Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
1.
Viruses ; 16(4)2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675964

RESUMO

Rotavirus (RV) is the main pathogen that causes severe diarrhea in infants and children under 5 years of age. No specific antiviral therapies or licensed anti-rotavirus drugs are available. It is crucial to develop effective and low-toxicity anti-rotavirus small-molecule drugs that act on novel host targets. In this study, a new anti-rotavirus compound was selected by ELISA, and cell activity was detected from 453 small-molecule compounds. The anti-RV effects and underlying mechanisms of the screened compounds were explored. In vitro experimental results showed that the small-molecule compound ML241 has a good effect on inhibiting rotavirus proliferation and has low cytotoxicity during the virus adsorption, cell entry, and replication stages. In addition to its in vitro effects, ML241 also exerted anti-RV effects in a suckling mouse model. Transcriptome sequencing was performed after adding ML241 to cells infected with RV. The results showed that ML241 inhibited the phosphorylation of ERK1/2 in the MAPK signaling pathway, thereby inhibiting IκBα, activating the NF-κB signaling pathway, and playing an anti-RV role. These results provide an experimental basis for specific anti-RV small-molecule compounds or compound combinations, which is beneficial for the development of anti-RV drugs.


Assuntos
Antivirais , Infecções por Rotavirus , Rotavirus , Replicação Viral , Rotavirus/efeitos dos fármacos , Rotavirus/fisiologia , Animais , Camundongos , Infecções por Rotavirus/tratamento farmacológico , Infecções por Rotavirus/virologia , Replicação Viral/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , NF-kappa B/metabolismo , Fosforilação , Camundongos Endogâmicos BALB C , Linhagem Celular , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Microb Pathog ; 190: 106628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508422

RESUMO

Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 µU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.


Assuntos
Neuraminidase , Infecções por Rotavirus , Rotavirus , Replicação Viral , Animais , Neuraminidase/metabolismo , Neuraminidase/genética , Rotavirus/efeitos dos fármacos , Rotavirus/fisiologia , Suínos , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/virologia , Células Epiteliais/microbiologia , Ligação Viral/efeitos dos fármacos , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacologia , Antivirais/farmacologia , Haplorrinos , Doenças dos Suínos/virologia , Doenças dos Suínos/microbiologia
3.
J Virol ; 98(4): e0006424, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38488360

RESUMO

As one of the most important causative agents of severe gastroenteritis in children, piglets, and other young animals, species A rotaviruses have adversely impacted both human health and the global swine industry. Vaccines against rotaviruses (RVs) are insufficiently effective, and no specific treatment is available. To understand the relationships between porcine RV (PoRV) infection and enterocytes in terms of the cellular lipid metabolism, we performed an untargeted liquid chromatography mass spectrometry (LC-MS) lipidomics analysis of PoRV-infected IPEC-J2 cells. Herein, a total of 451 lipids (263 upregulated lipids and 188 downregulated lipids), spanning sphingolipid, glycerolipid, and glycerophospholipids, were significantly altered compared with the mock-infected group. Interestingly, almost all the ceramides among these lipids were upregulated during PoRV infection. LC-MS analysis was used to validated the lipidomics data and demonstrated that PoRV replication increased the levels of long-chain ceramides (C16-ceramide, C18-ceramide, and C24-ceramide) in cells. Furthermore, we found that these long-chain ceramides markedly inhibited PoRV infection and that their antiviral actions were exerted in the replication stage of PoRV infection. Moreover, downregulation of endogenous ceramides with the ceramide metabolic inhibitors enhanced PoRV propagation. Increasing the levels of ceramides by the addition of C6-ceramide strikingly suppressed the replication of diverse RV strains. We further found that the treatment with an apoptotic inhibitor could reverse the antiviral activity of ceramide against PoRV replication, demonstrating that ceramide restricted RV infection by inducing apoptosis. Altogether, this study revealed that ceramides played an antiviral role against RV infection, providing potential approaches for the development of antiviral therapies.IMPORTANCERotaviruses (RVs) are among the most important zoonosis viruses, which mainly infected enterocytes of the intestinal epithelium causing diarrhea in children and the young of many mammalian and avian species. Lipids play an essential role in viral infection. A comprehensive understanding of the interaction between RV and lipid metabolism in the enterocytes will be helpful to control RV infection. Here, we mapped changes in enterocyte lipids following porcine RV (PoRV) infection using an untargeted lipidomics approach. We found that PoRV infection altered the metabolism of various lipid species, especially ceramides (derivatives of the sphingosine). We further demonstrated that PoRV infection increased the accumulation of ceramides and that ceramides exerted antiviral effects on RV replication by inducing apoptosis. Our findings fill a gap in understanding the alterations of lipid metabolism in RV-infected enterocytes and highlight the antiviral effects of ceramides on RV infection, suggesting potential approaches to control RV infection.


