Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Chemosphere ; 358: 142213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697570

RESUMO

The increasing use of ultraviolet filters has become an emerging contaminant on the coast, posing potential ecological risks. Rotifers are essential components of marine ecosystems, serving as an association between primary producers and higher-level consumers. These organisms frequently encounter ultraviolet filters in coastal waters. This study aimed to assess the comprehensive effects of organic ultraviolet filters, specifically 2-ethylhexyl-4-methoxycinnamate (EHMC), and inorganic ultraviolet filters, namely, titanium dioxide nanoparticles (TiO2 NPs), on the rotifer Brachionus plicatilis. We exposed B. plicatilis to multiple combinations of different concentrations of EHMC and TiO2 NPs to observe changes in life history parameters and the expression of genes related to reproduction and antioxidant responses. Our findings indicated that increased EHMC concentrations significantly delayed the age at first reproduction, reduced the total offspring, and led to considerable alterations in the expression of genes associated with reproduction and stress. Exposure to TiO2 NPs resulted in earlier reproduction and decreased total offspring, although these changes were not synchronised in gene expression. The two ultraviolet filters had a significant interaction on the age at first reproduction and the total offspring of rotifer, with these interactions extending to the first generation. This research offers new insights into the comprehensive effects of different types of ultraviolet filters on rotifers by examining life history parameters and gene expression related to reproduction and stress, highlighting the importance of understanding the impacts of sunscreen products on zooplankton health.


Assuntos
Reprodução , Rotíferos , Titânio , Raios Ultravioleta , Poluentes Químicos da Água , Animais , Rotíferos/genética , Rotíferos/efeitos dos fármacos , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Cinamatos , Protetores Solares/toxicidade , Expressão Gênica/efeitos dos fármacos , Nanopartículas/toxicidade
2.
Sci Total Environ ; 929: 172537, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636855

RESUMO

The joint toxicity effects of mixtures, particularly reproductive toxicity, one of the main causes of aquatic ecosystem degradation, are often overlooked as it is impractical to test all mixtures. This study developed and evaluated the following models to predict the concentration response curve concerning the joint reproductive toxicity of mixtures of three bisphenol analogues (BPA, BPF, BPAF) on the rotifer Brachionus calyciflorus: concentration addition (CA), independent action (IA), and two deep neural network (DNN) models. One applied mixture molecular descriptors as input variables (DNN-QSAR), while the other applied the ratios of chemicals in the mixtures (DNN-Ratio). Descriptors related to molecular mass were found to be of greater importance and exhibited a proportional relationship with toxic effects. The results indicate that the range of correlation coefficients (R2) between predicted and measured values for various mixture rays by CA and IA models is 0.372 to 0.974 and - 0.970 to 0.586, respectively. The R2 values for DNN-Ratio and DNN-QSAR were 0.841 to 0.984 and 0.834 to 0.991, respectively, demonstrating that models developed by DNN significantly outperform traditional models in predicting the joint toxicity of mixtures. Furthermore, DNN-QSAR not only predicts mixture toxicity but also provides accurate toxicity predictions for BPA, BPF, and BPAF, with R2 values of 0.990, 0.616, and 0.887, respectively, while DNN-Ratio yields values of 0.920, 0.355, and - 0.495. The study also found that the joint effects of mixtures are primarily influenced by the total concentration of the mixtures, and an increase in total concentration shifts the joint effects towards addition. This study introduces a novel approach to predict joint toxicity and analyze the influencing factors of joint effects, providing a more comprehensive assessment of the ecological risk posed by mixtures.


Assuntos
Inteligência Artificial , Compostos Benzidrílicos , Fenóis , Reprodução , Rotíferos , Poluentes Químicos da Água , Animais , Rotíferos/efeitos dos fármacos , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Relação Quantitativa Estrutura-Atividade
3.
Mar Pollut Bull ; 192: 115002, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182240

RESUMO

The ingredients of tire-rubber products include a complex range of chemicals additives, most of which are leached into surrounding water as unmeasured toxicants with unexplored ecotoxicological impacts. The present study summarizes the reported species-specific acute toxicity of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), the ozonation product of anti-oxidant 6PPD used in tire rubber. Also, chronic toxicity and oxidative response of 6PPD-Q and another tire-rubber derivative, 2',2'''-dithiobisbenzanilide (DTBBA), in rotifer Brachionus koreanus were investigated. Although 6PPD-Q has been reported to be highly toxic to several species of salmonids, only moderate chronic toxicity was observed in B. koreanus. In contrast, DTBBA significantly retarded the population growth and fecundity. The varying toxicity of 6PPD-Q and DTBBA was linked to the level of reactive oxygen species in which DTBBA exposure caused a significant concentration-dependent increase. Our results imply unanticipated risks to aquatic species posed by chemical additives in tire-rubber which may be considered emerging contaminants of toxicological concern.


