Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.071
Filtrar
1.
J Am Chem Soc ; 146(19): 13317-13325, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700457

RESUMO

We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Nitrilas , Pirazóis , Pirimidinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Nitrilas/química , Nitrilas/farmacologia , Nitrilas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Apoptose/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Linhagem Celular Tumoral , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/síntese química , Rutênio/química , Rutênio/farmacologia , Luz , Estrutura Molecular , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo
2.
Dalton Trans ; 53(18): 7682-7693, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38573236

RESUMO

Dysregulation of Fibroblast Growth Factor Receptors (FGFRs) signaling has been associated with breast cancer, yet employing FGFR-targeted delivery systems to improve the efficacy of cytotoxic agents is still sparsely exploited. Herein, we report four new bi-functional ruthenium-peptide conjugates (RuPCs) with FGFR-targeting and pH-dependent releasing abilities, envisioning the selective delivery of cytotoxic Ru complexes to FGFR(+)-breast cancer cells, and controlled activation at the acidic tumoral microenvironment. The antiproliferative potential of the RuPCs and free Ru complexes was evaluated in four breast cancer cell lines with different FGFR expression levels (SKBR-3, MDA-MB-134-VI, MCF-7, and MDA-MB-231) and in human dermal fibroblasts (HDF), at pH 6.8 and pH 7.4 aimed at mimicking the tumor microenvironment and normal tissues/bloodstream pHs, respectively. The RuPCs showed higher cytotoxicity in cells with higher level of FGFR expression at acidic pH. Additionally, RuPCs showed up to 6-fold higher activity in the FGFR(+) breast cancer lines compared to the normal cell line. The release profile of Ru complexes from RuPCs corroborates the antiproliferative effects observed. Remarkably, the cytotoxicity and releasing ability of RuPCs were shown to be strongly dependent on the conjugation of the peptide position in the Ru complex. Complementary molecular dynamic simulations and computational calculations were performed to help interpret these findings at the molecular level. In summary, we identified a lead bi-functional RuPC that holds strong potential as a FGFR-targeted chemotherapeutic agent.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proliferação de Células , Peptídeos , Receptores de Fatores de Crescimento de Fibroblastos , Rutênio , Humanos , Rutênio/química , Rutênio/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Concentração de Íons de Hidrogênio , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Linhagem Celular Tumoral , Feminino , Ensaios de Seleção de Medicamentos Antitumorais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química
3.
Nitric Oxide ; 147: 26-41, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614230

RESUMO

Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.


Assuntos
Antivirais , DNA , Rutênio , Humanos , DNA/metabolismo , DNA/química , Rutênio/química , Rutênio/farmacologia , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Ligantes , Animais , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Piridinas/química , Piridinas/farmacologia , Iminas/química , Iminas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo
4.
Inorg Chem ; 63(17): 7955-7965, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38634659

RESUMO

Curcuminoids and their complexes continue to attract attention in medicinal chemistry, but little attention has been given to their metabolic derivatives. Here, the first examples of (arene)Ru(II) complexes with curcuminoid metabolites, tetrahydrocurcumin (THcurcH), and tetrahydrobisdesmethoxycurcumin (THbdcurcH) were prepared and characterized. The neutral complexes [Ru(arene)(THcurc)Cl] and [Ru(arene)(THbdcurc)Cl] (arene = cymene, benzene, or hexamethylbenzene) were characterized by NMR spectroscopy and ESI mass spectrometry, and the crystal structures of the three complexes were determined by X-ray diffraction analysis. Compared to curcuminoids, these metabolites lose their conjugated double bond system responsible for their planarity, showing unique closed conformation structures. Both closed and open conformations have been analyzed and rationalized by using density functional theory (DFT). The cytotoxicity of the complexes was evaluated in vitro against human ovarian carcinoma cells (A2780 and A2780cisR), human breast adenocarcinoma cells (MCF-7 and MCF-7CR), as well as against non-tumorigenic human embryonic kidney cells (HEK293) and human breast (MCF-10A) cells and compared to the free ligands, cisplatin, and RAPTA-C. There is a correlation between cellular uptake and the cytotoxicity of the compounds, suggesting that cellular uptake and binding to nuclear DNA may be the major pathway for cytotoxicity. However, the levels of complex binding to DNA do not strictly correlate with the cytotoxic potency, indicating that other mechanisms are also involved. In addition, treatment of MCF-7 cells with [Ru(cym)(THcurc)Cl] showed a significant decrease in p62 protein levels, which is generally assumed as a noncisplatin-like mechanism of action involving autophagy. Hence, a cisplatin- and a noncisplatin-like concerted mechanism of action, involving both apoptosis and autophagy, is possible.