Assuntos
Ceramidas , Infecções por Rotavirus , Rotavirus , Animais , Ceramidas/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Rotavirus/fisiologia , Suínos , Enterócitos/metabolismo , Enterócitos/virologia , Infecções por Rotavirus/metabolismo , Linhagem Celular
4.
J Virol ; 98(2): e0167723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240590

RESUMO

Rotavirus infection is a leading cause of gastroenteritis in children worldwide; the genome of this virus is composed of 11 segments of dsRNA packed in a triple-layered protein capsid. Here, we investigated the role of nucleolin, a protein with diverse RNA-binding domains, in rotavirus infection. Knocking down the expression of nucleolin in MA104 cells by RNA interference resulted in a remarkable 6.3-fold increase in the production of infectious rhesus rotavirus (RRV) progeny, accompanied by an elevated synthesis of viral mRNA and genome copies. Further analysis unveiled an interaction between rotavirus segment 10 (S10) and nucleolin, potentially mediated by G-quadruplex domains on the viral genome. To determine whether the nucleolin-RNA interaction regulates RRV replication, MA104 cells were transfected with AGRO100, a compound that forms G4 structures and selectively inhibits nucleolin-RNA interactions by blocking the RNA-binding domains. Under these conditions, viral production increased by 1.5-fold, indicating the inhibitory role of nucleolin on the yield of infectious viral particles. Furthermore, G4 sequences were identified in all 11 RRV dsRNA segments, and transfection of oligonucleotides representing G4 sequences in RRV S10 induced a significant increase in viral production. These findings show that rotavirus replication is negatively regulated by nucleolin through the direct interaction with the viral RNAs by sequences forming G4 structures.IMPORTANCEViruses rely on cellular proteins to carry out their replicative cycle. In the case of rotavirus, the involvement of cellular RNA-binding proteins during the replicative cycle is a poorly studied field. In this work, we demonstrate for the first time the interaction between nucleolin and viral RNA of rotavirus RRV. Nucleolin is a cellular protein that has a role in the metabolism of ribosomal rRNA and ribosome biogenesis, which seems to have regulatory effects on the quantity of viral particles and viral RNA copies of rotavirus RRV. Our study adds a new component to the current model of rotavirus replication, where cellular proteins can have a negative regulation on rotavirus replication.


Assuntos
Nucleolina , RNA Viral , Infecções por Rotavirus , Rotavirus , Humanos , Nucleolina/metabolismo , RNA Viral/genética , Rotavirus/fisiologia , Infecções por Rotavirus/virologia , Replicação Viral
5.
Viruses ; 15(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37896813

RESUMO

Despite the success of rotavirus vaccines, rotaviruses remain one of the leading causes of diarrheal diseases, resulting in significant childhood morbidity and mortality, especially in low- and middle-income countries. The reverse genetics system enables the manipulation of the rotavirus genome and opens the possibility of using rotavirus as an expression vector for heterologous proteins, such as vaccine antigens and therapeutic payloads. Here, we demonstrate that three positions in rotavirus genome-the C terminus of NSP1, NSP3 and NSP5-can tolerate the insertion of reporter genes. By using rotavirus expressing GFP, we develop a high-throughput neutralization assay and reveal the pre-existing immunity against rotavirus in humans and other animal species. Our work shows the plasticity of the rotavirus genome and establishes a high-throughput assay for interrogating humoral immune responses, benefiting the design of next-generation rotavirus vaccines and the development of rotavirus-based expression platforms.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Humanos , Animais , Criança , Rotavirus/fisiologia , Vacinas contra Rotavirus/genética , Genética Reversa/métodos , Genes Reporter
6.
J Virol ; 97(10): e0086023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830817

RESUMO

IMPORTANCE: Rotaviruses are important causes of severe gastroenteritis in young children. A characteristic feature of rotaviruses is that they copy ribonucleic acid (RNA) inside of the viral particle. In fact, the viral polymerase (VP1) only functions when it is connected to the viral inner core shell protein (VP2). Here, we employed a biochemical assay to identify which sites of VP2 are critical for regulating VP1 activity. Specifically, we engineered VP2 proteins to contain amino acid changes at structurally defined sites and assayed them for their capacity to support VP1 function in a test tube. Through this work, we were able to identify several VP2 residues that appeared to regulate the activity of the polymerase, positively and negatively. These results are important because they help explain how rotavirus synthesizes its RNA while inside of particles and they identify targets for the future rational design of drugs to prevent rotavirus disease.