Assuntos
Benzoquinonas , Fenilenodiaminas , Rotíferos , Borracha , Poluentes da Água , Animais , Antioxidantes/toxicidade , Substâncias Perigosas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Rotíferos/efeitos dos fármacos , Borracha/toxicidade , Fenilenodiaminas/toxicidade , Benzoquinonas/toxicidade , Poluentes da Água/toxicidade
4.
Ecotoxicol Environ Saf ; 220: 112399, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091187

RESUMO

The Rotimer, a rotifer-specific biopolymer, is an exogenic bioactive exudate secreted by different monogonant species (e.g. Euchlanis dilatata or Lecane bulla). The production of this viscoelastic biomolecule is induced by different micro-particles, thereby forming a special Rotimer-Inductor Conglomerate (RIC) in a web format. In this case, the water insoluble Carmine crystals, filtered to size (max. diameter was 50 µm), functioned as an inductor. The RIC production is an adequate empirical indicator to follow up this filamentous biopolymer secretion experientially; moreover, this procedure is very sensitive to the environmental factors (temperature, pH, metals and possible natural pollutant agents). The above mentioned species show completely different reactions to these factors, except to the presence of calcium and to the modulating effects of different drugs. One of the novelties of this work is that the Rotimer secretion and consequently, the RIC-formation is a mutually obligatory and evolutionary calcium-dependent process in the concerned monogonants. This in vivo procedure needs calcium, both for the physiology of animals and for fiber formation, particularly in the latter case. The conglomerate covered area (%) and the detection of the longest filament (mm) of the given RIC were the generally and simultaneously applied methods in the current modulating experiments. Exploring the regulatory (e.g. calcium-dependency) and stimulating (e.g. Lucidril effect) possibilities of biopolymer secretion are the basis for optimizing the RIC-production capacities of these micro-metazoans.


Assuntos
Biopolímeros/biossíntese , Cálcio/farmacologia , Meio Ambiente , Poluentes Ambientais/farmacologia , Exsudatos e Transudatos , Rotíferos/metabolismo , Animais , Concentração de Íons de Hidrogênio , Rotíferos/efeitos dos fármacos , Temperatura
5.
Aquat Toxicol ; 233: 105772, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33618324

RESUMO

Besides the adverse biological effects induced by microplastics (MPs), the effects associated with sorption of ambient pollutants on MPs are considered as an emerging environmental problem as MPs act as a mediator of pollutants. The present study examines the combined effects of nano(micro)plastics (NMPs) and arsenic (As) by exposing the marine rotifer Brachionus plicatilis to MP particles at the micro-scale (6 µm) and nano-scale (nanoplastics, NPs) (50 nm) along with As. In vivo toxicity, bioaccumulation, and biochemical reactions were used to examine the effects of combined exposure. The results of in vivo experiments showed that As toxicity increased with NP exposure, whereas toxicity was alleviated by MPs, indicating a different mode of action between NPs and MPs in combination with As. The highest level of As bioaccumulation was detected in NP + As groups, and followed by MP + As and As-only exposure groups, whereas no significant difference between groups was shown for As metabolites. In addition, the activity of several ATP-binding cassette proteins that confer multixenobiotic resistance, which is responsible for efflux of As, was activated by As but significantly inhibited by NP exposure, supporting the findings of in vivo experiments. Our results show that the effects of combining exposure to As with NP and MPs differ depending on particle size and provide an in-depth understanding of both environmental pollutants.