Assuntos
Antineoplásicos , Complexos de Coordenação , Curcumina , Ensaios de Seleção de Medicamentos Antitumorais , Rutênio , Humanos , Curcumina/farmacologia , Curcumina/química , Curcumina/análogos & derivados , Curcumina/metabolismo , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Diarileptanoides/química , Diarileptanoides/farmacologia , Diarileptanoides/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Modelos Moleculares , Teoria da Densidade Funcional , Sobrevivência Celular/efeitos dos fármacos , Células HEK293
5.
Inorg Chem ; 63(16): 7493-7503, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38578920

RESUMO

The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440-600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 µM and 88, respectively, under white light irradiation and ca. 1.9 µM and 35 under green light irradiation against HeLa cells. The complexes (Ru1-Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 µM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects.


Assuntos
Antineoplásicos , Complexos de Coordenação , Luz , Piridinas , Rutênio , Humanos , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Piridinas/química , Piridinas/farmacologia , Catálise , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Ensaios de Seleção de Medicamentos Antitumorais , Processos Fotoquímicos , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Células HeLa , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Luz Verde
6.
Inorg Chem ; 63(16): 7520-7539, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38590210

RESUMO

A new set of binuclear arene ruthenium complexes [Ru2(p-cymene)2(k4-N2OS)(L1-L3)Cl2] (Ru2L1-Ru2L3) encompassing furan-2-carboxamide-based aroylthiourea derivatives (H2L1-H2L3) was synthesized and characterized by various spectral and analytical techniques. Single-crystal XRD analysis unveils the N^O and N^S mixed monobasic bidentate coordination of the ligands constructing N, S, Cl/N, O, and Cl legged piano stool octahedral geometry. DFT analysis demonstrates the predilection for the formation of stable arene ruthenium complexes. In vitro antiproliferative activity of the complexes was examined against human cervical (HeLa), breast (MCF-7), and lung (A549) cancerous and noncancerous monkey kidney epithelial (Vero) cells. All the complexes are more efficacious against HeLa and MCF-7 cells with low inhibitory doses (3.86-11.02 µM). Specifically, Ru2L3 incorporating p-cymene and -OCH3 fragments exhibits high lipophilicity, significant cytotoxicity against cancer cells, and lower toxicity on noncancerous cells. Staining analysis indicates the apoptosis-associated cell morphological changes expressively in MCF-7 cells. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) analyses reveal that Ru2L3 can raise ROS levels, reduce MMP, and trigger mitochondrial dysfunction-mediated apoptosis. The catalytic oxidation of glutathione (GSH) to its disulfide form (GSSG) by the complexes may simultaneously increase the ROS levels, alluding to their observed cytotoxicity and apoptosis induction. Flow cytometry determined the quantitative classification of late apoptosis and S-phase arrest in MCF-7 and HeLa cells. Western blotting analysis confirmed that the complexes promote apoptosis by upregulating Caspase-3 and Caspase-9 and downregulating BCL-2. Molecular docking studies unfolded the strong binding affinities of the complexes with VEGFR2, an angiogenic signaling receptor, and BCL2, Cyclin D1, and HER2 proteins typically overexpressed on tumor cells.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Rutênio , Tioureia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Tioureia/química , Tioureia/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Estrutura Molecular , Furanos/química , Furanos/farmacologia , Furanos/síntese química , Quelantes/química , Quelantes/farmacologia , Quelantes/síntese química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Chlorocebus aethiops , Espécies Reativas de Oxigênio/metabolismo , Células Vero , Relação Estrutura-Atividade
7.
Eur J Med Chem ; 270: 116378, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604098