Assuntos
RNA Polimerases Dirigidas por DNA , Rotavirus , Proteínas do Core Viral , Proteínas do Capsídeo/metabolismo , RNA/metabolismo , Rotavirus/fisiologia , Proteínas do Core Viral/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo
7.
PLoS One ; 18(5): e0285543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37186587

RESUMO

Despite advances in biomedical research, gastric cancer remains the leading cause of morbidity and mortality worldwide due to the limited efficacy of conventional therapies. In recent decades, oncolytic viruses have emerged as a biological therapeutic alternative to cancer due to their selectivity, effectiveness, and low toxicity. However, clinical trials have shown that developing a virus with selectivity for multiple tumor receptors and the ability to penetrate and diffuse through the tumor microenvironment to reactivate the immune system remains challenging. This study aimed to examine the oncolytic potential of tumor cell-adapted rotavirus Wt1-5 in gastric adenocarcinoma samples. This study focused on determining the propagation capacity of the RV Wt1-5 through the tumor and the importance of the expression of cell surface co-receptors, including integrin ß3, protein disulfide isomerase (PDI), and heat shock proteins (Hsp-90, -70, -60, -40, and Hsc 70), during infection of tumor cells. These proteins were found to be differentially expressed in tumor cells compared to adjacent non-tumor cells. Preincubation of gastric tumor cells with antibodies against these proteins decreased rotavirus infections, validating their importance in the binding and entry of RV Wt1-5 into tumor cells, as previously reported. Upon RV infection, apoptosis was one of the types of death that was observed. This was evidenced by evaluating the expression of CASP-3, -9, PARP, cytochrome C, Bax, Bid, p53, and Bcl-2, as well as observing morphological changes such as chromatin margination, nuclear condensation, and fragmentation. Finally, at 60 h.p.i, histological analysis revealed that oncolysis compromised the entire thickness of the tumor. Therefore, the results suggest that RV Wt1-5 could be a novel therapeutic agent co-adjuvant agent for conventional and targeted therapies in managing GC. Ex vivo infection of the tumor tissue model showed characteristics of an immune response that could be explored in future studies.


Assuntos
Adenocarcinoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Infecções por Rotavirus , Rotavirus , Neoplasias Gástricas , Humanos , Rotavirus/fisiologia , Neoplasias Gástricas/terapia , Vírus Oncolíticos/fisiologia , Adenocarcinoma/terapia , Terapia Viral Oncolítica/métodos , Microambiente Tumoral
8.
Cell Host Microbe ; 31(4): 604-615.e4, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36996819

RESUMO

Rotavirus assembly is a complex process that involves the stepwise acquisition of protein layers in distinct intracellular locations to form the fully assembled particle. Understanding and visualization of the assembly process has been hampered by the inaccessibility of unstable intermediates. We characterize the assembly pathway of group A rotaviruses observed in situ within cryo-preserved infected cells through the use of cryoelectron tomography of cellular lamellae. Our findings demonstrate that the viral polymerase VP1 recruits viral genomes during particle assembly, as revealed by infecting with a conditionally lethal mutant. Additionally, pharmacological inhibition to arrest the transiently enveloped stage uncovered a unique conformation of the VP4 spike. Subtomogram averaging provided atomic models of four intermediate states, including a pre-packaging single-layered intermediate, the double-layered particle, the transiently enveloped double-layered particle, and the fully assembled triple-layered virus particle. In summary, these complementary approaches enable us to elucidate the discrete steps involved in forming an intracellular rotavirus particle.


Assuntos
Rotavirus , Rotavirus/fisiologia , Tomografia , Montagem de Vírus
9.
J Virol ; 97(2): e0003923, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36749077

RESUMO

Many viruses sequester the materials needed for their replication into discrete subcellular factories. For rotaviruses (RVs), these factories are called viroplasms, and they are formed in the host cell cytosol via the process of liquid-liquid phase separation (LLPS). The nonstructural protein 2 (NSP2) and its binding partner, nonstructural protein 5 (NSP5), are critical for viroplasm biogenesis. Yet it is not fully understood how NSP2 and NSP5 cooperate to form factories. The C-terminal region (CTR) of NSP2 (residues 291 to 317) is flexible, allowing it to participate in domain-swapping interactions that promote interoctamer interactions and, presumably, viroplasm formation. Molecular dynamics simulations showed that a lysine-to-glutamic acid change at position 294 (K294E) reduces NSP2 CTR flexibility in silico. To test the impact of reduced NSP2 CTR flexibility during infection, we engineered a mutant RV bearing this change (rRV-NSP2K294E). Single-cycle growth assays revealed a >1.2-log reduction in endpoint titers for rRV-NSP2K294E versus the wild-type control (rRV-WT). Using immunofluorescence assays, we found that rRV-NSP2K294E formed smaller, more numerous viroplasms than rRV-WT. Live-cell imaging experiments confirmed these results and revealed that rRV-NSP2K294E factories had delayed fusion kinetics. Moreover, NSP2K294E and several other CTR mutants formed fewer viroplasm-like structures in NSP5 coexpressing cells than did control NSP2WT. Finally, NSP2K294E exhibited defects in its capacity to induce LLPS droplet formation in vitro when incubated alongside NSP5. These results underscore the importance of NSP2 CTR flexibility in supporting the biogenesis of RV factories. IMPORTANCE Viruses often condense the materials needed for their replication into discrete intracellular factories. For rotaviruses, agents of severe gastroenteritis in children, factory formation is mediated in part by an octameric protein called NSP2. A flexible C-terminal region of NSP2 has been proposed to link several NSP2 octamers together, a feature that might be important for factory formation. Here, we created a change in NSP2 that reduced C-terminal flexibility and analyzed the impact on rotavirus factories. We found that the change caused the formation of smaller and more numerous factories that could not readily fuse together like those of the wild-type virus. The altered NSP2 protein also had a reduced capacity to form factory-like condensates in a test tube. Together, these results add to our growing understanding of how NSP2 supports rotavirus factory formation-a key step of viral replication.


