absorption and accumulation of mineral elements. In contrast, the low-accumulator HB was more sensitive to Cd exposure despite preferential accumulation of Cd in roots, with decreased chlorophyll and carotenoid contents, but significantly increased root biomass. Compared to the low-accumulator HB, non-inoculated Cd-exposed SX plants had higher chlorophyll contents, and rhizobium-inoculated Cd-exposed SX plants had higher Pn, Tr, and Gs as well as higher levels of P, K, Fe, Ca, Zn, and Cu. In conclusion, the high- and low-Cd-accumulator exhibited different physiological responses to Cd exposure. Overall, rhizobium-inoculation of black locust promoted the growth and heavy metal absorption, providing an effective strategy for the phytoremediation of heavy metal-contaminated soils by this woody legume.


Assuntos
Metais Pesados , Rhizobium , Robinia , Poluentes do Solo , Cádmio/toxicidade , Robinia/fisiologia , Clorofila A , Dióxido de Carbono/análise , Metais Pesados/farmacologia , Clorofila , Minerais , Carotenoides , Biodegradação Ambiental , Poluentes do Solo/análise
3.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3256-3262, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38511364

RESUMO

Drought intensity and frequency have been increased as a result of global warming. Exploring the drought resistance mechanism of Robinia pseudoacacia plantations of different stand ages on the Loess Plateau is crucial for understanding the stability of forest productivity in the region. We investigated anatomical traits, hydraulic function, and non-structural carbohydrate content of the xylem, as well as their association, in R. pseudoacacia plantations of different stand ages in a semi-arid region. The results showed that the vessel diameter, total pit membrane area, pit membrane area, vesture area, and vestured overlap of young and middle-aged stands were larger than those of mature stands, and the pit density was significantly lower in mature stands. Hydraulic conductivity was significantly related to vessel diameter, pit membrane area, and vesture area. Hydraulic conductivities of branches in young, middle-aged, and mature stands were 2.30, 2.12, and 0.76 kg·m-1·s-1·MPa-1, respectively, with embolism values of 54.5%, 53.8%, and 45.1%. Hydraulic conductivity was significantly related to soluble sugar and starch contents. The soluble sugar contents of branches in young, middle-aged and mature stands were 4.9%, 4.2%, and 3.8%, respectively. Xylem growth capacity of R. pseudoacacia in mature stand declined, resulting in the formation of small vessels with many small pits, which reduced hydraulic conductivity while maintaining hydraulic safety, resulting in a decrease of non-structural carbohydrates content. This study revealed the drought response mechanism of R. pseudoacacia plantations with different ages, providing a scientific foundation for the management and nurturing of R. pseudoacacia plantations on the Loess Plateau.


Assuntos
Robinia , Robinia/fisiologia , Florestas , Xilema/fisiologia , Carboidratos , Açúcares , Solo
4.
Plant Cell Environ ; 45(7): 2191-2210, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35419804

RESUMO

Nitrogen-fixing root nodules are formed by symbiotic association of legume hosts with rhizobia in nitrogen-deprived soils. Successful symbiosis is regulated by signals from both legume hosts and their rhizobial partners. HmuS is a heme degrading factor widely distributed in bacteria, but little is known about the role of rhizobial hmuS in symbiosis with legumes. Here, we found that inactivation of hmuSpSym in the symbiotic plasmid of Mesorhizobium amorphae CCNWGS0123 disrupted rhizobial infection, primordium formation, and nitrogen fixation in symbiosis with Robinia pseudoacacia. Although there was no difference in bacteroids differentiation, infected plant cells were shrunken and bacteroids were disintegrated in nodules of plants infected by the ΔhmuSpSym mutant strain. The balance of defence reaction was also impaired in ΔhmuSpSym strain-infected root nodules. hmuSpSym was strongly expressed in the nitrogen-fixation zone of mature nodules. Furthermore, the HmuSpSym protein could bind to heme but not degrade it. Inactivation of hmuSpSym led to significantly decreased expression levels of oxygen-sensing related genes in nodules. In summary, hmuSpSym of M. amorphae CCNWGS0123 plays an essential role in nodule development and maintenance of bacteroid survival within R. pseudoacacia cells, possibly through heme-binding in symbiosis.


