Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38622020

RESUMO

Objective: To assess the clinical features and CT diagnostic characteristics of Branchio-Oto-Renal or Branchio-Oto Syndrome. Methods: The temporal CT findings and clinical features observations of 13 patients with Branchio-Oto-Renal Syndrome (BORS) or Branchio-Oto Syndrome(BOS) confirmed by genetic testing were retrospectively analyzed. There were 8 males and 5 females, aged from 1 to 39 years, with a median age of 9 years, in which 3 pairs (6 cases) were parent-child relationship. Results: All of 13 cases had hearing loss and preauricular fistula, 11 cases accompanied by 2nd branchial fistulas. There were 20 ears of mixed hearing loss, 3 ears of sensorineural hearing loss, and 2 ears of conductive hearing loss. The mutation point of gene testing was located in EYA1 in 12 cases and SIX1 in 1 case. Twenty ears showed gradually narrowing of the diameter of basal turn, with hypoplasia in the second turn and aplasia in apical turn. There were irregular wall of vestibule and horizontal semicircular canal in 10 ears,widened vestibular in 7 ears, and vestibular fusion with horizontal semicircular canal in 3 ears. Three ears had an enlarged vestibular aqueduct, 8 ears showed enlargement of internal auditory canal. Seventeen ears had adhesion of malleolus to tympanic cavity. Six ears could not measured the incudostapedial joint angle by reason of tympanic inflammatory cover, 3 ears could not show incudostapedial joint, and 8 ears showed the incudostapedial joint angle more than 122°. Six ears showed poor oval window, and 1 ear had poor round window. Eighteen ears showed distended eustachian tube, and accompanied by tympanic or mastoiditis in 11 ears. Anterolateral shift of tympanum was found in 22 ears, 17 ears had low middle cranial fossa, and 3 ears had stenotic external auditory canal. Conclusions: Cochlear dysplasia, ossicular chain malformation and distended eustachian tube comprise the characteristic CT signs of BOS/BORS, which possesses versatile and complex CT findings. Temporal CT can accurately assess the important structures such as cochlea, ossicles, vestibule, semicircular canal, vestibular aqueduct and internal auditory canal. Combing with the clinical characteristics of bilateral, mixed hearing loss, preauricular fistula and branchial fistula can provide valuable information for early diagnosis and treatment.


Assuntos
Síndrome Brânquio-Otorrenal , Fístula , Perda Auditiva Condutiva-Neurossensorial Mista , Vestíbulo do Labirinto , Masculino , Feminino , Humanos , Criança , Estudos Retrospectivos , Síndrome Brânquio-Otorrenal/genética , Tomografia Computadorizada por Raios X , Proteínas de Homeodomínio
2.
BMC Med Genomics ; 17(1): 89, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627775

RESUMO

OBJECTIVE: Branchio-oto-renal syndrome (BOR, OMIM#113,650) is a rare autosomal dominant disorder that presents with a variety of symptoms, including hearing loss (sensorineural, conductive, or mixed), structural abnormalities affecting the outer, middle, and inner ear, branchial fistulas or cysts, as well as renal abnormalities.This study aims to identify the pathogenic variants by performing genetic testing on a family with Branchio-oto-renal /Branchio-otic (BO, OMIM#602,588) syndrome using whole-exome sequencing, and to explore possible pathogenic mechanisms. METHODS: The family spans 4 generations and consists of 9 individuals, including 4 affected by the BOR/BO syndrome. Phenotypic information, including ear malformation and branchial cleft, was collected from family members. Audiological, temporal bone imaging, and renal ultrasound examinations were also performed. Whole-exome sequencing was conducted to identify candidate pathogenic variants and explore the underlying molecular etiology of BOR/BO syndrome by minigene experiments. RESULTS: Intra-familial variability was observed in the clinical phenotypes of BOR/BO syndrome in this family. The severity and nature of hearing loss varied in family members, with mixed or sensorineural hearing loss. The proband, in particular, had profound sensorineural hearing loss on the left and moderate conductive hearing loss on the right. Additionally, the proband exhibited developmental delay, and her mother experienced renal failure during pregnancy and terminated the pregnancy prematurely. Genetic testing revealed a novel heterozygous variant NM_000503.6: c.639 + 3 A > C in the EYA1 gene in affected family members. In vitro minigene experiments demonstrated its effect on splicing. According to the American College of Medical Genetics (ACMG) guidelines, this variant was classified as likely pathogenic. CONCLUSION: This study highlights the phenotypic heterogeneity within the same family, reports the occurrence of renal failure and adverse pregnancy outcomes in a female patient at reproductive age with BOR syndrome, and enriches the mutational spectrum of pathogenic variants in the EYA1 gene.