Assuntos
Rotavirus , Proteínas não Estruturais Virais , Replicação Viral , Fosforilação , Rotavirus/química , Rotavirus/fisiologia , Proteínas não Estruturais Virais/química
10.
J Antimicrob Chemother ; 77(12): 3443-3455, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36210599

RESUMO

BACKGROUND: Rotavirus is the foremost cause of acute gastroenteritis among infants in resource-poor countries, causing severe morbidity and mortality. The currently available rotavirus vaccines are effective in reducing severity of the disease but not the infection rates, thus antivirals as an adjunct therapy are needed to reduce the morbidity in children. Viruses rely on host cellular machinery for nearly every step of the replication cycle. Therefore, targeting host factors that are indispensable for virus replication could be a promising strategy. OBJECTIVES: To assess the therapeutic potential of ivermectin and importazole against rotaviruses. METHODS: Antirotaviral activity of importazole and ivermectin was measured against various rotavirus strains (RV-SA11, RV-Wa, RV-A5-13, RV-EW) in vitro and in vivo by quantifying viral protein expression by western blot, analysing viroplasm formation by confocal microscopy, and measuring virus yield by plaque assay. RESULTS: Importin-ß1 and Ran were found to be induced during rotavirus infection. Knocking down importin-ß1 severely impaired rotavirus replication, suggesting a critical role for importin-ß1 in the rotavirus life cycle. In vitro studies revealed that treatment of ivermectin and importazole resulted in reduced synthesis of viral proteins, diminished production of infectious virus particles, and decrease in viroplasm-positive cells. Mechanistic study proved that both drugs perform antirotavirus activity by inhibiting the function of importin-ß1. In vivo investigations in mice also confirmed the antirotavirus potential of importazole and ivermectin at non-toxic doses. Treatments of rotavirus-infected mice with either drug resulted in diminished shedding of viral particles in the stool sample, reduced expression of viral protein in the small intestine and restoration of damaged intestinal villi comapared to untreated infected mice. CONCLUSIONS: The study highlights the potential of importazole and ivermectin as antirotavirus therapeutics.


Assuntos
Infecções por Rotavirus , Rotavirus , Replicação Viral , Animais , Camundongos , Transporte Ativo do Núcleo Celular , Ivermectina/farmacologia , Carioferinas/metabolismo , Rotavirus/efeitos dos fármacos , Rotavirus/fisiologia , Proteínas Virais , Infecções por Rotavirus/tratamento farmacológico
11.
J Virol ; 96(17): e0107422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35938869

RESUMO

Rotavirus (RV) viroplasms are cytosolic inclusions where both virus genome replication and primary steps of virus progeny assembly take place. A stabilized microtubule cytoskeleton and lipid droplets are required for the viroplasm formation, which involves several virus proteins. The viral spike protein VP4 has not previously been shown to have a direct role in viroplasm formation. However, it is involved with virus-cell attachment, endocytic internalization, and virion morphogenesis. Moreover, VP4 interacts with actin cytoskeleton components, mainly in processes involving virus entrance and egress, and thereby may have an indirect role in viroplasm formation. In this study, we used reverse genetics to construct a recombinant RV, rRV/VP4-BAP, that contains a biotin acceptor peptide (BAP) in the K145-G150 loop of the VP4 lectin domain, permitting live monitoring. The recombinant virus was replication competent but showed a reduced fitness. We demonstrate that rRV/VP4-BAP infection, as opposed to rRV/wt infection, did not lead to a reorganized actin cytoskeleton as viroplasms formed were insensitive to drugs that depolymerize actin and inhibit myosin. Moreover, wild-type (wt) VP4, but not VP4-BAP, appeared to associate with actin filaments. Similarly, VP4 in coexpression with NSP5 and NSP2 induced a significant increase in the number of viroplasm-like structures. Interestingly, a small peptide mimicking loop K145-G150 rescued the phenotype of rRV/VP4-BAP by increasing its ability to form viroplasms and hence improve virus progeny formation. Collectively, these results provide a direct link between VP4 and the actin cytoskeleton to catalyze viroplasm assembly. IMPORTANCE The spike protein VP4 participates in diverse steps of the rotavirus (RV) life cycle, including virus-cell attachment, internalization, modulation of endocytosis, virion morphogenesis, and virus egress. Using reverse genetics, we constructed for the first time a recombinant RV, rRV/VP4-BAP, harboring a heterologous peptide in the lectin domain (loop K145-G150) of VP4. The rRV/VP4-BAP was replication competent but with reduced fitness due to a defect in the ability to reorganize the actin cytoskeleton, which affected the efficiency of viroplasm assembly. This defect was rescued by adding a permeable small-peptide mimicking the wild-type VP4 loop K145-G150. In addition to revealing a new role of VP4, our findings suggest that rRV harboring an engineered VP4 could be used as a new dual vaccination platform providing immunity against RV and additional heterologous antigens.