RESUMO

Infections caused by Staphylococcus aureus (S. aureus) are increasing difficult to treat because this pathogen is easily resistant to antibiotics. However, the development of novel antibacterial agents with high antimicrobial activity and low frequency of resistance remains a huge challenge. Here, building on the coupling strategy, an adamantane moiety was linked to the membrane-active Ru-based structure and then developed three novel metalloantibiotics: [Ru(bpy)2(L)](PF6)2 (Ru1) (bpy = 2,2-bipyridine, L = amantadine modified ligand), [Ru(dmb)2(L)](PF6)2 (Ru2) (dmb = 4,4'-dimethyl-2,2'-bipyridine) and [Ru(dpa)2(L)](PF6)2 (Ru3), (dpa = 2,2'-dipyridylamine). Notably, complex Ru1 was identified to be the best candidate agent, showing greater efficacy against S. aureus than most of clinical antibiotics and low resistance frequencies. Mechanism studies demonstrated that Ru1 could not only increase the permeability of bacterial cell membrane and then caused the leakage of bacterial contents, but also promoted the production of reactive oxygen species (ROS) in bacteria. Importantly, complex Ru1 inhibited the biofilm formation, exotoxin secretion and increased the potency of some clinical used antibiotics. In addition, Ru1 showed low toxic in vivo and excellent anti-infective efficacy in two animal infection model. Thus, Ru-based metalloantibiotic bearing adamantane moiety are promising antibacterial agents, providing a certain research basis for the future antibiotics research.


Assuntos
Adamantano , Complexos de Coordenação , Rutênio , Animais , Antibacterianos/farmacologia , Adamantano/farmacologia , Staphylococcus aureus , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
8.
J Inorg Biochem ; 256: 112574, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677004

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer, which owned severe resistance to platinum-based anticancer agents. Herein, we report a new metal-arene complex, Ru-TPE-PPh3, which can be synthesized in vitro and in living cells with copper catalyzed the cycloaddition reaction of Ru-azide and alkynyl (CuAAC). The complex Ru-TPE-PPh3 exhibited superior inhibition of the proliferation of TNBC MDA-MB-231 cells with an IC50 value of 4.0 µM. Ru-TPE-PPh3 could induce the over production of reactive oxygen species (ROS) to initiate the oxidative stress, and further damage the mitochondria both functionally and morphologically, as loss of mitochondrial membrane potential (MMP) and cutting the supply of adenosine triphosphate (ATP), the disappearance of cristae structure. Moreover, the damaged mitochondria evoked the occurrence of mitophagy with the autophagic flux blockage and cell death. The complex Ru-TPE-PPh3 also demonstrated excellent anti-proliferative activity in 3D MDA-MB-231 multicellular tumor spheroids (MCTSs), indicating the potential to inhibit solid tumors in living cells. This study not only provided a potent agent for the TNBC treatment, but also demonstrated the universality of the bioorthogonally catalyzed lethality (BCL) strategy through CuAAC reation.


Assuntos
Antineoplásicos , Autofagia , Complexos de Coordenação , Mitocôndrias , Espécies Reativas de Oxigênio , Rutênio , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos
9.
Inorg Chem ; 63(17): 7973-7983, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38616353