Assuntos
Síndrome Brânquio-Otorrenal , Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Insuficiência Renal , Humanos , Gravidez , Feminino , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Tirosina Fosfatases/genética , Perda Auditiva/genética , Linhagem , Proteínas Nucleares/genética
3.
Dis Model Mech ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353121

RESUMO

The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.


Assuntos
Síndrome Brânquio-Otorrenal , Nefropatias , Humanos , Síndrome Brânquio-Otorrenal/genética , Rim , Organogênese/genética , Desenvolvimento Embrionário
4.
J Mol Neurosci ; 73(11-12): 976-982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924468

RESUMO

Otofaciocervical syndrome (OTFCS) is a rare genetic disorder of both autosomal recessive and autosomal dominant patterns of inheritance. It is caused by biallelic or monoallelic mutations in PAX1 or EYA1 genes, respectively. Here, we report an OTFCS2 female patient of 1st consanguineous healthy parents. She manifested facial dysmorphism, hearing loss, intellectual disability (ID), and delayed language development (DLD) as the main clinical phenotype. The novel homozygous variant c.1212dup (p.Gly405Argfs*51) in the PAX1 gene was identified by whole exome sequencing (WES), and family segregation confirmed the heterozygous status of the mutation in the parents using the Sanger sequencing. The study recorded a novel PAX1 variant representing the sixth report of OTFCS2 worldwide and the first Egyptian study expanding the geographic area where the disorder was confined.


Assuntos
Síndrome Brânquio-Otorrenal , Deficiência Intelectual , Feminino , Humanos , Síndrome Brânquio-Otorrenal/genética , Exoma , Genes Recessivos , Deficiência Intelectual/genética , Mutação , Linhagem
5.
BMC Nephrol ; 24(1): 248, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612603

RESUMO

BACKGROUND: Branchio-oto-renal (BOR) syndrome is an inherited multi-systemic disorder. Auricular and branchial signs are highly suggestive of BOR syndrome but often develop insidiously, leading to a remarkable misdiagnosis rate. Unlike severe morphological abnormalities of kidneys, knowledge of glomerular involvement in BOR syndrome were limited. CASE PRESENTATION: Three cases, aged 8 ~ 9 years, visited pediatric nephrology department mainly for proteinuria and renal insufficiency, with 24-h proteinuria of 23.8 ~ 68.9 mg/kg and estimated glomerular filtration rate of 8.9 ~ 36.0 mL/min/1.73m2. Moderate-to-severe albuminuria was detected in case 1, while mixed proteinuria was detected in case 2 and 3. Insidious auricular and branchial fistulas were noticed, all developing since early childhood but being neglected previously. EYA1 variants were confirmed by genetic testing in all cases. Delay in diagnosis was 8 ~ 9 years since extra-renal appearances, and 0 ~ 6 years since renal abnormalities. In case 1, therapy of glucocorticoid and immunosuppressive agents to accompanying immune-complex mediated glomerulonephritis was unsatisfying. CONCLUSIONS: BOR syndrome is a rare cause of proteinuria and abnormal kidney function and easily missed, thus requiring more awareness. Careful medical history taking and physical examination are essential to early diagnosis. Massive proteinuria was occasionally seen in BOR syndrome, which might be related to immune complex deposits. A novel pathogenic variant (NM_000503.6 (EYA1): c.1171delT p.Ser391fs*9) was firstly reported.


Assuntos
Síndrome Brânquio-Otorrenal , Glomerulonefrite , Insuficiência Renal , Pré-Escolar , Humanos , Criança , Síndrome Brânquio-Otorrenal/complicações , Síndrome Brânquio-Otorrenal/diagnóstico , Síndrome Brânquio-Otorrenal/genética , Insuficiência Renal/diagnóstico , Rim , Proteinúria/diagnóstico , Proteinúria/etiologia , Albuminúria , Glomerulonefrite/complicações , Glomerulonefrite/diagnóstico , Glomerulonefrite/genética
6.
Sci Rep ; 13(1): 11776, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479820