Assuntos
Citoesqueleto de Actina , Proteínas do Capsídeo , Rotavirus , Citoesqueleto de Actina/metabolismo , Proteínas do Capsídeo/metabolismo , Humanos , Lectinas , Genética Reversa , Rotavirus/genética , Rotavirus/fisiologia , Infecções por Rotavirus , Compartimentos de Replicação Viral , Replicação Viral
12.
J Virol ; 96(16): e0062722, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35924923

RESUMO

Rotavirus live-attenuated vaccines, both mono- and pentavalent, generate broadly heterotypic protection. B-cells isolated from adults encode neutralizing antibodies, some with affinity for VP5*, that afford broad protection in mice. We have mapped the epitope of one such antibody by determining the high-resolution cryo-EM structure of its antigen-binding fragment (Fab) bound to the virion of a candidate vaccine strain, CDC-9. The Fab contacts both the distal end of a VP5* ß-barrel domain and the two VP8* lectin-like domains at the tip of a projecting spike. Its interactions with VP8* do not impinge on the likely receptor-binding site, suggesting that the mechanism of neutralization is at a step subsequent to initial attachment. We also examined structures of CDC-9 virions from two different stages of serial passaging. Nearly all the VP4 (cleaved to VP8*/VP5*) spikes on particles from the earlier passage (wild-type isolate) had transitioned from the "upright" conformation present on fully infectious virions to the "reversed" conformation that is probably the end state of membrane insertion, unable to mediate penetration, consistent with the very low in vitro infectivity of the wild-type isolate. About half the VP4 spikes were upright on particles from the later passage, which had recovered substantial in vitro infectivity but had acquired an attenuated phenotype in neonatal rats. A mutation in VP4 that occurred during passaging appears to stabilize the interface at the apex of the spike and could account for the greater stability of the upright spikes on the late-passage, attenuated isolate. IMPORTANCE Rotavirus live-attenuated vaccines generate broadly heterotypic protection, and B-cells isolated from adults encode antibodies that are broadly protective in mice. Determining the structural and mechanistic basis of broad protection can contribute to understanding the current limitations of vaccine efficacy in developing countries. The structure of an attenuated human rotavirus isolate (CDC-9) bound with the Fab fragment of a broadly heterotypic protective antibody shows that protection is probably due to inhibition of the conformational transition in the viral spike protein (VP4) critical for viral penetration, rather than to inhibition of receptor binding. A comparison of structures of CDC-9 virus particles at two stages of serial passaging supports a proposed mechanism for initial steps in rotavirus membrane penetration.


Assuntos
Anticorpos Amplamente Neutralizantes , Proteínas do Capsídeo , Epitopos de Linfócito B , Rotavirus , Vacinas Atenuadas , Vírion , Animais , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/ultraestrutura , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Camundongos , Conformação Proteica , Ratos , Rotavirus/química , Rotavirus/classificação , Rotavirus/imunologia , Rotavirus/fisiologia , Inoculações Seriadas , Vacinas Atenuadas/química , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/metabolismo , Vírion/imunologia , Vírion/metabolismo , Vírion/ultraestrutura
13.
J Virol ; 96(15): e0055022, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35862708

RESUMO

The basis for rotavirus (RV) host range restriction (HRR) is not fully understood but is likely multigenic. RV genes encoding VP3, VP4, NSP1, NSP2, NSP3, and NSP4 have been associated with HRR in various studies. With the exception of NSP1, little is known about the relative contribution of the other RV genes to HRR. VP4 has been linked to HRR because it functions as the RV cell attachment protein, but its actual role in HRR has not been fully assessed. We generated a collection of recombinant RVs (rRVs) in an isogenic murine-like RV genetic background, harboring either heterologous or homologous VP4 genes from simian, bovine, porcine, human, and murine RV strains, and characterized these rRVs in vitro and in vivo. We found that a murine-like rRV encoding a simian VP4 was shed, spread to uninoculated littermates, and induced diarrhea comparably to rRV harboring a murine VP4. However, rRVs carrying VP4s from both bovine and porcine RVs had reduced diarrhea, but no change in fecal shedding was observed. Both diarrhea and shedding were reduced when VP4 originated from a human RV strain. rRVs harboring VP4s from human or bovine RVs did not transmit to uninoculated littermates. We also generated two rRVs harboring reciprocal chimeric murine or bovine VP4. Both chimeras replicated and caused disease as efficiently as the parental strain with a fully murine VP4. These data suggest that the genetic origin of VP4 partially modulates HRR in the suckling mouse and that both the VP8* and VP5* domains independently contribute to pathogenesis and transmission. IMPORTANCE Human group A rotaviruses (RVs) remain the most important cause of severe acute gastroenteritis among infants and young children worldwide despite the introduction of several safe and effective live attenuated vaccines. The lack of knowledge regarding fundamental aspects of RV biology, such as the genetic basis of host range restriction (HRR), has made it difficult to predictively and efficiently design improved, next-generation live attenuated rotavirus vaccines. Here, we engineered a collection of VP4 monoreassortant RVs to systematically explore the role of VP4 in replication, pathogenicity, and spread, as measures of HRR, in a suckling mouse model. The genetic and mechanistic bases of HRR have substantial clinical relevance given that this restriction forms the basis of attenuation for several replication-competent human RV vaccines. In addition, a better understanding of RV pathogenesis and the determinants of RV spread is likely to enhance our ability to improve antiviral drug and therapy development.