Assuntos
Arsênio/toxicidade , Microplásticos/toxicidade , Nanopartículas/toxicidade , Rotíferos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Arsênio/metabolismo , Bioacumulação , Disponibilidade Biológica , Microplásticos/metabolismo , Modelos Teóricos , Nanopartículas/metabolismo , Rotíferos/metabolismo , Natação , Poluentes Químicos da Água/metabolismo
6.
Ecotoxicol Environ Saf ; 208: 111705, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396036

RESUMO

The baking industries and disinfection of tap water released a considerable amount of bromate into surface water, which has been reported as a carcinogenic compound to mammals. Rotifers play an important role in freshwater ecosystems and are model organisms to assess environmental contamination. In the present study, the effects of different concentrations (0.001, 0.01, 0.1, 1, 10, 100 and 200 mg/L) of bromate on the life-table and population growth parameters were investigated in the rotifer Brachionus calyciflorus. The results showed that the 24-h LC50 of bromate to B. calyciflorus was 365.29 mg/L (95%Cl: 290.37-480.24). Treatments with 0.01, 10 and 200 mg/L bromate shorten the reproductive period. High levels of bromate (100 and 200 mg/L) significantly decreased net reproductive rate, intrinsic rate of population increase, life span, mictic rate of B. calyciflorus. To investigate the underlying mechanisms, swimming speed and antioxidative biomarkers were compared between bromate treatments and the control. The results showed that glutathione (GSH) and malondialdehyde (MDA) contents, total superoxide dismutase (T-SOD) and peroxidase (POD) activities decreased significantly in response to bromate exposure and the reasons required further investigation. Treatments with 0.001-200 mg/L bromate all significantly reduced swimming linear speed to rotifer larvae and treatments with 100-200 mg/L bromate significantly suppressed the swimming linear speed of adult rotifer. These changes would reduce filtration of algal food and could explain the decreased survival and reproduction. Overall, bromate may not show acute toxicity to rotifers, but still have potential adverse effects on rotifer behavior, which may then influence the community structure in aquatic ecosystems.


Assuntos
Bromatos/toxicidade , Rotíferos/efeitos dos fármacos , Rotíferos/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Bromatos/análise , Larva/efeitos dos fármacos , Larva/fisiologia , Crescimento Demográfico , Reprodução/efeitos dos fármacos , Rotíferos/crescimento & desenvolvimento , Rotíferos/metabolismo , Natação , Poluentes Químicos da Água/análise
7.
Ecotoxicol Environ Saf ; 208: 111666, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396176

RESUMO

The chemical ecology of rotifers has been little studied. A yet unknown property is presented within some monogonant rotifers, namely the ability to produce an exogenic filamentous biopolymer, named 'Rotimer'. This rotifer-specific viscoelastic fiber was observed in six different freshwater monogonants (Euchlanis dilatata, Lecane bulla, Lepadella patella, Itura aurita, Colurella adriatica and Trichocerca iernis) in exception of four species. Induction of Rotimer secretion can only be achieved by mechanically irritating rotifer ciliate with administering different types (yeast cell skeleton, denatured BSA, epoxy, Carmine or urea crystals and micro-cellulose) and sizes (approx. from 2.5 to 50 µm diameter) of inert particles, as inductors or visualization by adhering particles. The thickness of this Rotimer is 33 ± 3 nm, detected by scanning electron microscope. This material has two structural formations (fiber or gluelike) in nano dimension. The existence of the novel adherent natural product becomes visible by forming a 'Rotimer-Inductor Conglomerate' (RIC) web structure within a few minutes. The RIC-producing capacity of animals, depends on viability, is significantly modified according to physiological- (depletion), drug- (toxin or stimulator) and environmental (temperature, salt content and pH) effects. The E. dilatata-produced RIC is affected by protein disruptors but is resistant to several chemical influences and its Rotimer component has an overwhelming cell (algae, yeast and human neuroblastoma) motility inhibitory effect, associated with low toxicity. This biopolymer-secretion-capacity is protective of rotifers against human-type beta-amyloid aggregates.