RESUMO

Branchio-oto-renal (BOR)/branchio-otic (BO) syndrome is a rare disorder and exhibits clinically heterogenous phenotypes, marked by abnormalities in the ear, branchial arch, and renal system. Sporadic cases of atypical BOR/BO syndrome have been recently reported; however, evidence on genotype-phenotype correlations and molecular mechanisms of those cases is lacking. We herein identified five SIX1 heterozygous variants (c.307dupC:p.Leu103Profs*51, c.373G>A:p.Glu125Lys, c.386_391del:p.Tyr129_Cys130del, c.397_399del:p.Glu133del, and c.501G>C:p.Gln167His), including three novel variants, through whole-exome sequencing in five unrelated Korean families. All eight affected individuals with SIX1 variants displayed non-syndromic hearing loss (DFNA23) or atypical BO syndrome. The prevalence of major and minor criteria for BOR/BO syndrome was significantly reduced among individuals with SIX1 variants, compared to 15 BOR/BO syndrome families with EYA1 variants. All SIX1 variants interacted with the EYA1 wild-type; their complexes were localized in the nucleus except for the p.Leu103Profs*51 variant. All mutants also showed obvious but varying degrees of reduction in DNA binding affinity, leading to a significant decrease in transcriptional activity. This study presents the first report of SIX1 variants in South Korea, expanding the genotypic and phenotypic spectrum of SIX1 variants, characterized by DFNA23 or atypical BO syndrome, and refines the diverse molecular aspects of SIX1 variants according to the EYA1-SIX1-DNA complex theory.


Assuntos
Síndrome Brânquio-Otorrenal , Surdez , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Tirosina Fosfatases/genética , Mutação , Linhagem , Síndrome Brânquio-Otorrenal/genética , Fenótipo , República da Coreia , DNA/genética , Proteínas de Homeodomínio/genética
7.
Otol Neurotol ; 44(5): e319-e327, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167448

RESUMO

OBJECTIVES: To explore the phenotypes and genotypes of patients with branchio-oto-renal (BOR) and branchio-otic (BO) syndrome, and to analyze the middle ear surgery outcomes qualitatively and quantitatively, proposing a factor usefully prognostic of surgical outcomes. STUDY DESIGN: Retrospective cohort study. SETTING: Tertiary referral center. PATIENTS: Eighteen patients with BOR/BO syndrome in 12 unrelated Korean families. INTERVENTION: Middle ear surgery, including either stapes surgery or ossicular reconstruction. MAIN OUTCOME MEASURE: Clinical phenotypes, genotypes, and middle ear surgery outcomes. RESULTS: Eight probands (66.7%) were confirmed genetically; the condition segregated as a dominant or de novo trait. Six EYA1 heterozygous variants were identified by exome sequencing and multiplex ligation-dependent probe amplification. All variants were pathogenic or likely pathogenic based on the ACMG/AMP guidelines. Two novel EYA1 frameshift variants (p.His373Phefs*4 and p.Gln543Asnfs*90) truncating a highly conserved C-terminal Eya domain were identified, expanding the genotypic spectrum of EYA1 in BOR/BO syndrome. Remarkably, middle ear surgery was individualized to ensure optimal audiological outcomes and afforded significant audiological improvements, especially in BOR/BO patients without enlarged vestibular aqueducts (EVAs). A significant difference in air-bone gap closure after middle ear surgery was noted between the two groups even after adjusting for confounders: -20.5 dB in ears without EVAs (improvement) but 0.8 dB in ears with EVAs (no change or deterioration). Furthermore, the success rate was significantly associated with the absence of EVA. CONCLUSIONS: The results of this study were against the notion that middle ear surgery is always contraindicated in patients with BOR/BO syndrome, and an EVA could be a negative prognostic indicator of middle ear surgery in BOR/BO patients. This may aid to determine the strategy of audiological rehabilitation in patients with BOR/BO syndrome.


Assuntos
Síndrome Brânquio-Otorrenal , Humanos , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/cirurgia , Proteínas Tirosina Fosfatases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Centros de Atenção Terciária , Estudos Retrospectivos , Orelha Média/cirurgia , Biologia Molecular , Linhagem
8.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37017267

RESUMO

Developmental senescence is a form of programmed senescence that contributes to morphogenesis during embryonic development. We showed recently that the SIX1 homeoprotein, an essential regulator of organogenesis, is also a repressor of adult cellular senescence. Alterations in the SIX/EYA pathway are linked to the human branchio-oto-renal (BOR) syndrome, a rare congenital disorder associated with defects in the ears, kidneys and branchial arches. Here, we have used Six1-deficient mice, an animal model of the BOR syndrome, to investigate whether dysfunction of senescence underpins the developmental defects associated with SIX1 deficiency. We have focused on the developing inner ear, an organ with physiological developmental senescence that is severely affected in Six1-deficient mice and BOR patients. We show aberrant levels and distribution of senescence markers in Six1-deficient inner ears concomitant with defective morphogenesis of senescent structures. Transcriptomic analysis and ex vivo assays support a link between aberrant senescence and altered morphogenesis in this model, associated with deregulation of the TGFß/BMP pathway. Our results show that misregulation of embryo senescence may lead to genetic developmental disorders, significantly expanding the connection between senescence and disease.