Assuntos
Proteínas do Capsídeo , Modelos Animais de Doenças , Especificidade de Hospedeiro , Infecções por Rotavirus , Rotavirus , Animais , Animais Lactentes , Proteínas do Capsídeo/metabolismo , Bovinos/virologia , Diarreia/veterinária , Diarreia/virologia , Haplorrinos/virologia , Humanos , Hibridização Genética , Camundongos/virologia , Rotavirus/classificação , Rotavirus/patogenicidade , Rotavirus/fisiologia , Infecções por Rotavirus/transmissão , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/virologia , Suínos/virologia , Vacinas Atenuadas , Virulência , Replicação Viral/genética
14.
Cells ; 11(10)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35626706

RESUMO

The leading cause of gastroenteritis among young children worldwide is the Group A rotaviruses (RV), which produce a wide range of symptoms, from a limited diarrhea to severe dehydration and even death. After an RV infection, immunity is not complete and less severe re-infections usually occur. These infections could be ameliorated by nutritional interventions with bioactive compounds, such as prebiotics. The aim of this research was to study the impact of a particular galactooligosaccharide (B-GOS) on the RV symptomatology and immune response during two consecutive infections. Lewis neonatal rats were inoculated with SA11 (first RV infection) on day 6 of life and with EDIM (second RV infection) on day 17 of life. B-GOS group was administered by oral gavage with a daily dose of B-GOS between days three to nine of life. Clinical and immunological variables were assessed during both infective processes. In the first infection, after the prebiotic intervention with B-GOS, a lower incidence, duration, and overall severity of the diarrhea (p < 0.05) was observed. In addition, it improved another severity indicator, the fecal weight output, during the diarrhea period (p < 0.05). The second RV infection failed in provoking diarrhea in the groups studied. The immune response during first infection with SA11 was not affected by B-GOS administration and had no impact on second infection, but the prebiotic intervention significantly increased IFN-γ and TNF-α intestinal production after the second infection (p < 0.05). In summary, B-GOS supplementation is able to reduce the incidence and severity of the RV-associated diarrhea and to influence the immune response against RV infections.


Assuntos
Infecções por Rotavirus , Rotavirus , Animais , Diarreia/tratamento farmacológico , Intestinos , Ratos , Ratos Endogâmicos Lew , Rotavirus/fisiologia , Infecções por Rotavirus/tratamento farmacológico
15.
Acta Virol ; 66(1): 39-54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35380864

RESUMO

Cells infected with MA104 rotavirus and/or transfected with plasmids expressing NSP proteins, were analyzed for expression of cellular proteins related to NFκB and PPARγ pathways and evaluated through the ELISA, luminescence, flow cytometry and Western blot techniques. The association between cellular and viral (NSPs) proteins was examined by ELISA, epifluorescence and confocal microscopy techniques. It was observed that NSP1 protein interacts with RXR, NSP1, and NSP3 with PPARγ, NSP2 with p-IKKα/ß and NSP5 with NFκB proteins. We have found that phosphorylated PPARγ is localized in cytoplasm and transcriptional activity of PPRE is diminished. These results lead to the conclusion, that RRV activates the proinflammatory pathway, increasing the expression of NFκB and possibly by PPARγ phosphorylation, its translocation to the nucleus is impeded, thus inactivating the proinflammatory pathway. Keywords: rotavirus; PPARγ; NFκB; NSPs; RRV.


Assuntos
NF-kappa B , PPAR gama , Infecções por Rotavirus , Proteínas não Estruturais Virais , Humanos , Imunidade , NF-kappa B/imunologia , PPAR gama/imunologia , Rotavirus/fisiologia , Infecções por Rotavirus/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
16.
Cell Host Microbe ; 30(1): 110-123.e5, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932985

RESUMO

Rotavirus vaccines (RVVs) have substantially diminished mortality from severe rotavirus (RV) gastroenteritis but are significantly less effective in low- and middle-income countries (LMICs), limiting their life-saving potential. The etiology of RVV's diminished effectiveness remains incompletely understood, but the enteric microbiota has been implicated in modulating immunity to RVVs. Here, we analyze the enteric microbiota in a longitudinal cohort of 122 Ghanaian infants, evaluated over the course of 3 Rotarix vaccinations between 6 and 15 weeks of age, to assess whether bacterial and viral populations are distinct between non-seroconverted and seroconverted infants. We identify bacterial taxa including Streptococcus and a poorly classified taxon in Enterobacteriaceae as positively correlating with seroconversion. In contrast, both bacteriophage diversity and detection of Enterovirus B and multiple novel cosaviruses are negatively associated with RVV seroconversion. These findings suggest that virome-RVV interference is an underappreciated cause of poor vaccine performance in LMICs.