Assuntos
Biopolímeros/metabolismo , Rotíferos/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Biopolímeros/química , Biopolímeros/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Água Doce/microbiologia , Humanos , Rotíferos/classificação , Rotíferos/efeitos dos fármacos , Temperatura
8.
Nanotoxicology ; 15(2): 257-275, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33503388

RESUMO

Safety on the use of magnetic nanomaterials (MNMs) has become an active topic of research given all the recent applications of these materials in various fields. It is known that the toxicity of MNMs depends on size, shape, and surface functionalization. In this study, we evaluate the biocompatibility with different aquatic organisms of engineered MNMs-CIT with excellent aqueous dispersion and long-term colloidal stability. Primary producers (the alga Pseudokirchneriella subcapitata), primary consumers (the rotifer Lecane papuana), and predators (the fish, Danio rerio) interacted with these materials in acute and sub-chronic toxicity tests. Our results indicate that P. subcaptita was the most sensitive taxon to MNMs-CIT. Inhibition of their population growth (IC50 = 22.84 mg L-1) elicited cell malformations and increased the content of photosynthetic pigments, likely due to inhibition of cell division (as demonstrated in AFM analysis). For L. papuana, the acute exposure to MNMs shows no significant mortality. However, adverse effects such as decreased rate of population and altered swimming patterns arise after chronic interaction with MNMs. For D. rerio organisms on early life stages, their exposure to MNMs results in delayed hatching of eggs, diminished survival of larvae, altered energy resources allocation (measured as the content of total carbohydrates, lipids, and protein), and increased glucose demand. As to our knowledge, this is the first study that includes three different trophic levels to assess the effect of MNMs in aquatic organisms; furthermore, we demonstrated that these MNMs pose hazards on aquatic food webs at low concentrations (few mgL-1).


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Cloretos/toxicidade , Compostos Férricos/toxicidade , Compostos Ferrosos/toxicidade , Nanoestruturas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/análise , Cloretos/química , Compostos Férricos/química , Compostos Ferrosos/química , Cadeia Alimentar , Larva/efeitos dos fármacos , Fenômenos Magnéticos , Microalgas/efeitos dos fármacos , Nanoestruturas/química , Tamanho da Partícula , Rotíferos/efeitos dos fármacos , Propriedades de Superfície , Poluentes Químicos da Água/química , Peixe-Zebra/crescimento & desenvolvimento
9.
Aquat Toxicol ; 229: 105678, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33197688

RESUMO

The rotifer, Brachionus plicatilis, is a widely used model species in marine ecotoxicology for evaluating pollutions, toxins, and harmful algae. In this paper, the marine ecotoxicology of Brachionus plicatilis was reviewed, including toxicity measurements of harmful algae species and environmental stresses. In addition, marine pollution involving pesticides, heavy metals, drugs, petroleum, and petrochemicals were addressed. Methods for measuring toxicity were also discussed. The standard acute lethal assay and the chronic population dynamics test were indicated as common methods of toxicity evaluating using B. plicatilis. Research on other biomarkers, such as behaviour, enzyme activity, or gene expression, are also reported here, with potential applications for fast detection or the scientific exploration of underlying molecular mechanisms. It is suggested that the methods selected should reflect the experimental purpose. Additionally, series assays should be conducted for comprehensive evaluation of ecotoxicity as well as to elucidate the correct mechanisms. Genetic methods, such as transcriptomics, were suggested as useful tools for exploring the toxicity mechanism using the rotifer B. plicatilis.


Assuntos
Ecossistema , Ecotoxicologia , Rotíferos/fisiologia , Animais , Rotíferos/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
10.
Aquat Toxicol ; 229: 105652, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33075614

RESUMO

Nanotechnology has become one of the fastest growing industries in the current century because nanomaterials (NMs) are present in an ever-expanding range of consumer products increasing the chance of their release into natural environments. In this study, the impacts of two metal nanoparticles (Ag-NPs and CuO-NPs) and their equivalent ionic forms (Ag+ and Cu2+) were assessed on the lentic freshwater rotifer Brachionus calyciflorus and on its ability to adapt and recover through generations. In our study, Ag-NPs and CuO-NPs inhibited the rotifer population growth rate and caused mortality at low concentrations (< 100 µg L-1). Ag-NPs and CuO-NPs decreased in the medium when organisms were present (48 h exposure: 51.1 % and 66.9 %, respectively), similarly Ag+ and Cu2+ also decreased from medium in presence of the organisms (48 h: 35.2 % and 47.3 %, respectively); although the metal concentrations removed from the medium were higher for nanoparticles than metal ions, metal ions showed higher effects then their respective nanoparticle forms. Rotifer populations exposed for 4 generations to the toxicants were able to recover the population growth rate, but some rotifers showed developmental delay and inability to reproduce even after the removal of the toxicants. Intracellular accumulation of reactive oxygen species as well as plasma membrane damage were found in the rotifers at concentrations corresponding to EC10 (Ag-NPs = 1.7 µg L-1, Ag+ = 4.5 µg L-1, CuO-NPs = 46.9 µg L-1, Cu2+ = 35 µg L-1) of the population growth rate. Our results showed, for the first time, that effects of metal nanoparticles and metal ions on rotifer populations may persist along several generations. This should be taken into account when assessing risks of metal nanoparticles in freshwaters.