RESUMO

Dysregulated cathepsin activity is linked to various human diseases including metabolic disorders, autoimmune conditions, and cancer. Given the overexpression of cathepsin in the tumor microenvironment, cathepsin inhibitors are promising pharmacological agents and drug delivery vehicles for cancer treatment. In this study, we describe the synthesis and photochemical and biological assessment of a dual-action agent based on ruthenium that is conjugated with a cathepsin inhibitor, designed for both photodynamic therapy (PDT) and photochemotherapy (PCT). The ruthenium-cathepsin inhibitor conjugate was synthesized through an oxime click reaction, combining a pan-cathepsin inhibitor based on E64d with the Ru(II) PCT/PDT fragment [Ru(dqpy)(dppn)], where dqpy = 2,6-di(quinoline-2-yl)pyridine and dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine. Photochemical investigations validated the conjugate's ability to release a triazole-containing cathepsin inhibitor for PCT and to generate singlet oxygen for PDT upon exposure to green light. Inhibition studies demonstrated the conjugate's potent and irreversible inactivation of purified and intracellular cysteine cathepsins. Two Ru(II) PCT/PDT agents based on the [Ru(dqpy)(dppn)] moiety were evaluated for photoinduced cytotoxicity in 4T1 murine triple-negative breast cancer cells, L929 fibroblasts, and M0, M1, and M2 macrophages. The cathepsin inhibitor conjugate displayed notable selectivity for inducing cell death under irradiation compared to dark conditions, mitigating toxicity in the dark observed with the triazole control complex [Ru(dqpy)(dppn)(MeTz)]2+ (MeTz = 1-methyl-1H-1,2,4-triazole). Notably, our lead complex is among a limited number of dual PCT/PDT agents activated with green light.


Assuntos
Catepsinas , Luz , Fotoquimioterapia , Fármacos Fotossensibilizantes , Rutênio , Humanos , Rutênio/química , Rutênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Catepsinas/antagonistas & inibidores , Catepsinas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Animais , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Luz Verde
10.
J Med Chem ; 67(8): 6673-6686, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38569098

RESUMO

The use of benzimidazole-based trinuclear ruthenium(II)-arene complexes (1-3) to selectively target the rare cancer rhabdomyosarcoma is reported. Preliminary cytotoxic evaluations of the ruthenium complexes in an eight-cancer cell line panel revealed enhanced, selective cytotoxicity toward rhabdomyosarcoma cells (RMS). The trinuclear complex 1 was noted to show superior short- and long-term cytotoxicity in RMS cell lines and enhanced selectivity relative to cisplatin. Remarkably, 1 inhibits the migration of metastatic RMS cells and maintains superior activity in a 3D multicellular spheroid model in comparison to that of the clinically used cisplatin. Mechanistic insights reveal that 1 effectively induces genomic DNA damage, initiates autophagy, and prompts the intrinsic and extrinsic apoptotic pathways in RMS cells. To the best of our knowledge, 1 is the first trinuclear ruthenium(II) arene complex to selectively kill RMS cells in 2D and 3D cell cultures.


Assuntos
Antineoplásicos , Apoptose , Complexos de Coordenação , Rabdomiossarcoma , Rutênio , Humanos , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Dano ao DNA/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Autofagia/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
11.
Dalton Trans ; 53(13): 5957-5965, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38456809

RESUMO

Photodynamic therapy is an emerging tumor therapy that kills tumor cells by activating reactive oxygen species (ROS) produced by photosensitizers. Mitochondria, as an important organelle, are the main generator of cellular ROS. Therefore, the development of photosensitizers capable of targeting mitochondria could significantly enhance the efficacy of photodynamic therapy. In this study, two novel ruthenium(II) complexes, Ru-1 and Ru-2, were designed and synthesized, both of which were functionalized with α,ß-unsaturated ketones for sensing of glutathione (GSH). The crystal structures of the two complexes were determined and they exhibited good recognition of GSH by off-on luminescence signals. The complex Ru-2 containing aromatic naphthalene can enter the cells and react with GSH to generate a strong luminescence signal that can be used to monitor intracellular GSH levels through imaging. Ru-2 also has an excellent mitochondrial localization ability with a Pearson's coefficient of 0.95, which demonstrates that it can efficiently target the mitochondria of tumor cells to enhance the effectiveness of photodynamic therapy as a photosensitizer.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rutênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Rutênio/farmacologia , Rutênio/química , Espécies Reativas de Oxigênio , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Fotoquimioterapia/métodos , Mitocôndrias , Glutationa
12.
Dalton Trans ; 53(12): 5567-5579, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426897