Assuntos
Intestino Delgado/virologia , Infecções por Rotavirus/imunologia , Rotavirus/fisiologia , Viroma/fisiologia , Bactérias/classificação , Bacteriófagos , Estudos de Coortes , Coinfecção , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Gana , Humanos , Imunização , Lactente , Masculino , Metagenoma , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus , Soroconversão , Vacinação , Vacinas Atenuadas
17.
Infect Genet Evol ; 98: 105198, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34968762

RESUMO

BACKGROUND: Rotavirus A (RVA) are a group of diverse viruses causing acute gastroenteritis (AGE) in humans and animals. Zoonotic transmission is an important mechanism for rotavirus evolution and strain diversity in humans, but the extent of pigs as a major reservoir for human infection is not clear. METHODS AND FINDINGS: We have surveyed 153 pig farms across Taiwan with a total of 4588 porcine stool samples from three age groups from 2014 to 2017. Nursing piglets (less than one month of age) had higher detection rate for rotavirus than older age groups. Five VP7 (G) genotypes and 5 VP4 (P) genotypes were found in a total of 14 different G/P genotype combinations. In addition, porcine RVA strains had 2 NSP4 (E) genotypes and 3 VP6 (I) genotypes. A P[3]-like genotype was also discovered among strains collected in 2016 and 2017. CONCLUSIONS: Most of the genes from Taiwanese porcine strains clustered with each other and the lineages formed by these strains were distinct from the sequences of numerous regional variants or globally circulating porcine strains, suggesting an independent evolutionary history for Taiwanese rotavirus genotypes. The close relationship among porcine RVA strains and some unique porcine-like genotypes detected sporadically among human children in swine farms illustrates that pigs might serve as a reservoir for potential zoonotic transmission and novel genotype evolution in Taiwan's insular environment.


Assuntos
Reservatórios de Doenças/veterinária , Variação Genética , Infecções por Rotavirus/veterinária , Rotavirus/fisiologia , Doenças dos Suínos/epidemiologia , Animais , Fezes/virologia , Humanos , Prevalência , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Sus scrofa , Suínos , Taiwan/epidemiologia
18.
J Virol ; 96(1): e0122221, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668777

RESUMO

Group A rotavirus (RVA), one of the leading pathogens causing severe acute gastroenteritis in children and a wide variety of young animals worldwide, induces apoptosis upon infecting cells. Though RVA-induced apoptosis mediated via the dual modulation of its NSP4 and NSP1 proteins is relatively well studied, the nature and signaling pathway(s) involved in RVA-induced necroptosis are yet to be fully elucidated. Here, we demonstrate the nature of RVA-induced necroptosis, the signaling cascade involved, and correlation with RVA-induced apoptosis. Infection with the bovine NCDV and human DS-1 RVA strains was shown to activate receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like protein (MLKL), the key necroptosis molecules in virus-infected cells. Using an immunoprecipitation assay, RIPK1 was found to bind phosphorylated RIPK3 (pRIPK3) and pMLKL. pMLKL, the major executioner molecule in the necroptotic pathway, was translocated to the plasma membrane of RVA-infected cells to puncture the cell membrane. Interestingly, transfection of RVA NSP4 also induced necroptosis through the RIPK1/RIPK3/MLKL necroptosis pathway. Blockage of each key necroptosis molecule in the RVA-infected or NSP4-transfected cells resulted in decreased necroptosis but increased cell viability and apoptosis, thereby resulting in decreased viral yields in the RVA-infected cells. In contrast, suppression of RVA-induced apoptosis increased necroptosis and virus yields. Our findings suggest that RVA NSP4 also induces necroptosis via the RIPK1/RIPK3/MLKL necroptosis pathway. Moreover, necroptosis and apoptosis-which have proviral and antiviral effects, respectively-exhibited cross talk in RVA-infected cells. These findings significantly increase our understanding of the nature of RVA-induced necroptosis and the cross talk between RVA-induced necroptosis and apoptosis. IMPORTANCE Viral infection usually culminates in cell death through apoptosis, necroptosis, and, rarely, pyroptosis. Necroptosis is a form of programmed necrosis that is mediated by signaling complexes of the receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like protein (MLKL). Although apoptosis induction by rotavirus and its NSP4 protein is well known, rotavirus-induced necroptosis is not fully understood. Here, we demonstrate that rotavirus and also its NSP4 protein can induce necroptosis in cultured cells through activation of the RIPK1/RIPK3/MLKL necroptosis pathway. Moreover, rotavirus-induced necroptosis and apoptosis have opposite effects on viral yield, i.e., they function as proviral and antiviral processes, respectively, and counterbalance each other in rotavirus-infected cells. Our findings provide important insights for understanding the nature of rotavirus-induced necroptosis and the development of novel therapeutic strategies against infection with rotavirus and other RNA viruses.