Assuntos
Fabaceae , Mesorhizobium , Rhizobium , Robinia , Fabaceae/microbiologia , Fibrinogênio/metabolismo , Heme/metabolismo , Mesorhizobium/fisiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Rhizobium/genética , Robinia/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética
5.
Physiol Plant ; 174(1): e13641, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35112359

RESUMO

The present study explores the interaction of water supply and rhizobia inoculation on CO2 and H2 O gas exchange characteristics, physiological and biochemical traits in seedlings of Robinia pseudoacacia L. originating from two provenances with contrasting climate and soil backgrounds: the Gansu Province (GS) in northwest China and the Dongbei region (DB) of northeast China. Rhizobia strains were isolated from the 50-years old Robinia forest sites grown in the coastal region of east China. Robinia seedlings with and without rhizobia inoculation were exposed to normal water supply, moderate drought, and rewatering treatments, respectively. After 2 weeks of drought treatment, photosynthetic and physiological traits (net photosynthetic rate, stomatal conductance, stable isotope signature of carbon, malondialdehyde and hydrogen peroxide content) of Robinia leaves were significantly altered, but after rewatering, a general recovery was observed. Rhizobia inoculation significantly increased the drought resistance of both Robinia provenances by promoting photosynthesis, increasing the foliar N content and reducing the accumulation of malondialdehyde and hydrogen peroxide. Among the two provenances, DB plants developed more nodules than GS plants, but GS plants were more drought-tolerant than DB plants, both inoculated or noninoculated, indicated by the foliar gas exchange parameters and biochemical traits studied. Our results also show that inoculation of rhizobia could significantly improve the drought resistance of Robinia in both provenances. The present study contributes to the scientific background for the selection of drought-resistant varieties of Robinia to ensure the success of future afforestation projects in degraded terrestrial ecosystems under global climate change.


Assuntos
Rhizobium , Robinia , Desidratação , Ecossistema , Robinia/fisiologia , Estresse Fisiológico , Simbiose
6.
PLoS One ; 17(1): e0262278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986177

RESUMO

To select elite Robinia pseudoacacia L. germplasm resources for production, 13 phenotypes and three physiological indicators of 214 seedlings from 20 provenances were systematically evaluated and analyzed. The leaf phenotypic and physiological coefficients of variation among the genotypes ranged from 3.741% to 19.599% and from 8.260% to 42.363%, respectively. The Kentucky provenance had the largest coefficient of variation (18.541%). The average differentiation coefficients between and within provenances were 34.161% and 38.756%, respectively. These close percentages showed that R. pseudoacacia presented high genetic variation among and within provenances, which can be useful for assisted migration and breeding programs. Furthermore, based on the results of correlations, principal component analysis and cluster analysis, breeding improvements targeting R. pseudoacacia's ornamental value, food value, and stress resistance of were performed. Forty and 30 excellent individuals, accounting for 18.692% and 14.019%, respectively, of the total resources. They were ultimately screened, after comprehensively taking into considering leaf phenotypic traits including compound leaf length, leaflet number and leaflet area and physiological characteristics including proline and soluble protein contents. These selected individuals could provide a base material for improved variety conservation and selection.


Assuntos
Robinia/genética , Robinia/fisiologia , Kentucky , Fenótipo , Melhoramento Vegetal/métodos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Robinia/metabolismo , Plântula/genética , Plântula/fisiologia
7.
Plant Cell Rep ; 40(12): 2435-2447, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34524479