Assuntos
Síndrome Brânquio-Otorrenal , Orelha Interna , Adulto , Humanos , Camundongos , Animais , Proteínas Tirosina Fosfatases/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/genética , Síndrome Brânquio-Otorrenal/genética , Proteínas de Homeodomínio/metabolismo
9.
Eur J Med Genet ; 66(2): 104693, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587802

RESUMO

Unexplained diarrhea and cholestasis are common clinical phenotypes in newborns, indicating there is only a little common genetic basis for these conditions. However, it has been reported that defects in the UNC45A gene can lead to osteo-oto-hepato-enteric syndrome. However, to date, only 10 patients with this syndrome have been reported in 2 studies; therefore, there is still a lack of analysis regarding the correlation between disease phenotype and genotype. Trio-whole exome sequencing was conducted using DNA samples from a newborn with congenital diarrhea and cholestasis from a Chinese Han family. The UNC45A variants were verified using Sanger sequencing. In addition, we applied a crystal structure model to analyze the potential hazards associated with the variants. The plasmids were constructed in vitro and transfected into human 293T cells for Western blot (WB) analysis. After the mutant protein was fused with the Green Fluorescent Protein label, intracellular localization was observed using laser confocal microscopy. The gene detection results showed that the UNC45A gene of the newborn examined in the present study harbored the compound heterozygous variants p.Arg819Ter, and p.Leu237Pro; this was confirmed via Sanger sequencing. Analysis of the Leu237Pro crystal structure model suggested that this variant may decrease local structural stability and affect protein function. The Western blot and laser confocal microscopy observation results suggested that the Leu237Pro mutation leads to reduced protein expression, while the Arg819Ter mutation completely inhibits the expression of the protein. The compound heterozygous variants of UNC45A (p.Arg819Ter and p.Leu237Pro) may be pathogenic factors of congenital diarrhea and cholestasis in this neonatal patient. Therefore, UNC45A deficiency should be considered when intractable diarrhea and cholestasis occur in newborns.


Assuntos
Síndrome Brânquio-Otorrenal , Colestase , Humanos , Recém-Nascido , População do Leste Asiático , Mutação , Síndrome Brânquio-Otorrenal/genética , Chaperonas Moleculares/genética , Diarreia , Peptídeos e Proteínas de Sinalização Intracelular/genética
10.
Medicine (Baltimore) ; 101(43): e31172, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36316881

RESUMO

BACKGROUND: Branchio-oto-renal (BOR) syndrome is an autosomal-dominant disorder characterized by branchial arch anomalies, hearing loss, and kidney defects. Mutations in the human EYA1 gene have been reported associated with BOR syndrome. Here we identified that a novel variant, EYA1: NM_000503.4: c.827-1G > C (Intron 8, shear mutation) was associated with BOR in a fetus of a Chinese family. CASE PRESENTATION: Prenatal ultrasound examination showed that both kidneys of the fetus were small and the echo of both kidneys was enhanced. The amount of amniotic fluid was normal, and no other structural abnormalities of the fetus were found. Fetal umbilical cord blood puncture was performed. No abnormality was found in karyotyping and chromosomal microarray analysis (CMA) results. Thus, we performed a trio-based whole exome sequencing (WES), and found that the fetus carried a novel homozygous variant, EYA1: NM_000503.4: c.827-1G > C (Intron 8, shear mutation), but the parents do not have this mutation. The variation sites of fetus and parents were verified by Sanger sequencing to clarify the source of pathogenic variation. CONCLUSION: Combined with fetal imaging examination, the novel variation of EYA1: NM_000503.4: c.827-1G > C is the cause of fetal renal dysplasia. This case report indicates that the early use of appropriate technology can clarify the etiology of fetal disease and guide prognosis consultation.