RESUMO

In this contribution we report the synthesis, characterization and in vitro anticancer activity of novel cyclometalated 4-phenylthiazole-derived ruthenium(II) (2a-e) and osmium(II) (3a-e) complexes. Formation and sufficient purity of the complexes were unambigiously confirmed by 1H-, 13C- and 2D-NMR techniques, X-ray diffractometry, HRMS and elemental analysis. The binding preferences of these cyclometalates to selected amino acids and to DNA models including G-quadruplex structures were analyzed. Additionally, their stability and behaviour in aqueous solutions was determined by UV-Vis spectroscopy. Their cellular accumulation, their ability of inducing apoptosis, as well as their interference in the cell cycle were studied in SW480 colon cancer cells. The anticancer potencies were investigated in three human cancer cell lines and revealed IC50 values in the low micromolar range, in contrast to the biologically inactive ligands.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Humanos , Estrutura Molecular , Modelos Moleculares , Linhagem Celular Tumoral , Antineoplásicos/química , Ciclo Celular , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/química
13.
J Inorg Biochem ; 255: 112522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522215

RESUMO

With the abuse of antibiotics and azoles, drug-resistant Candida albicans infections have increased sharply and are spreading rapidly, thereby significantly reducing the antifungal efficacy of existing therapeutics. Several patients die of fungal infections every year. Therefore, there is an urgent requirement to develop new drugs. Accordingly, we synthesized a series of polypyridyl ruthenium (II) complexes having the formula [Ru (NN)2 (bpm)] (PF6)2 (N-N = 2,2'-bipyridine) (bpy, in Ru1), 1,10-phenanthroline (phen, in Ru2), 4,7-diphenyl-1,10-phenanthroline (DIP, in Ru3) (bpm = 2,2'-bipyrimidine) and studied their antifungal activities. Ru3 alone had no effect on the drug-resistant strains, but Ru3 combined with fluconazole (FLC) exhibited significant antifungal activity on drug-resistant strains. A high-dose combination of Ru3 and FLC exhibited direct fungicidal activity by promoting the accumulation of reactive oxygen species and damaging the cellular structure of C. albicans. Additionally, the combination of Ru3 and FLC demonstrated potent antifungal efficacy in vivo in a mouse model of invasive candidiasis. Moreover, the combination significantly improved the survival state of mice, restored their immune systems, and reduced renal injury. These findings could provide ideas for the development of ruthenium (II) complexes as novel antifungal agents for drug-resistant microbial stains.


Assuntos
Candidíase , Rutênio , Humanos , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida albicans , Rutênio/farmacologia , Candidíase/tratamento farmacológico , Testes de Sensibilidade Microbiana
14.
J Am Chem Soc ; 146(13): 8991-9003, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513217

RESUMO

Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with minimal side effects in deep-seated tumors remains challenging. Herein, we introduce a novel self-assembled near-infrared-light-activated ruthenium(II) metallacycle, Ru1105 (λem = 1105 nm), as a first example of a Ru(II) supramolecular ICD inducer. Ru1105 synergistically potentiates immunomodulatory responses and reduces adverse effects in deep-seated tumors through multiple regulated approaches, including NIR-light excitation, increased reactive oxygen species (ROS) generation, selective targeting of tumor cells, precision organelle localization, and improved tumor penetration/retention capabilities. Specifically, Ru1105 demonstrates excellent depth-activated ROS production (∼1 cm), strong resistance to diffusion, and anti-ROS quenching. Moreover, Ru1105 exhibits promising results in cellular uptake and ROS generation in cancer cells and multicellular tumor spheroids. Importantly, Ru1105 induces more efficient ICD in an ultralow dose (10 µM) compared to the conventional anticancer agent, oxaliplatin (300 µM). In vivo experiments further confirm Ru1105's potency as an ICD inducer, eliciting CD8+ T cell responses and depleting Foxp3+ T cells with minimal adverse effects. Our research lays the foundation for the design of secure and exceptionally potent metal-based ICD agents in immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Rutênio , Humanos , Rutênio/farmacologia , Espécies Reativas de Oxigênio , Morte Celular Imunogênica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Lisossomos , Linhagem Celular Tumoral
15.
J Inorg Biochem ; 255: 112523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489864