Assuntos
Água Doce , Nanopartículas Metálicas/toxicidade , Rotíferos/efeitos dos fármacos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cobre/análise , Hidrodinâmica , Íons , Espécies Reativas de Oxigênio/metabolismo , Rotíferos/crescimento & desenvolvimento , Prata/análise , Eletricidade Estática , Poluentes Químicos da Água/toxicidade
11.
Environ Toxicol Chem ; 39(12): 2409-2419, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926578

RESUMO

Many urban lakes in Mexico City such as Lake Chapultepec are infested with high densities of cyanobacteria, particularly Microcystis. We tested the effect of cyanotoxins from cyanobacterial crude extracts on the demographic variables of zooplankton. The rotifers Brachionus havanaensis and Brachionus calyciflorus, and the cladocerans Ceriodaphnia dubia and Moina macrocopa were used for the assays. Temperature effects on the response of B. calyciflorus and 2 clones of M. macrocopa were tested. We hypothesized that with an increase in cyanotoxin concentration and temperature there would be an increase in the adverse effect on the test species and that the clone of Moina previously exposed to cyanobacteria from Lake Chapultepec would be more resistant to the cyanotoxins. Demography experiments showed that B. havanaensis was more sensitive than C. dubia. The negative effect of the cyanobacterial crude extract on B. calyciflorus was greater at 30 °C than at 20 °C or 25 °C. The strain of M. macrocopa isolated from Lake Chapultepec was more resistant to the cyanotoxins than the strain that had not been previously exposed to the cyanobacteria. The present study indicated that cyanobacteria in Lake Chapultepec are highly toxic and, considering the recreational use of this lake, should be controlled. Environ Toxicol Chem 2020;39:2409-2419. © 2020 SETAC.


Assuntos
Misturas Complexas/toxicidade , Cianobactérias/química , Lagos/química , Microcistinas/toxicidade , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Animais , Cladocera/efeitos dos fármacos , Ecotoxicologia , México , Rotíferos/efeitos dos fármacos , Especificidade da Espécie , Fatores de Tempo
12.
Artigo em Inglês | MEDLINE | ID: mdl-32784096

RESUMO

The monogonont rotifer Brachionus spp. have been widely used for ecotoxicological studies because of their advantages as one of the most suitable laboratory experimental species. In the present study, we obtained and assembled the whole genome sequence of the rotifer Brachionus rotundiformis, consisting of 13,612 annotated genes with 213 scaffolds and 58 Mb in total length. Focusing on ecotoxicological aspects, we conducted a comparative genome analysis on the gene families involved in detoxification, including four to six sulfotransferase gene families, seven uridine 5'-diphospho-glucuronosyltransferase gene families, and 58, 61, or 70 ATP-binding cassette genes in the genus Brachionus including Brachionus koreanus and Brachionus plicatilis. Our results suggest that these gene families have undergone a species- and/or lineage-specific evolution in response to the surrounding environmental pressure. Our genome resource for B. rotundiformis would be highly useful for future ecotoxicological studies and also provides a better understanding on the view of evolutionary mechanism of detoxification in the genus Brachionus spp.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma , Proteínas de Helminto/genética , Rotíferos/genética , Poluentes Químicos da Água/toxicidade , Animais , Anotação de Sequência Molecular , Filogenia , RNA-Seq , Rotíferos/classificação , Rotíferos/efeitos dos fármacos , Especificidade da Espécie
13.
Mar Pollut Bull ; 153: 110973, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32275530

RESUMO

This study compared in vivo acute toxicities of nine engineered nano metal oxides to the marine diatom Skeletonema costatum and rotifer Brachionus koreanus. The sequence of their toxicities to S. costatum, based on growth inhibition, was: nano zinc oxide (nZnO) > nTiO2 (rutile) > nMgO > Annealed nMgO > nTiO2 (anatase) > Î³-nAl2O3 > nIn2O3 > α-nAl2O3 > nSnO2. Similarly, nZnO was also the most toxic to B. koreanus, but the other nano metal oxides were non-lethal. nMgO and nZnO were confirmed to trigger reactive oxygen species (ROS) mediated toxicity to the two marine organisms, while nTiO2 (both anatase and rutile forms) likely induced oxidative stress as shown by their acellular ROS production. nZnO may also cause damage in the endocrine system of B. koreanus, as indicated by the increased transcription of retinoid X receptor. Annealed nMgO reduces its toxicity via removal of O2- and impurities from its surface.