RESUMO

KEY MESSAGE: We detected the genome-wide pattern of DNA methylation and its association with gene expression in sexual and asexual progenies of mature Robinia pseudoacacia trees. DNA methylation plays an important role in plant reproduction and development. Although some studies on sexual reproduction have been carried out in model plants, little is known about the dynamic changes in DNA methylation and their effect on gene expression in sexual and asexual progeny of woody plants. Here, through whole-genome bisulfite sequencing, we revealed DNA methylation patterns in the sexual and asexual progenies of mature Robinia pseudoacacia to understand the regulation of gene expression by DNA methylation in juvenile seedlings. An average of 53% CG, 34% CHG and 5% CHH contexts was methylated in the leaves of mature and juvenile individuals. The CHH methylation level of asexually propagated seedlings was significantly lower than that of seed-derived seedlings and mature trees. The intergenic regions had the highest methylation level. Analysis of differentially methylated regions (DMRs) showed that most of them were hypermethylated and located in the gene upstream and introns. A total of 24, 108 and 162 differentially expressed genes containing DMRs were identified in root sprouts (RSs), root cuttings (RCs) and seed-derived seedlings (SSs), respectively, and a large proportion of them showed hypermethylation. In addition, DMRs were enriched within GO subcategories including catalytic activity, metabolic process and cellular process. The results reveal widespread DNA methylation changes between mature plants and their progenies through sexual/asexual reproduction, which provides novel insights into DNA methylation reprogramming and the regulation of gene expression in woody plants.


Assuntos
Metilação de DNA , Epigênese Genética , Robinia/fisiologia , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Germinação , Proteínas de Plantas/genética , Reprodução Assexuada , Robinia/genética , Plântula/genética
8.
Planta ; 250(6): 1897-1910, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31485773

RESUMO

MAIN CONCLUSION: A homologue of the ribosomal protein L22e, Rpf84, regulates root nodule symbiosis by mediating the infection process of rhizobia and preventing bacteroids from degradation in Robinia pseudoacacia. Ribosomal proteins (RPs) are known to have extraribosomal functions, including developmental regulation and stress responses; however, the effects of RPs on symbiotic nodulation of legumes are still unclear. Ribosomal protein 22 of the large 60S subunit (RPL22), a non-typical RP that is only found in eukaryotes, has been shown to function as a tumour suppressor in animals. Here, a homologue of RPL22, Rpf84, was identified from the leguminous tree R. pseudoacacia. Subcellular localization assays showed that Rpf84 was expressed in the cytoplasm and nucleus. Knockdown of Rpf84 by RNA interference (RNAi) technology impaired the infection process and nodule development. Compared with the control, root and stem length, dry weight and nodule number per plant were drastically decreased in Rpf84-RNAi plants. The numbers of root hair curlings, infection threads and nodule primordia were also significantly reduced. Ultrastructure analyses showed that Rpf84-RNAi nodules contained fewer infected cells with fewer bacteria. In particular, remarkable deformation of bacteroids and fusion of multiple symbiosomes occurred in infected cells. By contrast, overexpression of Rpf84 promoted nodulation, and the overexpression nodules maintained a larger infection/differentiation region and had more infected cells filled with bacteroids than the control at 45 days post inoculation, suggesting a retarded ageing process in nodules. These results indicate for the first time that RP regulates the symbiotic nodulation of legumes and that RPL22 may function in initiating the invasion of rhizobia and preventing bacteroids from degradation in R. pseudoacacia.


Assuntos
Genes de Plantas/genética , Proteínas de Plantas/genética , Nodulação/genética , Subunidades Ribossômicas Maiores/genética , Robinia/genética , Clonagem Molecular , Genes de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Subunidades Ribossômicas Maiores/fisiologia , Robinia/crescimento & desenvolvimento , Robinia/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Transcriptoma
9.
Ying Yong Sheng Tai Xue Bao ; 30(8): 2607-2613, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31418184