RESUMO

The prevalence of antibiotic-resistant pathogenic bacteria poses a significant threat to public health and ranks among the principal causes of morbidity and mortality worldwide. Antimicrobial photodynamic therapy is an emerging therapeutic technique that has excellent potential to embark upon antibiotic resistance problems. The efficacy of this therapy hinges on the careful selection of suitable photosensitizers (PSs). Transition metal complexes, such as Ruthenium (Ru) and Iridium (Ir), are highly suitable for use as PSs because of their surface plasmonic resonance, crystal structure, optical characteristics, and photonics. These metals belong to the platinum family and exhibit similar chemical behavior due to their partially filled d-shells. Ruthenium and Iridium-based complexes generate reactive oxygen species (ROS), which interact with proteins and DNA to induce cell death. As photodynamic therapeutic agents, these complexes have been widely studied for their efficacy against cancer cells, but their potential for antibacterial activity remains largely unexplored. Our study focuses on exploring the antibacterial photodynamic effect of Ruthenium and Iridium-based complexes against both Gram-positive and Gram-negative bacteria. We aim to provide a comprehensive overview of various types of research in this area, including the structures, synthesis methods, and antibacterial photodynamic applications of these complexes. Our findings will provide valuable insights into the design, development, and modification of PSs to enhance their photodynamic therapeutic effect on bacteria, along with a clear understanding of their mechanism of action.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rutênio , Rutênio/farmacologia , Rutênio/química , Irídio/farmacologia , Irídio/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
16.
J Med Chem ; 67(6): 4463-4482, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38471014

RESUMO

Sorafenib, a multiple kinase inhibitor, is widely used as a first-line treatment for hepatocellular carcinoma. However, there is a need for more effective alternatives when sorafenib proves insufficient. In this study, we aimed to design a structure that surpasses sorafenib's efficacy, leading us to synthesize sorafenib-ruthenium complexes for the first time and investigate their properties. Our results indicate that the sorafenib-ruthenium complexes exhibit superior epidermal growth factor receptor (EGFR) inhibition compared to sorafenib alone. Interestingly, among these complexes, Ru3S demonstrated high activity against various cancer cell lines including sorafenib-resistant HepG2 cells while exhibiting significantly lower cytotoxicity than sorafenib in healthy cell lines. Further evaluation of cell cycle, cell apoptosis, and antiangiogenic effects, molecular docking, and molecular dynamics studies revealed that Ru3S holds great potential as a drug candidate. Additionally, when free Ru3S was encapsulated into polymeric micelles M1, enhanced cytotoxicity on HepG2 cells was observed. Collectively, these findings position Ru3S as a promising candidate for EGFR inhibition and warrant further exploration for drug development purposes.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Rutênio , Humanos , Sorafenibe/farmacologia , Rutênio/farmacologia , Simulação de Acoplamento Molecular , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Niacinamida/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Receptores ErbB/metabolismo , Apoptose , Sistemas de Liberação de Medicamentos , Proliferação de Células
17.
Biomed Khim ; 70(1): 33-40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450679