Assuntos
Síndrome Brânquio-Otorrenal , Gravidez , Feminino , Humanos , Síndrome Brânquio-Otorrenal/diagnóstico por imagem , Síndrome Brânquio-Otorrenal/genética , Proteínas Tirosina Fosfatases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linhagem , Proteínas Nucleares/genética , Diagnóstico Pré-Natal , Feto/patologia
11.
BMC Pediatr ; 22(1): 636, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333735

RESUMO

BACKGROUND: Branchio-Oto-Renal (BOR) Syndrome is a rare autosomal disorder with a wide variety of clinical manifestations and a high degree of heterogeneity. Typical clinical manifestations of BOR syndrome include deafness, preauricular fistula, abnormal gill slits, and renal malformations. However, atypical phenotypes such as congenital hip dysplasia, congenital heart anomaly or facial nerve paresis are rare in BOR syndrome, and this might be easily misdiagnosed with other congenital disorders. CASE PRESENTATION: We report a 5-month-old boy of BOR syndrome with "congenital heart defects and proteinuria" as clinical features. Initially, as this case mainly presented with symptoms of recurrent respiratory infections and was found to be with congenital heart disease and proteinuria at the local hospital, but he only was diagnosed with congenital heart disease combined with pulmonary infection and anti-infective and supportive treatment was given. Subsequently, during the physical examination at our hospital, left side preauricular pit and branchial fistulae on the right neck were found. Subsequent evaluation of auditory brainstem response and distortion product otoacoustic emission were revealed sensorineural hearing impairment. Results of renal ultrasonography showed small kidneys. Genetic analysis revealed a microdeletion at chromosome 8q13.2-q13.3 encompassing EYA1 gene, this patient was finally diagnosed with BOR syndrome. Then, this patient received transcatheter patent ductus arteriosus closure and hearing aid treatment. Proteinuria, renal function and hearing ability are monitoring by nephrologist and otologist. The patient is currently being followed up until 3 months after discharge and his condition is stable. CONCLUSION: Careful physical examination, detailed history and the implementation of diagnostic laboratory tests can reduce the incidence of misdiagnosis. Genetic sequencing analysis of patients is a key guide to the differential diagnosis of BOR syndrome.


Assuntos
Síndrome Brânquio-Otorrenal , Cardiopatias Congênitas , Masculino , Humanos , Síndrome Brânquio-Otorrenal/complicações , Síndrome Brânquio-Otorrenal/diagnóstico , Síndrome Brânquio-Otorrenal/genética , Linhagem , Fenótipo , Proteinúria , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética
12.
Ital J Pediatr ; 48(1): 177, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183088

RESUMO

BACKGROUND: Branchio-oto-renal syndrome (BOR) is an autosomal dominant disorder characterized by deafness, branchiogenic malformations and renal abnormalities. Pathogenic variants in EYA1, SIX1 and SIX5 genes cause almost half of cases; copy number variants (CNV) and complex genomic rearrangements have been revealed in about 20% of patients, but they are not routinely and commonly included in the diagnostic work-up. CASE PRESENTATION: We report two unrelated patients with BOR syndrome clinical features, negative sequencing for BOR genes and the identification of a 2.65 Mb 8q13.2-13.3 microdeletion. CONCLUSIONS: We highlight the value of CNV analyses in high level of suspicion for BOR syndrome but negative sequencing for BOR genes and we propose an innovative diagnostic flow-chart to increase current detection rate. Our report confirms a mechanism of non-allelic homologous recombination as causing this recurrent 8q13.2-13.3 microdeletion. Moreover, considering the role of PRDM14 and NCOA2 genes, both involved in regulation of fertility and deleted in our patients, we suggest the necessity of a longer follow-up to monitor fertility issues or additional clinical findings.


Assuntos
Síndrome Brânquio-Otorrenal , Síndrome Brânquio-Otorrenal/diagnóstico , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/patologia , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Linhagem , Proteínas Tirosina Fosfatases/genética
13.
AJNR Am J Neuroradiol ; 43(11): 1646-1652, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36175083