RESUMO

Using Granier-type thermal dissipation probes (TDP), we measured stem xylem sap flow of the natural dominant species Quercus liaotungensis and a reforestation species Robinia pseudoacacia from July to September in 2016 in the semiarid loess hilly region. Meteorological factors and soil water content were simultaneously monitored during the study period. Using cross-correlation analysis, time lag between diurnal patterns of sap flux density and vapor pressure deficit (VPD) was quantitatively estimated. Differences in the time lag between the two species and possible influence by different diameter classes and soil water contents were analyzed. The results showed that the diurnal courses of sap flux density were similar to those of meteorological factors, with daily peaks ear-lier than VPD. The peak of VPD lagged behind the sap flux densities of Q. liaotungensis and R. pseudoacacia 118.2 min and 39.5 min, respectively. The peak of PAR lagged behind the sap flux density of Q. liaotungensis 12.4 min, but was 68.5 min ahead of that for R. pseudoacacia. Time lag between sap flux density and VPD significantly varied between tree species and was affected by soil water content. Those during higher soil water content period were about 32.2 min and 68.2 min longer than those during the period with lower soil water content for the two species, respectively. There was no correlation between time lag and tree diameter classes. The time lag between VPD and sap flux density for R. pseudoacacia was about 21.4 min longer in smaller diameter trees than in larger trees, which was significantly different under the lower soil water content. Our results suggested that the time lag effect between VPD and sap flux densities in the two species reflected their sensitivities to driving factors of transpiration, and that higher soil water content was favorable to sap flux density reaching its peak early. The lower soil water content might lead to lower sensitivity of the trees to meteorological factors. R. pseudoacacia was more sensitive to changes of soil water content.


Assuntos
Transpiração Vegetal/fisiologia , Quercus/fisiologia , Robinia/fisiologia , China , Solo/química , Árvores , Água/análise
10.
PLoS One ; 14(7): e0219499, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291341

RESUMO

Ninety-six sample plots were established for a tree census to explore the multifactor relationships between the soil and water conservation functions and the stand structure in a typical black locust (Robinia pseudoacacia L.) plantation in the Caijiachuan watershed of the Loess Plateau, Western Shanxi Province, China. Based on the observational and experimental data, a topography-structure-function model was built using a structural equation modeling (SEM) approach. The latent variables were the topographical factors, horizontal structure, vertical structure, soil and water conservation, and sediment reduction. The results indicated that the horizontal structure of the Robinia pseudoacacia L. forest was the most obvious latent variable, which was expressed in the path coefficient (pc = 0.85) corresponding to the sediment reduction; the stand density and tree competition index were the major drivers of the structure, with path coefficients of -0.96 and -0.92 and influence coefficients of -0.997 and -0.998. These factors are easily regulated. Among these factors the stand density of the arbor layer is recommended to be kept stable within the range from 1600 to 1700 trees/hm2. These relationships showed that reducing the tree competition index and changing the microtopography could effectively enhance the soil and water conservation functions in this ecologically significant loess area.


Assuntos
Conservação dos Recursos Hídricos/métodos , Florestas , Robinia/fisiologia , Solo/química , Árvores , China , Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Dispersão Vegetal
11.
Sci Total Environ ; 688: 333-345, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31233915

RESUMO

The Loess Plateau in northwestern China constitutes one of the most vulnerable semi-arid regions in the world due to long-term decline in forest cover, soil nutrient depletion by agricultural use, and attendant soil erosion. Here, we characterize the significance of N2-fixing Robinia pseudoacacia L. and non-N2-fixing Juglans regia L. for improving nutrient availability and water retention in soil by comparing a range of biological and physicochemical features in monoculture and mixed plantations of both species. We found that N2-fixing Robinia facilitates the nitrogen and phosphorus composition of non-N2-fixing Juglans in the mixed stand as a consequence of improved soil nutrient availability, evident as higher levels of nitrogen and labile carbon compared to mono-specific stands. This demonstrates that intercropping N2-fixing Robinia with non-N2-fixing woody plants can greatly improve soil carbon and nitrogen bioavailability as well as whole-plant nutrition and can potentially mediate water retention with additional sequestration of soil organic carbon in the range of 1 t C ha-1 year-1. Thus, intercropping N2-fixing woody species (e.g. Robinia pseudoacacia or Hippophae rhamnoides L.) with locally important non-N2-fixing tree and shrub species should be considered in afforestation strategies for landscape restoration.