RESUMO

Ruthenium nitrosyl complexes are actively investigated as antitumor agents. Evaluation of potential interactions between cytochromes P450 (CYPs) with new compounds is carried out regularly during early drug development. In this study we have investigated the cytotoxic and antiproliferative activities of ruthenium nitrosyl complexes with methyl/ethyl esters of nicotinic and isonicotinic acids and γ-picoline against 2D and 3D cultures of human hepatocellular carcinoma HepG2 and non-cancer human lung fibroblasts MRC-5, assessed their photoinduced activity at λrad = 445 nm, and also evaluated their modulating effect on CYP3A4, CYP2C9, and CYP2C19. The study of cytotoxic and antiproliferative activities against 2D and 3D cell models was performed using phenotypic-based high content screening (HCS). The expression of CYP3A4, CYP2C9, and CYP2C19 mRNAs and CYP3A4 protein was examined using target-based HCS. The results of CYP3A4 mRNA expression were confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). The ruthenium nitrosyl complexes exhibited a dose-dependent cytotoxic effect against HepG2 and MRC-5 cells. The cytotoxic activity of complexes with ethyl isonicotinate (1) and nicotinate (3, 4) was significantly lower for MRC-5 than for HepG2, for a complex with methyl isonicotinate (2) it was higher for MRC-5 than for HepG2, for a complex with γ-picoline (5) it was comparable for both lines. The antiproliferative effect of complexes 2 and 5 was one order of magnitude higher for MRC-5; for complexes 1, 3, and 4 it was comparable for both lines. The cytotoxic activity of all compounds for 3D HepG2 was lower than for 2D HepG2, with the exception of 4. Photoactivation affected the activity of complex 1 only. Its cytotoxic activity decreased, while the antiproliferative activity increased. The ruthenium nitrosyl complexes 1-4 acted as inducers of CYP3A4 and CYP2C19, while the complex with γ-picoline (5) induced of CYP3A4. Among the studied ruthenium nitrosyl complexes, the most promising potential antitumor compound is the ruthenium compound with methyl nicotinate (4).


Assuntos
Antineoplásicos , Rutênio , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP2C19 , Rutênio/farmacologia , Células Hep G2 , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450 , Antineoplásicos/farmacologia , Picolinas
18.
J Inorg Biochem ; 254: 112517, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460482

RESUMO

Developing new antimicrobials to combat drug-resistant bacterial infections is necessary due to the increasing problem of bacterial resistance. In this study, four metallic ruthenium complexes modified with benzothiazoles were designed, synthesized and subjected to bio-evaluated. Among them, Ru-2 displayed remarkable inhibitory activity against Staphylococcus aureus (S. aureus) with a minimum inhibitory concentration (MIC) of 1.56 µg/mL. Additionally, it showcased low hemolytic toxicity (HC50 > 200 µg/mL) and the ability to effectively eradicate S. aureus without fostering drug resistance. Further investigation into the antibacterial mechanism suggested that Ru-2 may target the phospholipid component of S. aureus, leading to the disruption of the bacterial cell membrane and subsequent leakage of cell contents (nucleic acid, protein, and ONPG), ultimately resulting in the death of the bacterial cell. In vivo studies, both the G. mellonella larvae and the mouse skin infection models were conducted, indicated that Ru-2 could potentially serve as a viable candidate for the treatment of S. aureus infection. It exhibited no toxic or side effects on normal tissues. The results suggest that benzothiazole-modified ruthenium complexes may have potential as membrane-active antimicrobials against drug-resistant bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Complexos de Coordenação , Staphylococcus aureus Resistente à Meticilina , Rutênio , Animais , Camundongos , Staphylococcus aureus , Rutênio/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Benzotiazóis/farmacologia , Complexos de Coordenação/farmacologia , Testes de Sensibilidade Microbiana
19.
Inorg Chem ; 63(14): 6202-6216, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38385171