Assuntos
Diatomáceas/fisiologia , Nanopartículas Metálicas/toxicidade , Rotíferos/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Diatomáceas/efeitos dos fármacos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Rotíferos/efeitos dos fármacos
14.
Aquat Toxicol ; 221: 105443, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32086058

RESUMO

BRACHIONUS: spp. (Rotifera: Monogononta) have been introduced as ecotoxicological model-organisms that are widely distributed in aquatic environments. Among the Brachionus spp., the monogonont rotifer Brachionus koreanus has been widely used for ecology, ecotoxicology, and evolution, thus, providing the whole genome data of B. koreanus is important for further understandings of in-depth molecular mechanisms. In this study, the completed assembly and characterization of the B. koreanus genome resulted in a total length of 85.7 Mb with 14,975 annotated genes. The final number of scaffolds was 567 with an N50 value and a GC content of 1.86 Mb and 24.35 %, respectively. Based on the fully constructed genome database, a total of 24 CYPs, 23 GSTs, two SODs, and a single CAT genes were identified and analyzed antioxidant activities (CAT, SOD, and GST), and transcriptional regulation of the entire CYPs, GSTs, SODs, and CAT in response to 2-ethyl-phenanthrene (2-ethyl-PHE) and piperonyl butoxide (PBO), to demonstrate the usefulness of the whole genome library of B. koreanus in response xenobiotic-induced oxidative stress. The assembled B. koreanus genome will provide a better understanding on the molecular ecotoxicology in the view of molecular mechanisms underlying toxicological responses, particularly on xenobiotic detoxification processes in the rotifer B. koreanus.


Assuntos
Antioxidantes/metabolismo , Genoma , Estresse Oxidativo/efeitos dos fármacos , Fenantrenos/toxicidade , Butóxido de Piperonila/toxicidade , Rotíferos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Anotação de Sequência Molecular , Estresse Oxidativo/genética , Rotíferos/genética , Rotíferos/metabolismo , Testes de Toxicidade Aguda
15.
J Hazard Mater ; 391: 122196, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32062345

RESUMO

The toxicity of arsenic (As) has been reported to be different depending on their chemical forms. However, its toxicity mechanisms largely remain unknown. In this study, to investigate toxicity mechanism of As in marine zooplanktons, namely, the rotifer Brachionus plicatilis and the copepod Paracyclopina nana, metabolites of As were analyzed by using a high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry with in vivo toxicity and antioxidant responses in response to inorganic As, including arsenate (AsV) and arsenite (AsIII). While AsIII was more toxic than AsV in both organisms, the rotifer B. plicatilis exhibited stronger tolerance, compared to the copepod P. nana. The As speciation analysis revealed differences in biotransformation processes in two species with B. plicatilis having a more simplified process than P. nana, contributing to a better tolerance against As in the rotifer B. plicatilis compared to P. nana. Moreover, the levels of GSH content and the regulation of omega class glutathione S-transferases were different in response to oxidative stress between B. plicatilis and P. nana. These results suggest that the rotifer B. plicatilis has a unique survival strategy with more efficient biotransformation and antioxidant responses, compared to P. nana, conferring higher tolerance to As.


Assuntos
Arseniatos/farmacocinética , Arseniatos/toxicidade , Arsenitos/farmacocinética , Arsenitos/toxicidade , Copépodes/efeitos dos fármacos , Rotíferos/efeitos dos fármacos , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade , Animais , Biotransformação , Catalase/metabolismo , Copépodes/metabolismo , Copépodes/fisiologia , Feminino , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodução/efeitos dos fármacos , Rotíferos/metabolismo , Superóxido Dismutase/metabolismo
16.
J Exp Zool A Ecol Integr Physiol ; 333(4): 230-239, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31957988