RESUMO

BACKGROUND AND PURPOSE: An "unwound" or "offset" cochlea has been described as a characteristic imaging feature in patients with branchio-oto-renal syndrome, and recently recognized to be associated in particular to those with EYA1 gene mutations. Determination of this feature has traditionally relied on subjective visual assessment. Our aim was to establish an objective assessment method for cochlear offset (the cochlear turn alignment ratio) and determine an optimal cutoff turn alignment ratio value that separates individuals with EYA1-branchio-oto-renal syndrome from those with SIX1-branchio-oto-renal syndrome and healthy controls. MATERIALS AND METHODS: Temporal bone CT or MR imaging from 40 individuals with branchio-oto-renal syndrome and 40 controls was retrospectively reviewed. Cochlear offset was determined visually by 2 independent blinded readers and then quantitatively via a standardized technique yielding the cochlear turn alignment ratio. The turn alignment ratio values were compared between cochleae qualitatively assessed as "not offset" and "offset." Receiver operating characteristic analysis was used to determine the ability of the turn alignment ratio to differentiate between these populations and an optimal cutoff turn alignment ratio value. Cochlear offset and turn alignment ratio values were analyzed for each branchio-oto-renal syndrome genotype subpopulation and for controls. RESULTS: The turn alignment ratio can accurately differentiate between cochleae with and without an offset (P < .001). The optimal cutoff value separating these populations was 0.476 (sensitivity = 1, specificity = 0.986, J = 0.986). All except 1 cochlea among the EYA1-branchio-oto-renal syndrome subset and all with unknown genotype branchio-oto-renal syndrome had a cochlear offset and a turn alignment ratio of <0.476. All except 1 cochlea among the SIX1-branchio-oto-renal syndrome subset and all controls had no offset and a turn alignment ratio of >0.476. CONCLUSIONS: There is a statistically significant difference in turn alignment ratios between offset and nonoffset cochleae, with an optimal cutoff of 0.476. This cutoff value allows excellent separation of EYA1-branchio-oto-renal syndrome from SIX1-branchio-oto-renal syndrome and from individuals without branchio-oto-renal syndrome or sensorineural hearing loss. The turn alignment ratio is a reliable and objective metric that can aid in the imaging evaluation of branchio-oto-renal syndrome.


Assuntos
Síndrome Brânquio-Otorrenal , Humanos , Síndrome Brânquio-Otorrenal/diagnóstico por imagem , Síndrome Brânquio-Otorrenal/genética , Estudos Retrospectivos , Proteínas Tirosina Fosfatases/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares/genética , Cóclea/diagnóstico por imagem , Mutação , Proteínas de Homeodomínio/genética
14.
Dev Biol ; 489: 62-75, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35697116

RESUMO

Mcrs1 is a multifunctional protein that is critical for many cellular processes in a wide range of cell types. Previously, we showed that Mcrs1 binds to the Six1 transcription factor and reduces the ability of the Six1-Eya1 complex to upregulate transcription, and that Mcrs1 loss-of-function leads to the expansion of several neural plate genes, reduction of neural border and pre-placodal ectoderm (PPR) genes, and pleiotropic effects on various neural crest (NC) genes. Because the affected embryonic structures give rise to several of the cranial tissues affected in Branchio-otic/Branchio-oto-renal (BOR) syndrome, herein we tested whether these gene expression changes subsequently alter the development of the proximate precursors of BOR affected structures - the otic vesicles (OV) and branchial arches (BA). We found that Mcrs1 is required for the expression of several OV genes involved in inner ear formation, patterning and otic capsule cartilage formation. Mcrs1 knockdown also reduced the expression domains of many genes expressed in the larval BA, derived from either NC or PPR, except for emx2, which was expanded. Reduced Mcrs1 also diminished the length of the expression domain of tbx1 in BA1 and BA2 and interfered with cranial NC migration from the dorsal neural tube; this subsequently resulted in defects in the morphology of lower jaw cartilages derived from BA1 and BA2, including the infrarostral, Meckel's, and ceratohyal as well as the otic capsule. These results demonstrate that Mcrs1 plays an important role in processes that lead to the formation of craniofacial cartilages and its loss results in phenotypes consistent with reduced Six1 activity associated with BOR.


Assuntos
Região Branquial , Síndrome Brânquio-Otorrenal , Região Branquial/metabolismo , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/metabolismo , Cartilagem/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Crista Neural , Placa Neural/metabolismo , Proteínas de Ligação a RNA/metabolismo
15.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(1): 129-138, 2022 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35545373

RESUMO

Branchio-oto syndrome (BOS)/branchio-oto-renal syndrome (BORS) is a kind of autosomal dominant heterogeneous disorder. These diseases are mainly characterized by hearing impairment and abnormal phenotype of ears, accompanied by renal malformation and branchial cleft anomalies including cyst or fistula, with an incidence of 1/40 000 in human population. Otic anormalies are one of the most obvious clinical manifestations of BOS/BORS, including deformities of external, middle, inner ears and hearing loss with conductive, sensorineural or mix, ranging from mild to profound loss. Temporal bone imaging could assist in the diagnosis of middle ear and inner ear malformations for clinicians. Multiple methods including direct sequencing combined with next generation sequencing (NGS), multiplex ligation-dependent probe amplification (MLPA), or array-based comparative genomic hybridization (aCGH) can effectively screen and identify pathogenic genes and/or variation types of BOS/BORS. About 40% of patients with BOS/BORS carry aberrations of EYA1 gene which is the most important cause of BOS/BORS. A total of 240 kinds of pathogenic variations of EYA1 have been reported in different populations so far, including frameshift, nonsense, missense, aberrant splicing, deletion and complex rearrangements. Human Endogenous Retroviral sequences (HERVs) may play an important role in mediating EYA1 chromosomal fragment deletion mutations caused by non-allelic homologous recombination. EYA1 encodes a phosphatase-transactivator cooperated with transcription factors of SIX1, participates in cranial sensory neurogenesis and development of branchial arch-derived organs, then regulates the morphological and functional differentiation of the outer ear, middle ear and inner ear toward normal tissues. In addition, pathogenic mutations of SIX1 and SIX5 genes can also cause BOS/BORS. Variations of these genes mentioned above may cause disease by destroying the bindings between SIX1-EYA1, SIX5-EYA1 or SIX1-DNA. However, the role of SIX5 gene in the pathogenesis of BORS needs further verification.