Assuntos
Apoptose , Interações Hospedeiro-Patógeno , Necroptose , Infecções por Rotavirus/virologia , Rotavirus/fisiologia , Transdução de Sinais , Replicação Viral , Biomarcadores , Células Cultivadas , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ligação Proteica , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Infecções por Rotavirus/metabolismo , Toxinas Biológicas/metabolismo , Proteínas não Estruturais Virais/metabolismo
19.
mBio ; 12(6): e0320821, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903043

RESUMO

Rotavirus (RV)-encoded nonstructural protein 1 (NSP1), the product of gene segment 5, effectively antagonizes host interferon (IFN) signaling via multiple mechanisms. Recent studies with the newly established RV reverse genetics system indicate that NSP1 is not essential for the replication of the simian RV SA11 strain in cell culture. However, the role of NSP1 in RV infection in vivo remains poorly characterized due to the limited replication of heterologous simian RVs in the suckling mouse model. Here, we used an optimized reverse genetics system and successfully recovered recombinant murine RVs with or without NSP1 expression. While the NSP1-null virus replicated comparably with the parental murine RV in IFN-deficient and IFN-competent cell lines in vitro, it was highly attenuated in 5-day-old wild-type suckling pups in both the 129sv and C57BL/6 backgrounds. In the absence of NSP1 expression, murine RV had significantly reduced replication in the ileum, systemic spread to mesenteric lymph nodes, fecal shedding, diarrhea occurrence, and transmission to uninoculated littermates. The defective replication of the NSP1-null RV in small intestinal tissues occurred as early as 1 day postinfection. Of interest, the replication and pathogenesis defects of NSP1-null RV were only minimally rescued in Stat1 knockout pups, suggesting that NSP1 facilitates RV replication in an IFN-independent manner. Our findings highlight a pivotal function of NSP1 during homologous RV infections in vivo and identify NSP1 as an ideal viral protein for targeted attenuation for future vaccine development. IMPORTANCE Rotavirus remains one of the most important causes of severe diarrhea and dehydration in young children worldwide. Although NSP1 is dispensable for rotavirus replication in cell culture, its exact role in virus infection in vivo remains unclear. In this study, we demonstrate, for the first time in a pathologically valid homologous small animal model, that in the context of a fully replication-competent, pathogenic, and transmissible murine rotavirus, loss of NSP1 expression substantially attenuated virus replication in the gastrointestinal tract, diarrheal disease, and virus transmission. Notably, the NSP1-deficient murine rotavirus also replicated poorly in mice lacking host interferon or inflammasome signaling. Our data provide the first piece of evidence that NSP1 is essential for murine rotavirus replication in vivo, making it an attractive target for developing improved next-generation rotavirus vaccines better suited for socioeconomically disadvantaged and immunocompromised individuals.


Assuntos
Intestinos/virologia , Infecções por Rotavirus/virologia , Rotavirus/fisiologia , Rotavirus/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Humanos , Interferons/genética , Interferons/metabolismo , Intestinos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rotavirus/genética , Infecções por Rotavirus/genética , Infecções por Rotavirus/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Proteínas não Estruturais Virais/genética
20.
Nat Commun ; 12(1): 7288, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911947

RESUMO

Identifying risk factors for impaired oral rotavirus vaccine (ORV) efficacy in low-income countries may lead to improvements in vaccine design and delivery. In this prospective cohort study, we measure maternal rotavirus antibodies, environmental enteric dysfunction (EED), and bacterial gut microbiota development among infants receiving two doses of Rotarix in India (n = 307), Malawi (n = 119), and the UK (n = 60), using standardised methods across cohorts. We observe ORV shedding and seroconversion rates to be significantly lower in Malawi and India than the UK. Maternal rotavirus-specific antibodies in serum and breastmilk are negatively correlated with ORV response in India and Malawi, mediated partly by a reduction in ORV shedding. In the UK, ORV shedding is not inhibited despite comparable maternal antibody levels to the other cohorts. In both India and Malawi, increased microbiota diversity is negatively correlated with ORV immunogenicity, suggesting that high early-life microbial exposure may contribute to impaired vaccine efficacy.


Assuntos
Microbioma Gastrointestinal , Doenças do Recém-Nascido/prevenção & controle , Infecções por Rotavirus/microbiologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/administração & dosagem , Rotavirus/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Humanos , Imunidade Materno-Adquirida , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Índia , Lactente , Recém-Nascido , Doenças do Recém-Nascido/sangue , Doenças do Recém-Nascido/microbiologia , Doenças do Recém-Nascido/virologia , Malaui , Masculino , Leite Humano/química , Leite Humano/imunologia , Gravidez , Estudos Prospectivos , Rotavirus/genética , Rotavirus/fisiologia , Infecções por Rotavirus/sangue , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus/imunologia , Reino Unido , Eficácia de Vacinas , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...