RESUMO

Titanium dioxide nanoparticles (nTiO2 ) have raised environmental concerns and display potential hazards to aquatic organisms and even humans. However, only a few reports tested the toxicity of nTiO2 to rotifers. In the present study, acute and chronic toxicity of nTiO2 to the freshwater rotifer Brachionus calyciflorus was investigated at different temperatures. At 25°C, the 24 and 48-hr LC50 was 117.14 and 60.11 mg/L, respectively. At 15°C, 20°C, 25°C, and 30°C, exposure to nTiO2 significantly decreased life expectancy at birth, net reproductive rate, generation time, average lifespan, and/or intrinsic rate of population increase of B. calyciflorus (p < .05). High temperature enhanced the toxicity of nTiO2 to rotifers. The swimming linear speed of rotifers significantly increased (p < .05) in treatments with 200 µg/L nTiO2 , compared with the control. In addition, treatments with 8 µg/L to 5 mg/L nTiO2 significantly increased superoxide dismutase activity (p < .05). Glutathione content and catalase activity increased significantly after exposure to 8 µg/L nTiO2  but decreased significantly in treatments with nTiO2 concentrations ranging from 40 µg/L to 5 mg/L (p < .05). There were no significant changes in malondialdehyde contents among nTiO2 treatments and control. Overall, the present study indicated that nTiO2 revealed high toxicity to rotifers, displaying high environmental risks to aquatic ecosystems.


Assuntos
Nanopartículas Metálicas/toxicidade , Rotíferos/efeitos dos fármacos , Titânio/toxicidade , Animais , Relação Dose-Resposta a Droga , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Titânio/administração & dosagem , Titânio/química , Poluentes Químicos da Água/administração & dosagem , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
17.
Aquat Toxicol ; 218: 105337, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31739108

RESUMO

To understand effects of two widely used antidepressant on the antioxidant defense mechanism in the marine rotifer Brachionus koreanus, we assessed acute toxicity and measured population growth, reactive oxygen species (ROS) levels, glutathione (GSH) levels, and antioxidant enzymatic activities (GST, GR, and SOD) in response to fluoxetine hydrochloride (FLX) and sertraline hydrochloride (SER). The no observed effect concentration-24 h of fluoxetine and sertraline were 1000 µg/L and 450 µg/L, respectively, whereas the median lethal concentration (LC50)-24 h of fluoxetine and sertraline were 1560 µg/L and 507 µg/L, respectively. Both fluoxetine and sertraline caused significant reduction (P < 0.05) in the population growth rate indicating that both antidepressants have a potential adverse effect on life cycle parameters of B. koreanus. The intracellular ROS level and GSH level were significantly modulated (P < 0.05) in response to fluoxetine and sertraline. In addition, antioxidant enzymatic activities have shown significant modulation (P < 0.05) in response to FLX and SER in B. koreanus. Furthermore, transcriptional profiles of antioxidant genes (GSTs, SODs, and GR) have shown modulation in response to FLX compared to SER-exposed B. koreanus. Our results indicate that fluoxetine and sertraline induce oxidative stress, leading to reduction in the population density and modulation of antioxidant defense mechanism in the marine rotifer B. koreanus.


Assuntos
Antidepressivos/toxicidade , Fluoxetina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Rotíferos/efeitos dos fármacos , Sertralina/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Rotíferos/crescimento & desenvolvimento , Rotíferos/metabolismo
18.
Ecotoxicol Environ Saf ; 184: 109632, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31514077

RESUMO

Marine biota is currently exposed to plastic pollution. The biological effects of plastics may vary according to polymer types (e.g. polystyrene, polyethylene, acrylate), size of particles (macro, micro or nanoparticles) and their shape. There is a considerable lack of knowledge in terms of effects of nanoplastics (NP) to marine biota particularly of polymers like polymethylmethacrylate (PMMA). Thus, this study aimed to assess its ecotoxicological effects using a battery of standard monospecific bioassays with four marine microalgae (Tetraselmis chuii, Nannochloropsis gaditana, Isochrysis galbana and Thalassiosira weissflogii) and a marine rotifer species (Brachionus plicatilis). The tested PMMA-NP concentrations allowed the estimation of median effect concentrations for all microalgae species. T. weissflogii and T. chuii were respectively the most sensitive (EC50,96h of 83.75 mg/L) and least sensitive species (EC50,96h of 132.52 mg/L). The PMMA-NP were also able to induce mortality in rotifers at concentrations higher than 4.69 mg/L with an estimated 48 h median lethal concentration of 13.27 mg/L. A species sensitivity distribution curve (SSD), constructed based on data available in the literature and the data obtained in this study, reveal that PMMA-NP appears as less harmful to marine biota than other polymers like polystyrene.