RESUMO

Ruthenium(II) complexes containing diimine ligands have contributed to the development of agents for photoactivated chemotherapy. Several approaches have been used to obtain photolabile Ru(II) complexes. The two most explored have been the use of monodentate ligands and the incorporation of steric effects between the bidentate ligands and the Ru(II). However, the introduction of electronic effects in the ligands has been less explored. Herein, we report a systematic experimental, theoretical, and photocytotoxicity study of a novel series of Ru(II) complexes Ru1-Ru5 of general formula [Ru(phen)2(N∧N')]2+, where N∧N' are different minimal strained ligands based on the 1-aryl-4-benzothiazolyl-1,2,3-triazole (BTAT) scaffold, being CH3 (Ru1), F (Ru2), CF3 (Ru3), NO2 (Ru4), and N(CH3)2 (Ru5) substituents in the R4 of the phenyl ring. The complexes are stable in solution in the dark, but upon irradiation in water with blue light (λex = 465 nm, 4 mW/cm2) photoejection of the ligand BTAT was observed by HPLC-MS spectrometry and UV-vis spectroscopy, with t1/2 ranging from 4.5 to 14.15 min depending of the electronic properties of the corresponding BTAT, being Ru4 the less photolabile (the one containing the more electron withdrawing substituent, NO2). The properties of the ground state singlet and excited state triplet of Ru1-Ru5 have been explored using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. A mechanism for the photoejection of the BTAT ligand from the Ru complexes, in H2O, is proposed. Phototoxicity studies in A375 and HeLa human cancer cell lines showed that the new Ru BTAT complexes were strongly phototoxic. An enhancement of the emission intensity of HeLa cells treated with Ru5 was observed in response to increasing doses of light due to the photoejection of the BTAT ligand. These studies suggest that BTAT could serve as a photocleavable protecting group for the cytotoxic bis-aqua ruthenium warhead [Ru(phen)2(OH2)2]2+.


Assuntos
Neoplasias , Rutênio , Humanos , Quelantes , Rutênio/farmacologia , Rutênio/química , Ligantes , Células HeLa , Dióxido de Nitrogênio
20.
Dalton Trans ; 53(11): 5167-5179, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38380977

RESUMO

Cancer is a perilous life-threatening disease, and attempts are constantly being made to create multinuclear transition metal complexes that could lead to the development of potential anticancer medications and administration procedures. Hence, this work aims to design, synthesize, characterize, and assess the anticancer efficacy of ruthenium p-cymene complexes incorporating N,N'-bis(4-substituted benzoyl)hydrazine ligands. The formation of the new complexes (Ru2H1-Ru2H3) has been thoroughly established by elemental analysis, and FT-IR, UV-vis, NMR, and HR-MS spectral techniques. The solid-state molecular structures of the complexes Ru2H1 and Ru2H3 have been determined using the SC-XRD study, which confirms the N, O, and Cl-legged piano stool pseudo-octahedral geometry of each ruthenium(II) ion. The stability of these complexes in the solution state and their lipophilicity profile have been determined. Furthermore, the title complexes were tested for their in vitro anticancer activity against cancerous H460 (lung cancer cells), SkBr3 (breast cancer cells), HepG2 (liver cancer cells), and HeLa (cervical cancer cells) along with non-cancerous (HEK-293) cells. The IC50 results revealed that complex Ru2H3 exhibits potent activity against the proliferation of all four cancer cells and outscored the effect of the standard metallodrug cisplatin. This may be attributed to the presence of a couple of lipophilic electron-donating methoxy groups in the ligand scaffold and also the ruthenium(II) p-cymene motifs. Advantageously, all the complexes (Ru2H1-Ru2H3) displayed cytotoxic specificity only towards cancerous cells by leaving the off-target non-cancerous cells undamaged. Acridine orange/ethidium bromide (AO/EB) staining, Hoechst 33342, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) staining assays were used to investigate the apoptotic pathway and ROS levels in mitochondria. The results of western blot analysis confirmed that the complexes triggered apoptosis through an intrinsic mitochondrial pathway by upregulating Bax and downregulating Bcl-2 proteins. Finally, the extent of apoptosis triggered by the complex Ru2H3 was quantified with the aid of flow cytometry using the Annexin V-FITC/propidium iodide (PI) double-staining technique.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cimenos , Rutênio , Humanos , Rutênio/farmacologia , Rutênio/química , Espécies Reativas de Oxigênio/metabolismo , Células HEK293 , Espectroscopia de Infravermelho com Transformada de Fourier , Apoptose , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Antineoplásicos/química , Hidrazinas/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...