Assuntos
Agricultura/métodos , Fixação de Nitrogênio/fisiologia , Robinia/fisiologia , China , Clima Desértico , Ecossistema , Nitrogênio
12.
Sci Rep ; 9(1): 6375, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31011154

RESUMO

Pollination is a key ecological process, and invasive alien plant species have been shown to significantly affect plant-pollinator interactions. Yet, the role of the environmental context in modulating such processes is understudied. As urbanisation is a major component of global change, being associated with a range of stressors (e.g. heat, pollution, habitat isolation), we tested whether the attractiveness of a common invasive alien plant (Robinia pseudoacacia, black locust) vs. a common native plant (Cytisus scoparius, common broom) for pollinators changes with increasing urbanisation. We exposed blossoms of both species along an urbanisation gradient and quantified different types of pollinator interaction with the flowers. Both species attracted a broad range of pollinators, with significantly more visits for R. pseudoacacia, but without significant differences in numbers of insects that immediately accessed the flowers. However, compared to native Cytisus, more pollinators only hovered in front of flowers of invasive Robinia without visiting those subsequently. The decision rate to enter flowers of the invasive species decreased with increasing urbanisation. This suggests that while invasive Robinia still attracts many pollinators in urban settings attractiveness may decrease with increasing urban stressors. Results indicated future directions to deconstruct the role of different stressors in modulating plant-pollinator interactions, and they have implications for urban development since Robinia can be still considered as a "pollinator-friendly" tree for certain urban settings.


Assuntos
Insetos/fisiologia , Espécies Introduzidas , Plantas/metabolismo , Polinização/fisiologia , Urbanização , Animais , Cytisus/fisiologia , Flores/fisiologia , Robinia/fisiologia
13.
Tree Physiol ; 39(5): 755-766, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30924868

RESUMO

Tree species vary in how they invest resources to different functions throughout their life histories, and investigating the detailed patterns of ontogenetic changes in key functional traits will aid in predicting forest dynamics and ecosystem processes. In this context, we investigated size-dependent changes in key leaf functional traits and nitrogen (N) allocation trade-offs in black locust (Robinia pseudoacacia L., an N-fixing pioneer species) and giant dogwood (Cornus controversa Hemsl., a mid-successional species), which have different life-history strategies, especially in their light use. We found that the leaf mass per area and leaf carbon concentrations increased linearly with tree size (diameter at breast height, DBH), whereas leaf N concentrations decreased nonlinearly, with U- and hump-shaped patterns in black locust and giant dogwood, respectively. We also discovered large differences in N allocation between the two species. The fraction of leaf N invested in cell walls was much higher in black locust than in giant dogwood, while the opposite was true for the light harvesting N fraction. Furthermore, these fractions were related to DBH to varying degrees: the cell wall N fraction increased with DBH for both species, whereas the light harvesting N fraction of giant dogwood decreased nonlinearly and that of black locust remained constant. Instead, black locust reduced the fraction of leaf N invested in other N pools, resulting in a smaller fraction compared to that of giant dogwood. On the other hand, both species had similar fraction of leaf N invested in ribulose-1,5-bisphosphate carboxylase/oxygenase across tree size. This study indicated that both species increased leaf mechanical toughness through characteristic changes in N allocation trade-offs over the lifetimes of the trees.


Assuntos
Cornus/fisiologia , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Robinia/fisiologia , Características de História de Vida , República da Coreia
14.
Physiol Plant ; 167(4): 645-660, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30637759

RESUMO

Plant responses to drought and their subsequent rehydration can provide evidence for forest dynamics within the context of climate change. In this study, the seedlings of two native species (Vitex negundo var. heterophylla, Quercus acutissima) and two exotic species (Robinia pseudoacacia, Amorpha fruticosa) to China were selected in a greenhouse experiment. The gas exchange, stem hydraulic parameters, plant osmoprotectant contents and antioxidant activities of the seedlings that were subjected to sustained drought and rehydration (test group) as well as those of well-irrigated seedlings (control group) were measured. The two native species exhibited a greater degree of isohydry with drought because they limited the stomatal opening timely from the onset of the drought. However, the two exotic species showed a more 'water spender'-like strategy with R. pseudoacacia showing anisohydric responses and A. fruticosa showing isohydrodynamic responses to drought. Severe drought significantly decreased the leaf gas exchange rates and hydraulic properties, whereas the instantaneous water use efficiency and osmoprotectant contents increased markedly. Most of the physiological parameters recovered rapidly after mild drought rehydration, but the water potential and/or supply of nonstructural carbohydrates did not recover after severe drought rehydration. The results demonstrate that the xylem hydraulic conductivity and shoot water potential jointly play a crucial role in the drought recovery of woody plants. In brief, the native species may play a dominant role in the future in warm-temperate forests because they employ a better balance between carbon gain and water loss than the alien species under extreme drought conditions.