Assuntos
Síndrome Brânquio-Otorrenal , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/patologia , Deleção Cromossômica , Hibridização Genômica Comparativa , Pesquisa em Genética , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares/metabolismo , Linhagem , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
16.
Eur J Med Genet ; 65(7): 104523, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35595062

RESUMO

Otofaciocervical syndrome (OTFCS) is a rare condition associated with short stature, abnormal facial features and conductive hearing loss. OTFCS type 2 (OTFCS) is an autosomal recessive form of this condition with associated T cell deficiency due to biallelic variants in PAX1. We report a female child born to a consanguineous couple with homozygous PAX1 variant. She was diagnosed with T cell immunodeficiency as a neonate and underwent haematopoietic stem cell transplant with cord blood at the age of 5 months. She had facial dysmorphism including ear abnormalities and spinal deformity. We present longitudinal follow-up of the proband who has responded well to the bone marrow transplant to add to the otherwise limited description of this rare condition. This case report expands on the limited literature available on this condition, with only five families reported to date and it further highlights the clinical utility of a rapid gene-agnostic trio exome analysis in identifying a genetic diagnosis in patients who previously underwent genomic testing by gene panel analysis.


Assuntos
Síndrome Brânquio-Otorrenal , Síndrome Brânquio-Otorrenal/genética , Diagnóstico Diferencial , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Sequenciamento do Exoma
17.
Sci Rep ; 12(1): 969, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046468

RESUMO

Some patients have an atypical form of branchio-oto-renal (BOR) syndrome, which does not satisfy the diagnostic criteria, despite carrying a pathogenic variant (P variant) or a likely pathogenic variant (LP variant) of a causative gene. P/LP variants phenotypic indices have yet to be determined in patients with typical and atypical BOR syndrome. We hypothesized that determining phenotypic and genetic differences between patients with typical and atypical BOR syndrome could inform such indices. Subjects were selected from among patients who underwent genetic testing to identify the cause of hearing loss. Patients were considered atypical when they had two major BOR diagnostic criteria, or two major criteria and one minor criterion; 22 typical and 16 atypical patients from 35 families were included. Genetic analysis of EYA1, SIX1, and SIX5 was conducted by direct sequencing and multiplex ligation-dependent probe amplification. EYA1 P/LP variants were detected in 25% and 86% of atypical and typical patients, respectively. Four EYA1 P/LP variants were novel. Branchial anomaly, inner ear anomaly, and mixed hearing loss were correlated with P/LP variants. Development of refined diagnostic criteria and phenotypic indices for atypical BOR syndrome will assist in effective detection of patients with P/LP variants among those with suspected BOR syndrome.


Assuntos
Síndrome Brânquio-Otorrenal/genética , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Fenótipo , Proteínas Tirosina Fosfatases/genética , Feminino , Humanos , Masculino , Linhagem
18.
AJNR Am J Neuroradiol ; 43(2): 309-314, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35058298