Assuntos
Clorófitas/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Nanopartículas/toxicidade , Polimetil Metacrilato/toxicidade , Rotíferos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ecotoxicologia
19.
Aquat Toxicol ; 214: 105230, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31306923

RESUMO

Brachionus spp. (Rotifera: Monogononta) are globally distributed in aquatic environments and play important roles in the aquatic ecosystem. The marine monogonont rotifer Brachionus plicatilis is considered a suitable model organism for ecology, evolution, and ecotoxicology. In this study, we assembled and characterized the B. plicatilis genome. The total length of the assembled genome was 106.9 Mb and the number of final scaffolds was 716 with an N50 value of 1.15 Mb and a GC content of 26.75%. A total of 20,154 genes were annotated after manual curation. To demonstrate the use of whole genome data, we targeted one of the main detoxifying enzyme of phase I detoxification system and identified in a total of 28 cytochrome P450 s (CYPs). Based on the phylogenetic analysis using the maximum likelihood, 28 B. plicatilis-CYPs were apparently separated into five different clans, namely, 2, 3, 4, mitochondrial (MT), and 46 clans. To better understand the CYPs-mediated xenobiotic detoxification, we measured the mRNA expression levels of 28 B. plicatilis CYPs in response to chlorpyrifos and 2-ethyl-phenanthrene. Most B. plicatilis CYPs were significantly modulated (P < 0.05) in response to chlorpyrifos and 2-ethyl-phenanthrene. In addition, xenobiotic-sensing nuclear receptor (XNR) response element sequences were identified in the 5 kb upstream of promoter regions of 28 CYPs from the genome of B. plicatilis, indicating that these XNR can be associated with detoxification of xenobiotics. Overall, the assembled B. plicatilis genome presented here will be a useful resource for a better understanding the molecular ecotoxicology in the view of molecular mechanisms underlying toxicological responses, particularly on xenobiotic detoxification in this species.


Assuntos
Organismos Aquáticos/enzimologia , Organismos Aquáticos/genética , Clorpirifos/toxicidade , Sistema Enzimático do Citocromo P-450/genética , Genoma Helmíntico , Fenantrenos/toxicidade , Rotíferos/enzimologia , Rotíferos/genética , Animais , Organismos Aquáticos/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Anotação de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas/genética , Rotíferos/efeitos dos fármacos , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade
20.
Ecotoxicology ; 28(6): 643-649, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31197615

RESUMO

Monogonont rotifers constitute, depending on the moment of the year, most of the zooplankton in many freshwater ecosystems. Sexual reproduction is essential in the development cycle of these organisms as it enables them to constitute stocks of cysts which can withstand adverse environmental conditions and hatch when favorable conditions return. However, endocrine disrupting compounds (EDCs) can interfere with the reproduction of organisms. The present work aimed to investigate the effects of cyproterone acetate (CPA, anti-androgen and progestogen synthetic steroid) at 0.5 mg L-1, on the sexual reproduction of Brachionus calyciflorus in a cross-mating experiment. Results show no impact on mixis whereas the fertilization rate and resting egg production were higher in females exposed to CPA (from embryogenesis to adult stage), regardless of the treatment applied to the males with which they were mating (i.e. males hatched from CPA-treated females or from control females). Moreover, neonate females which mothers has been exposed to 0.5 mg L-1 CPA had more oocytes in their germarium than control neonates. Our results suggest that the effects of CPA observed are not related to toxicity but rather are consistent with an endocrine disruption-related impact, probably through disturbance of the mate recognition protein (MRP) production and through interference with a steroid receptor. Moreover, the absence of effect on mixis rate indicates that mixis induction on the one hand and mating process and resting production on the other hand are not controlled by the same hormonal pathways.


Assuntos
Antagonistas de Androgênios/toxicidade , Acetato de Ciproterona/toxicidade , Disruptores Endócrinos/toxicidade , Rotíferos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Reprodução/efeitos dos fármacos , Rotíferos/fisiologia , Zooplâncton/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...