Assuntos
Desidratação , Secas , Árvores/fisiologia , Água , China , Fabaceae/fisiologia , Espécies Introduzidas , Quercus/fisiologia , Robinia/fisiologia , Vitex/fisiologia
15.
Tree Physiol ; 39(1): 156-165, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788216

RESUMO

Cavitation resistance is a key trait for characterizing the drought adaption in plants and is usually presented in terms of vulnerability curves. Three principal techniques have been developed to produce vulnerability curves, but curves generated with centrifugation are reported to suffer from artifacts when applied to long-vesseled species. The main cause of this artifact is the issue of open vessels, resulting in a nano-particle effect that may seed premature embolism. We used two methods to test the potential mechanism behind the nano-particle effect in centrifuge-based vulnerability curves. A four-cuvette rotor system based on a traditional Cochard rotor was designed to inhibit effervescence while injecting water, but the recalcitrant vulnerability curves in Robinia could not be eliminated. There may be multiple sources, besides effervescence, of hypothetical nano-particles: they may arise from cut surfaces or they may be always present in the injected water, leading to the premature embolisms. To prevent the entry of the hypothetical nano-particles, water extraction curves in terms of PLV (percentage loss volume of extracted water from stems) vs tensions were constructed. The PLV curves of Robinia showed s-shaped characteristics after subtracting the first Weibull components from water extraction curves, which were not related to the water loss from vessels according to dye staining experiments. The differences between T50 (xylem tension at which 50% of hydraulic conductivity is lost) in mean PLV curve and T50 in percentage loss of conductivity curves determined by the four-cuvette rotor system and by the bench dehydration method were 3.9 MPa and 0.7 MPa, respectively. Hence, PLV curves may be a valid way to measure the cavitation resistance in long-vesseled species with centrifugation. Keeping bark intact in the process of measurement is recommended, otherwise it would increase evaporation from the entire system.


Assuntos
Aclimatação , Centrifugação/métodos , Nanopartículas , Doenças das Plantas , Robinia/fisiologia , Calibragem , Centrifugação/instrumentação , Resistência à Doença , Secas , Caules de Planta/fisiologia , Água
16.
Protoplasma ; 256(3): 615-629, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30382423

RESUMO

Potassium pyroantimonate precipitation, transmission electron microscopy, and X-ray microanalysis were used to investigate the subcellular localization of loosely bound calcium in Robinia pseudoacacia pulvinar motor cells during phytochrome-mediated nyctinastic closure. Calcium localization was carried out in pulvini collected in white light 2 h after the beginning of the photoperiod, immediately after a red light or a far-red light pulse applied 2 h after the beginning of the photoperiod and after 15 or 25 min of darkness respectively. Calcium antimonate precipitates were found in all the pulvinar tissues from the epidermis to the vascular bundle, independent of the light treatment. At subcellular level, precipitates were found mainly in the intercellular spaces, the inner surface of the plasma membrane, cytoplasm, colloidal vacuoles, and nuclei. Red light enhanced the nyctinastic closure of leaflets and caused an asymmetric distribution of cytosolic calcium precipitates between the extensor and flexor motor cells. Both the number and area of the cytosolic calcium precipitates drastically increased in the extensor cells compared to the flexor motor cells. Red light had a rapid and transient effect on the distribution of cytosolic calcium precipitates, which occurred during or at the end of the irradiation, before leaflet closure. By contrast, the distribution of cytosolic loosely bound calcium was similar between the extensor and flexor motor cells after irradiation with far-red light. Our results demonstrate that red light causes specific calcium mobilization in pulvinar motor cells and suggest the involvement of cytoplasmic Ca2+ as a second messenger for phytochrome during nyctinastic closure.