RESUMO

BACKGROUND AND PURPOSE: Temporal bone imaging plays an important role in the work-up of branchio-oto-renal syndrome. Previous reports have suggested that the unwound or offset cochlea is a highly characteristic marker for branchio-oto-renal syndrome. Our goals were to examine the prevalence of this finding in a branchio-oto-renal syndrome cohort and analyze genetic-phenotypic associations not previously established. MATERIALS AND METHODS: This multicenter retrospective study included 38 ears in 19 unrelated individuals with clinically diagnosed branchio-oto-renal syndrome and confirmed mutations in the EYA1 or SIX1 genes. Two blinded neuroradiologists independently reviewed and documented temporal bone imaging findings in 13 categories for each ear. Imaging phenotypes were correlated with genotypes. RESULTS: There was excellent interrater agreement for all 13 phenotypic categories (κ ≥ 0.80). Of these, 9 categories showed statistically significant differences between patients with EYA1-branchio-oto-renal syndrome and SIX1-branchio-oto-renal syndrome. Cochlear offset was present in 100% of patients with EYA1-branchio-oto-renal syndrome, but in only 1 ear (12.5%) among patients with SIX1-branchio-oto-renal syndrome. A short thorny appearance of the cochlear apical turn was observed in most patients with SIX1-branchio-oto-renal syndrome. CONCLUSIONS: An offset cochlea is associated with the EYA1-branchio-oto-renal syndrome genotype. The SIX1-branchio-oto-renal syndrome genotype is associated with a different cochlear phenotype that almost always is without offset and has a short thorny tip as the apical turn. Therefore, cochlear offset is not a characteristic marker for all patients with branchio-oto-renal syndrome. The lack of a cochlear offset in a patient with clinically suspected branchio-oto-renal syndrome does not exclude the diagnosis and, in fact, may be predictive of the SIX1 genotype.


Assuntos
Síndrome Brânquio-Otorrenal , Síndrome Brânquio-Otorrenal/diagnóstico por imagem , Síndrome Brânquio-Otorrenal/genética , Cóclea/diagnóstico por imagem , Estudos de Associação Genética , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Estudos Retrospectivos
19.
Intern Med ; 61(13): 2033-2038, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866102

RESUMO

Branchio-oto-renal syndrome is an autosomal dominant disorder characterized by branchial anomalies, hearing loss, and renal urinary tract malformations. We herein report a 32-year-old Japanese man with a right preauricular pit, bilateral mixed hearing loss, and malposition of the right kidney who presented with proteinuria. The findings of a left kidney biopsy were compatible with a perihilar variant of secondary focal segmental glomerular sclerosis. A trio exome analysis conducted among the patient and his parents failed to identify the causal gene variant, despite a sporadic pattern. His kidney function remained stable for 11 years with an angiotensin II receptor blocker.


Assuntos
Síndrome Brânquio-Otorrenal , Surdez , Glomerulosclerose Segmentar e Focal , Perda Auditiva , Adulto , Síndrome Brânquio-Otorrenal/complicações , Síndrome Brânquio-Otorrenal/genética , Surdez/complicações , Glomerulosclerose Segmentar e Focal/complicações , Glomerulosclerose Segmentar e Focal/genética , Humanos , Rim , Masculino
20.
Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi ; 57(12): 1433-1441, 2022 Dec 07.
Artigo em Chinês | MEDLINE | ID: mdl-36707947

RESUMO

Objective: To screen the causative genes of five families with branchio-oto-renal syndrome (BORS) or branchio-oto syndrome(BOS) and to analyze the phenotypic characteristics and clinical management strategies of patients. Methods: Five families with BORS/BOR from December 2018 to September 2021 were recruited, information of patients, including family history and medical history, was collected, and genealogies were drawn. The examinations concerning audiology, nephrology, and radiology were performed on the affected individuals. Peripheral blood was obtained for DNA extraction, then next-generation sequencing technology was used to screen candidate variants associated with BORS/BOS. Based on patient's clinical results, the appropriate interventions were recommended and implemented. Results: Eight individuals were diagnosed with BOS or BORS. Of the eight patients, all had hearing loss, preauricular pits and ear malformations, and only four presented with branchial cleft fistulae or cysts. Except for two patients(5-I-2, 5-II-2) who did not undergo renal examination, the remaining six lacked renal abnormalities. Genetic analysis identified four likely pathogenic or pathogenic EYA1 variants (c.1715G>T, c.1140+1G>A, c.639G>C, c.1475+1G>C; NM_000503.6), and c.1715G>T was first reported in this study. Middle ear ossicular reconstruction was performed in 1-II-2,2-I-2 and 3-II-2, but did not yield the expected results; then hearing aids and cochlear implantation were recommended and achieved satisfactory results. Conclusions: Next-generation sequencing technology facilitates the diagnosis and genetic counseling of BORS/BOS. Hearing loss, preauricular pits, ear malformations and branchial cleft fistulae or cysts are the most common manifestations of patients in this study. Middle ear surgeries for improving hearing loss may have some limitations in BORS/BOS patients, and hearing aids and cochlear implantation can contribute to hearing gains.


Assuntos
Síndrome Brânquio-Otorrenal , Surdez , Perda Auditiva , Humanos , Síndrome Brânquio-Otorrenal/genética , População do Leste Asiático , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Tirosina Fosfatases/genética , Perda Auditiva/genética , Surdez/genética , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...