Assuntos
Cálcio/metabolismo , Fitocromo/metabolismo , Pulvínulo/citologia , Robinia/fisiologia , Citosol/metabolismo , Microanálise por Sonda Eletrônica , Pulvínulo/ultraestrutura , Robinia/citologia , Robinia/ultraestrutura
17.
PLoS One ; 13(10): e0205661, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30335794

RESUMO

Although the spatial mapping and fertility assessment of soil chemical properties (SCPs) are well studied in the Loess Plateau region of China at farmland scale, little is known about spatial mapping the SCPs and their fertility and their influence factors at urban forest scale. The objectives of this study were to (1) compare the performance of two spatial interpolation methods, Ordinary kriging (OK) and regression kriging (RK), and (2) explain the relationships of the vegetation, terrain, and soil layer depth between the eight SCPs and their fertility, and (3) find the limiting factors of soil comprehensive fertility in this study area? The Yan'an urban forest was taken as study case, used hybrid spatial interpolation methods based on OK and RK to mapping eight SCPs and the soil fertility in each soil layer (0-20 cm, 20-40 cm, and 40-60 cm) for 285 soil samples. The results indicated that RK outperformed OK for total nitrogen (TN), available potassium (AK), organic matter (OM) in 0-60 cm profile and available phosphorus (AP) in the 0-20 cm and 40-60 cm soil layers because RK considered the impact of terrain. The terrain factors, comprising the relative terrain position, slope, aspect, and relative elevation significantly affected the SCPs and spatial heterogeneity of fertility, where the vegetation cover types determined the average SCPs to some extent. On average, the six SCPs (except total potassium and AP) and the fertility decreased as the soil layer depth increased. Ten vegetation cover types comprising broadleaved mixed natural forest (BM), cultivated land (CL), economic forest (EF), grassland (GL), Platycladus orientalis natural forest (PON), Platycladus orientalis plantation (POP), Pinus tabuliformis plantation (PT), Quercus wutaishanica natural forest (QW), Robinia pseudoacacia plantation (RP), and Shrubwood (SW) were associated with significant differences in TN, OM, AN, AP, and AK, across the three soil layers. QW, PON, and BM also had higher content of TN, OM, AN, and AK contents than the other vegetation cover types. There were small differences in TK, AK, and pH among the 10 vegetation cover types. We concluded that AN, TN, and OM are the limiting factors of soil comprehensive fertility in this region. These results improve understanding of the spatial mapping, influence and limiting factors of SCPs and their fertility at urban forest scales.


Assuntos
Agricultura , Florestas , Pradaria , Solo/química , Carbono/análise , China , Cupressaceae/fisiologia , Fertilidade , Nitrogênio/análise , Fósforo/análise , Pinus/fisiologia , Potássio/análise , Quercus/fisiologia , Robinia/fisiologia , Análise Espacial
18.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2295-2306, 2018 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-30039668

RESUMO

Photosynthesis can reflect the responses of plants to environmental changes. In this study, photosynthetic light-response curves were measured by the Li-6400XT photosynthetic system in Quercus variabilis and Robinia pseudoacacia plantations in Xiaolangdi Forest Ecosystem Research Station. Photosynthetic light-response curves were fitted by Ye model. The differences of photosynthetic parameters between inner and margin forests were examined. Stomatal conductance (gs) light-response curve were fitted using the mechanism model of gs coupled with a modified model of light-response of photosynthesis. The light-response characteristics of gs were investigated. Net photosynthetic rates (Pn) of Q. variabilis in the inner forest was higher than that in the margin. The initial light efficiency (Α) was 12.4% more in the inner forest than that in the margin in July and August when photosynthetically active radiation was less than 200 Μmol·m-2·s-1. The ability to capture and utilize weak light of Q. variabilis leaves in the inner forest was obviously higher than that in the margin. When photosynthetically active radiation was higher than 200 Μmol·m-2·s-1, Pn of Q. variabilis leaves in the margin forest was larger than that in the inner. Under weak light conditions (0-200 Μmol·m-2·s-1), Pn of R. pseudoacacia in the inner forest was higher than that in the margin. Pn of R. pseudoacacia in the inner forest was less than that in the margin when light intensity was higher than 200 Μmol·m-2·s-1. The dark respiration rate (Rd) and light compensation point (Ic) in the inner forest were 50.0% and 42.8% lower than those in the margin. The less Rd and Ic of the inner forest could reduce carbon loss and adapt to low photosynthetic rate. The stomatal conductance light-response of R. pseudoacacia in the inner forest significantly differed from that in the margin. The leaves of Q. variabilis and R. pseudoacacia had strong adaptability to the changes of light condition. The values of maximum net photosynthetic rate (Pn max) and Α of Q. variabilis leaves were mainly controlled by gs, and Rd and Ic were primarily affected by air temperature. Pn max and Α of R. pseudoacacia leaves had significant positive correlation with air temperature. The Ic and the light saturation point (Is) were remarkably correlated with leaf saturation vapor pressure deficit.


Assuntos
Fotossíntese , Quercus/fisiologia , Robinia/fisiologia , Florestas , Luz , Folhas de Planta
19.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2433-2444, 2018 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-30039683

RESUMO

Robinia pseudoacacia has been widely planted in the Loess Plateau of China for soil and water conservation. The growth decline of R. pseudoacacia plantations has become a recently emerging challenge for the revegetation program and sustainable forest management in this region. As to the scientific definition, identified criteria and quantitative indices have not yet been comprehensively quantified, our current understanding of the ecological and physiological mechanisms for growth decline of R. pseudoacacia plantations is limited. The knowledge could enrich the basic theories of vegetation restoration and benefit the sustainable development of the afforestation project in the Loess Plateau. Through the comprehensive compilation of literatures on forest decline and tree mortality in the Loess Plateau and other regions across the world, this review summarized the mechanisms and recent research progress on growth decline for R. pseudoacacia plantations in the Loess Plateau, primarily demonstrated from ecological (e.g., climatic change, soil desiccation, the imbalance of community structure and the misconduct of forest management) and physiological (e.g., hydraulic failure, carbon starvation, genetic and molecular regulation) perspectives. Finally, we highlighted the research gap with regard to growth decline of R. pseudoacacia plantations in the Loess Plateau.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Robinia/fisiologia , Carbono , China , Florestas , Robinia/crescimento & desenvolvimento , Solo
20.
Tree Physiol ; 38(8): 1166-1179, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608763

RESUMO

The mesic-origin plantation species Robinia pseudoacacia L. has been successfully grown in many arid land plantations around the world but often exhibits dieback and reduced growth due to drought. Therefore, to explore the behavior of this species under changing environmental conditions, we examined the relationship between ecophysiological traits, gas exchange and plant hydraulics over a 3-year period in trees that experienced reduced plant hydraulic conductance (Gp) in summer. We found that the transpiration rate, stomatal conductance (Gs) and minimum leaf water potential (Ψlmin) decreased in early summer in response to a decrease in Gp, and that Gp did not recover until the expansion of new leaves in spring. However, we did not observe any changes in the leaf area index or other ecophysiological traits at the leaf level in response to this reduction in Gp. Furthermore, model simulations based on measured data revealed that the canopy-scale photosynthetic rate (Ac) was 15-25% higher than the simulated Ac when it was assumed that Ψlmin remained constant after spring but almost the same as the simulated Ac when it was assumed that Gp remained high even after spring. These findings indicate that R. pseudoacacia was frequently exposed to a reduced Gp at the study site but offset its effects on Ac by plastically lowering Ψlmin to avoid experiencing any further reduction in Gp or Gs.


Assuntos
Carbono/metabolismo , Secas , Robinia/fisiologia , Água/metabolismo , Meio Ambiente , Japão , Folhas de Planta/fisiologia , Estações do Ano , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...